Skip to main content
. 2022 Dec 6;10:e13649. doi: 10.7717/peerj.13649

Table 3. Details of the model selection results of the N-mixture model for estimation of the relative abundance of sloth bears in Sanjay Tiger Reserve, Madhya Pradesh, India, during 2016–2017.

Model description nPars AIC ΔAIC AICwt Cumltv-wt
Poisson
(p(fruit_density)λ(sal.forest+vildist+human_CR+mixed)) 7 998.08 0.00 0.36 0.36
(p(fruit_density)λ(sal.forest+vildist+human_CR+mixed+Agricultural.land)) 8 999.52 1.44 0.17 0.53
Null model (p(.)λ(.)) 2 1,024.49 26.41 0.00 1.00
NB
(p(fruit_density)λ(sal.forest+vildist+human_CR+mixed)) 8 983.00 0.00 0.11 0.11
(p(fruit_density)λ(mixed +human_CR)) 6 983.15 0.15 0.11 0.22
(p(fruit_density)λ(mixed+human_CR+Agricultural. land)) 7 983.43 0.43 0.09 0.31
(p(fruit_density)λ(mixed+sal.forest+human_CR)) 7 983.75 0.75 0.08 0.39
(p(fruit_density)λ(mixed+vildist+human_CR)) 7 983.81 0.81 0.08 0.47
(p(fruit_density)λ(sal.forest+vildist+human_CR+mixed+Agricultural.land)) 9 984.26 1.25 0.06 0.53
(p(fruit_density)λ(mixed+Scrubland+human_CR)) 7 984.60 1.59 0.05 0.58
(p(fruit_density)λ(mixed+Agricultural.land)) 6 984.71 1.70 0.05 0.63
(p(fruit_density)λ(mixed+Water.body+human_CR)) 7 984.96 1.96 0.04 0.67
(p(fruit_density)λ(mixed+sal.forest)) 6 984.99 1.99 0.04 0.71
Null model (p(.)λ(.)) 3 993.76 10.76 0.001 1.00
ZIP
(p(fruit_density)λ(sal.forest+vildist+human_CR+mixed)) 8 995.09 0.00 0.36 0.36
(p(fruit_density)λ(sal.forest+vildist+human_CR+mixed+Agricultural.land)) 9 996.11 1.01 0.22 0.58
Null model (p(.)λ(.)) 3 1,022.10 27.00 0.00 1.00

Note:

Models include the most parsimonious models with the best-selected covariates and null models for the Poisson, negative binomial (NB) and zero-inflated Poisson (ZIP) distributions; Covariates considered: fruit_density- density of fruiting trees, mixed- area of mixed forest, sal.forest- area of sal forest, human_CR- photographic capture rate of humans, vildist–distance to the nearest village, Agricultural.land–area of agricultural land, Scrubland- area of scrubland and, Water.body–area of water body; Model selection was based on number of parameters (nPars), Akaike Information Criterion (AIC), the difference in AIC between best fit models (ΔAIC ≤ 2), AIC weight (AICwt) and cumulative AIC weight of models (Cumltv-wt); all models (including null models) are represented based on the lowest to the highest value of ΔAIC for each distribution.