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Abstract

Variant calling has been widely used for genotyping and for improving the consensus accuracy 

of long-read assemblies. Variant calls are commonly hard-filtered with user-defined cutoffs. 

However, it is impossible to define a single set of optimal cutoffs, as the calls heavily depend 

on the quality of the reads, the variant caller of choice, and the quality of the unpolished assembly. 

Here, we introduce Merfin, a k-mer based variant filtering algorithm for improved accuracy in 

genotyping and genome assembly polishing. Merfin evaluates each variant based on the expected 

k-mer multiplicity in the reads, independently of the quality of the read alignment and variant 

caller’s internal score. Merfin increased the precision of genotyped calls in several benchmarks, 

improved consensus accuracy and reduced frameshift errors when applied to human and non-

human assemblies built from Pacific Biosciences HiFi and CLR reads, or Oxford Nanopore reads, 

including the first complete human genome. Moreover, we introduce novel assembly quality and 

completeness metrics that account for the expected genomic copy numbers.
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Introduction

Accurate variant calling has been a challenge in medical genomics, especially to achieve 

both high recall and precision in hard to measure regions1. The advent of Next Generation 

Sequencing (NGS) and long-read sequencing technologies streamlined variant calling2, 

which typically includes: 1) aligning all reads to a reference genome; 2) calling variants 

from the alignment; and 3) filtering to remove false positives. The final outcome relies 

heavily on the precision of this multistep procedure, which depends on: 1) the quality of 

the read set; 2) the precision of the read mapping algorithm; and 3) the precision of the 

variant caller in generating reliable calls3. To remove false positives, variant calls are often 

hard-filtered using heuristics, such as requiring a minimum coverage support, genotype 

quality, or other internal quality scores2. However, no universally applicable cutoffs exist as 

they vary depending on the sequencing technology used. Therefore, the accuracy of a variant 

corresponds to the theoretical limit of the algorithms and the cutoffs employed, and not the 

theoretical limit given the quality of the raw data.

In parallel, new sequencing technologies greatly expanded our genome assembly toolkit. 

While the short-read assemblies stumbled resolving repetitive regions4, long-reads have 

considerably improved the contiguity of genome assemblies5. However, reduced consensus 

accuracy (hereby noted as QV) has been progressively acknowledged due to the lower 

base calling accuracy in long-reads, at least until the more recent Pacific Biosciences 

(PacBio) High-Fidelity (HiFi) reads became available6. Still, lower QV remains even in 

HiFi reads for simple repeat sequences, particularly homopolymers7,8. Reduced QV has 

detrimental impacts on many downstream analyses, e.g. gene annotation, which requires 

an accurate consensus to predict the correct coding sequence7. To mitigate this issue, 

“polishing” tools have been developed, such as Pilon, Arrow, Racon and Medaka9–11, 

while established variant calling tools such as GATK, Freebayes, DeepVariant12–14 have 

been repurposed to detect errors and find candidate corrections. Unlike re-sequencing based 

methods, the assembly from the same genome is used as a reference for polishing, and thus 

all homozygous variants suggest corrections to be made. Once corrections are collected, the 

consensus can be updated using tools such as Bcftools15. The process is usually repeated 

with different read sets (e.g. long and short-reads), until the QV reaches a set standard.

QV has been historically measured from the variant calling process as described above, 

however, bearing biases caused from mapping or variant calling. In our previous work, we 

presented Merqury16, an alignment-free approach to estimate base-level QV using k-mers 

(genomic substrings of length k). In Merqury, k-mers found only in the assembly and not 

in the reads are considered as errors, disregarding the expected copy number. As a result, 

overly represented k-mers from sequence expansion (i.e. false duplications) in the assembly 

are considered as correct bases. Merqury also presents a completeness metric from the 

portion of k-mers found in the assembly from a given reliable k-mer set in reads. However, 

this k-mer completeness metric does not account for the k-mer multiplicity in the reads, 

limiting the scope in the non-repetitive k-mer space. As a result, any two assemblies with 

identical distinct k-mers will score the same completeness metric, regardless of one having 

higher sequence collapses or expansions.
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Ideally, the sequence of an error-free and complete genome assembly is in perfect agreement 

with the sequence data, assuming genomic DNA is randomly sampled with negligible 

sequencing biases. Therefore, any changes introduced during polishing should improve the 

assembly-read agreement. This principle has been widely used to visually evaluate genome 

assembly copy number spectrum (e.g. spectra-cn analysis16,17), and more recently, used to 

detect errors and improve read alignment18–20. However, none of the evaluation metrics or 

polishing methods have fully utilized assembly-read agreement.

Here, we introduce a k-mer based filtering approach applicable on genomic variant calls, 

which achieved higher F1 scores compared to parameter based hard-filtering methods. 

Next, we propose revised QV and completeness scores that account for the expected 

sequence copy number given a k-mer frequency, driven by our refined K* definition21 for 

genome assembly evaluation. Our K* enables the detection of collapses and expansions, 

and significantly improves the QV when used to filter variants for polishing. We applied 

this approach to evaluate the most complete HiFi-based assembly of CHM1322–25, 

simultaneously released by the Telomere-to-Telomere (T2T) Consortium22. Next, we 

polished a Nanopore-based trio assembly from the Human Pangenome Reference Project 

(HPRC) and three CLR-based haploid and pseudo-haploid assemblies (a fish, reptile, and 

bird) generated by the Vertebrate Genomes Project (VGP)5, all resulting in significantly 

higher consensus accuracy and annotation quality. This approach is implemented as Merfin 
(k-mer based finishing tool) and is publicly available. Merfin requires k-mers from highly 

accurate reads (e.g. Illumina) that reflect the k-mer frequency in the genome.

Results

Variant call filtering for higher precision

A reference genome (i.e. GRCh38) with its sequence replaced at all alternate variant calls 

can be considered a “consensus” sequence and evaluated with k-mers. Unlike using a de 
novo assembled genome of the same individual as a reference, natural biological differences 

between the sequenced individual and the reference genome or the incomplete state of the 

reference (i.e. missing a segmental duplication) imposes challenges to reliably call variants. 

Nevertheless, it is possible to construct consensus paths from a variant or series of variants 

within k base pairs (bp) and confirm its validity. We can score each path by the number of 

k-mers never found in the reads (error k-mer) and choose the best path to contain minimal 

error k-mers (Fig. 1a and Extended Data Fig. 1a, “-filter” mode).

To test the validity of this filtering approach, we benchmarked against unfiltered (default) 

and hard-filtered variant calls submitted to precisionFDA challenge II, HG0021. The variants 

were called from Illumina reads or from multiple platforms (Illumina, PacBio HiFi, and 

ONT) using GRCh38 as the reference with GATK HaplotypeCaller. Hard-filtering was 

performed using the variant caller’s internal scores such as PASS, QD, MQ and QUAL. 

When comparing precision, recall, and F1 (harmonic mean of precision and recall) on a truth 

set of Chr. 2026, Merfin always achieved higher precision with minimal loss in recall on 

both default and hard-filtered sets (Fig. 1b). The hard-filtered set had higher precision, with 

the price of losing more true positives, resulting in a lower F1 score when compared to the 

default set. Merfin was able to remove additional false positives on the hard-filtered set. True 
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positive variants used in this analysis, ranging from 48 bp deletions to 47 bp insertions, were 

all recovered by Merfin.

Assembly evaluation

When a reference genome is constructed from the same individual, the k-mer multiplicity 

seen in the reads is expected to match the reference. This property can be used for evaluating 

de novo assembled genomes. Here, we introduce our revised K*, which identifies potentially 

collapsed and expanded regions in an assembly, and quantitative metrics for representing 

assembly copy-number concordance and completeness.

Identifying collapsed and expanded regions—The K* metric was defined previously 

to detect identical collapsed repeats on each k-mer in the assembly21. The method proposed 

K* = KR / KC, where KR is the frequency of a k-mer found in the reads; and KC is the 

frequency of a k-mer across the entire consensus sequence of the assembly. In regions with 

no collapsed repeats, K* will be equal to c, the average coverage of sequencing reads. Here 

we revised the K* such that it evaluates both collapses and expansions. We propose K* = (Kr 

- KC) / min (Kr, KC), where Kr is the expected copy number inferred from the reads (Fig. 

1c). For a perfect genome assembly and an unbiased read set, K* is normally distributed 

with mean 0, and deviations from the mean reflect natural variation in the Poisson sampling 

process (Fig. 1d). Conversely, any large deviation from the normal distribution can be 

interpreted either as a bias in the assembly (i.e. an assembly error) or a bias in the read 

set. Specifically, a positive K* implies that the assembly contains fewer copies of k-mers 

than suggested by the read set (collapsed), while negative K* implies more copies in the 

assembly than suggested by the read set (expanded).

The Kr can be obtained by rounding to the nearest integer, ⎿ KR / c ⏌, where c is 

the haploid (1-copy) peak of the k-mer distribution of the reads. Here we assume that 

rounding Kr is sufficient to account for the standard deviation associated with the Poisson 

process underlying read generation. While this is true in the case of a perfectly sampled 

sequencing set, the validity of this generalization is challenged in the presence of sampling 

bias, systematic error in the reads, and variable degrees of heterozygosity that results in 

different likelihoods of specific copy-numbers. To account for this uncertainty and improve 

the accuracy of the results, we modified Genomescope227 to probabilistically infer Kr for 

each KR, using the observed k-mer count distribution in the read set. If supplied, Merfin will 

use these probabilities for Kr ≤4. (Fig. 1e).

QV* estimation—An average genome-wide QV accounting for excessive copy numbers 

(hereby defined as QV*) can be obtained using ∑ KC - Kr as errors when KC > Kr for 

all positions in the assembly (Fig. 1f and Extended Data Fig. 1b, “-hist” mode). These 

excessive and error k-mers can be generalized as ‘errors’ in Phred-scale QV, as in Merqury16 

or YAK28.

Assembly completeness—The sum of Kr – KC (over all positions where Kr > KC) 

expresses absent k-mers that should be present in the assembly, and can be directly 

translated into a measure of assembly completeness as 1 - ∑ (Kr – KC) / Kr (Fig. 1f). 
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Importantly, contrary to other measures of assembly completeness based on a subset of the 

k-mers (e.g. relying only on the occurrence of distinct k-mers as in Merqury16), Merfin uses 

all k-mers, including their frequency, and computes the fraction of the expected total number 

of k-mers (Extended Data Fig. 1b, “-completeness” mode).

Sequence polishing

The K* becomes particularly useful in polishing. Increased QV is achievable through a 

dedicated polishing tool or via corrections identified by a standard variant calling method. 

Even when using polishing tools, generating a set of potential corrections in variant call 

format (VCF) allows finer control over the outcome and can be assessed with Merfin. 

In Merfin, the impact of each correction or combination of corrections are assessed from 

the given correction candidates by comparing the change in K*- metrics (Fig. 1a,c and 

Extended Data Fig. 1a, “-polish” mode). In addition to the error k-mers collected in each 

predicted consensus path, we compute the consequent k-mer frequency change, and choose 

the correction only when it improves the assembly-read agreement. For example, when a 

suggestive correction (replacing AT with A as shown in Fig. 1a) introduces more error 

k-mers, it should not be used for polishing. Even when no error k-mers are introduced, K* 
theoretically informs whether a path improves the assembly-read agreement in polishing. 

The current implementation evaluates each path independently, and thus only a local 

optimum is guaranteed. Variants within distance k are considered in all combinations, 

allowing Merfin to filter variant calls close to each other. This approach is fully independent 

of the raw dataset employed. For instance, the assembly could be generated using long-

reads, and the calls evaluated using either short or long-reads or both, taking advantage of 

the strengths of each sequencing platform, making accurate orthogonal validation possible, 

ultimately maximizing the assembly-read agreement.

Evaluating a complete human genome: T2T-CHM13

The CHM13hTERT (CHM13) cell line originates from a complete hydatidiform mole (46, 

XX), where both haplotypes are nearly identical29. This cell line was used to generate the 

most complete high-quality human reference to date, resolving all centromeric and telomeric 

repeats and all segmental duplications and satellite arrays22,23. Notably, T2T-CHM13v0.9 

was polished from a variety of variant calls, filtered with an earlier version of Merfin, which 

improved the consensus accuracy of the final assembly25. We further evaluated candidate 

assemblies to identify collapses and expansions using Merfin using k-mers from HiFi and 

Illumina reads. We found that the T2T-CHM13v1.0 assembly shows a remarkable agreement 

with the raw data, with only a few regions having K* largely different from 0, coinciding 

with satellite repeats (Fig. 2a). Rather than being assembly errors, these disagreements 

were associated with context-dependent augmentation or depletion in HiFi and GC bias in 

Illumina22,25. In HiFi, the sequencing coverage depends on sequence content22. Illumina has 

a similar dependence in GC context, introducing biases during library preparation, but not 

necessarily in the same direction seen in HiFi. Indeed, K* derived from HiFi and Illumina 

k-mers showed opposite behavior in some regions, i.e. the HSat3 of Chr. 9 (Fig. 2b). These 

effects were observed only on the highly repetitive regions of the genome.
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Compared to a less complete and less accurate preliminary assembly, T2T-CHM13v0.730, 

T2T-CHM13v1.0 had a higher agreement of the assembly with the k-mers derived from 

HiFi (Fig. 2c) and Illumina reads (Extended Data Fig. 2). We found a general agreement 

in K* between HiFi and Illumina PCR-free k-mers, including regions with sequencing 

bias common to the two technologies (Extended Data Fig. 3). In other cases, the direct 

comparison of the K* computed from the two technologies highlighted technology-specific 

sequencing biases (Fig. 2a,d). Particularly, genome-wide comparison of the K* computed 

using HiFi vs Illumina k-mers on the CHM13 v1.0 assembly show substantial agreement 

between the assembly and the raw reads (Fig. 2d, coordinates 0, 0). The only k-mers 

consistently seen as underrepresented in both technologies (Fig. 2d, upper right quadrant) 

were mostly contributed from the un-assembled rDNAs later resolved in v1.122. At base 

resolution, the K* could distinguish regions with accurate consensus from base pair errors, 

small and large indels, heterozygous sites, and collapsed/expanded regions (Extended Data 

Figs. 4a-b).

Both QV and QV* measured with Merqury and Merfin improved from v0.7 to v0.9 25, 

which involved a complete reassembly of the genome using HiFi reads and patches from 

v0.7 at GA-rich sequence dropouts in the HiFi reads (Supplementary Table 1). Merqury 

QV improved from v0.7 to v0.9, due to the dramatic decrease in error k-mers, however the 

Merfin QV* only marginally increased as the number of error k-mers is small compared 

to the number of overly-represented k-mers, likely due to sequencing biases. We argue that 

QV* may still be a more reliable metric, because it accounts for all expected k-mer copy 

numbers, reflecting the full extent of genome representation. QV* is also only marginally 

influenced by the coverage, as shown by a titration experiment (Extended Data Fig. 5, 

Supplementary Table 2).

Polishing a completely phased assembly: HG002

The need for polishing is particularly evident in genome assemblies generated using noisy 

long reads. Therefore, we tested Merfin’s variant calling filtering algorithm on a Nanopore-

based assembly of human HG002 trio data generated by the HPRC using Flye31,32. We 

benchmarked Merfin on Medaka, by comparing polishing outcomes from Medaka with 

or without filtering with Merfin. In a trio setting, the optimal approach is to polish 

each parental assembly separately, by aligning the binned reads and performing variant 

calling5,33. This will reduce the introduction of haplotype switches. However, our k-mer 

based evaluation of the corrections is best performed on a combined assembly so that it 

faithfully represents the expected copy-number of each k-mer given the read set.

We first called variants separately from the binned reads used in the assembly with Medaka, 

and then combined the variant calls and the parental assemblies for the Merfin variant 

filtering step. K-mers used in Merfin were computed from Illumina sequencing reads. We 

conducted five different experiments using read sets that differ in coverage, version of the 

Guppy basecaller, and read length cut-off (Supplementary Table 3). Two rounds of polishing 

were conducted in all experiments, with the second round performed on the consensus 

from the first round generated with the additional Merfin step. Overall, in all experiments 

we observed comparable improvements in base calling accuracy as measured by Merqury 
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QV when Merfin filtering was applied (Supplementary Table 3). This increase reflected a 

dramatic positive shift in the QV distribution of individual contigs, with most low-quality 

contigs being rescued by Merfin, and a sharp increase in the number of contigs found 

without errors, leading to a final Q43.2 and Q42.8 for maternal and paternal haplotypes, 

respectively (Fig. 3a). In the second round of polishing, the QV ceased to improve or even 

decreased when Merfin was not applied (Fig. 3a, Supplementary Table 3), suggesting that 

the best trade-off between errors corrected and introduced in the assembly was already 

reached in the first round. In contrast, QV continued to increase relative to the first round 

with Merfin. Haplotype blocks as defined by Merqury increased in a comparable if not better 

way when using Merfin (Fig. 3b), while haplotypes remained fully phased (Extended Data 

Fig. 6). Importantly, the results with Merfin were achieved by introducing only a fraction 

of the variants proposed by Medaka, making this approach more conservative than regular 

polishing (Fig. 3c).

We further validated the HG002 unpolished and polished assembly by aligning each 

haplotype assembly to GRCh38 and deriving small variants. When benchmarked against 

GIAB v4.2.1 truth set26, the results show that using Merfin we get a better F1-score, 

particularly at INDELs (Fig. 3d, Supplementary Table 4)26,34,35.

Evaluation, polishing and annotation of pseudo-haploid assemblies

We next applied Merfin to the polishing steps of the VGP assembly pipeline5 (Extended 

Data Fig. 7) on pseudo-haploid assemblies from three species (flier cichlid, Archocentrus 
centrarchus, fArcCen1; Goode’s desert tortoise, Gopherus evgoodei, rGopEvg1; and zebra 

finch, Taeniopygia guttata, bTaeGut1). Using PacBio continuous long-reads (CLR) and 

10x Genomics linked-reads for polishing, we observed a general improvement in QV as 

measured by Merqury (Fig. 4a, Supplementary Table 5). The largest improvement was 

observed in the first round of Arrow polishing step using CLR. Arrow can replace low 

quality sequences with patch sequences generated de novo from the reads that align to 

the region, i.e., independent of the original reference quality. We observed low coverage 

sequencing biases (i.e. homopolymer shortening), and mosaic haplotypes in the generated 

patches, leading to cases of lower QV in the polished assembly (e.g. Fig. 4a, rGopEvg1). 

Merfin rescued the QV decrease or improved the QV in all cases. The variant length range 

(−453:2,242) was not compromised after Merfin (−453:1,618), and many of the variants 

well above 50 bp were retained by Merfin (Supplementary Table 6), supporting the notion 

that if the quality of the consensus sequence is sufficient, large calls will not be negatively 

impacted.

In the subsequent polishing steps performed using Freebayes, the benefit of running Merfin 

to filter the variant set was less pronounced but still present (Fig. 4a, dashed lines). This 

was true in all cases but the zebra finch, where the default pipeline performed marginally 

better. However, when considering low frequency k-mers as errors from the probability 

model in Merfin, the QV as well as QV* increased in all cases (adjusted QV and QV* in 

Fig. 4b,c, Supplementary Table 5). Merqury QV counts all k-mers never seen in the reads as 

errors, while the adjusted QV additionally counts low frequency k-mers based on the k-mer 

frequency spectrum as errors. The QV* further includes overrepresented k-mers as errors, 
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therefore capturing not only base accuracy errors, but also false duplications, expressing the 

uncertainty associated with any particular base given the support from the raw reads.

Most long-read assemblers generate locally phased haplotypes (e.g. Falcon-Unzip36), and 

it is therefore important that the polishing does not introduce haplotype switches. To test 

whether the increase in QV from Merfin was due to introducing haplotype switches, we 

tested a zebra finch (Taeniopygia guttata, bTaeGut2) pseudo-haploid assembly for which 

parental sequence information is available to evaluate, using parent-specific k-mers, the size 

of haplotype blocks and the number of haplotype switches5. When Merfin was applied to 

filter variants generated by Freebayes on the Longranger alignments of the 10x reads in 

the zebra finch pseudo-haploid setting, we noticed an increase in the number of haplotype 

switches as measured with Merqury (Supplementary Table 7). We realized that this was 

due to many heterozygous variants being called by Freebayes, when individual reads were 

mapped to collapsed regions or preferentially to the more accurate primary assembly5. The 

missing true heterozygous k-mers in the collapsed or lower quality regions were recovered 

by the heterozygous variant call, and thus preferred by Merfin. Further, even in almost 

complete pseudo-haploid assemblies, short-reads can be easily mis-mapped, leading to 

spurious heterozygous calls. To overcome this issue, we decided to remove all heterozygous 

variants before applying Merfin. This substantially prevented haplotype switches (Extended 

Data Fig. 8), wihtout affecting the QV increase (Supplementary Table 7). In conclusion, we 

suggest removing all heterozygous variants prior to Merfin as the best practice for polishing 

pseudo-haploid and haploid assemblies.

In addition, we validated our results using gene annotations, which are sensitive to 

consensus accuracy error, and particularly to frameshift errors caused by indel errors. 

We performed de novo gene annotation using the RefSeq37 gene annotation pipeline 

(GNOMON)38 on the VGP assemblies polished with the conventional VGP pipeline (v1.6) 

and compared against assemblies where Merfin was applied at every polishing step. In 

GNOMON, if a protein alignment supports a predicted model with an indel introducing 

frameshift or premature stop codons, the model is labeled as ‘low quality’ and a base is 

added or removed from the predicted model to compensate for the indel in the genome. 

If more than 1 in 10 coding genes in an assembly require corrections, the assembly is 

excluded from RefSeq. Based on information provided by the submitters, almost all rejected 

assemblies used ONT or PacBio CLR reads.

Again, Merfin substantially reduced the number of genes affected by frameshifts, validating 

QV and QV* results (Fig. 4d-f, Supplementary Table 8 and example in Extended Data Fig. 

9). Premature stop codons were significantly reduced with respect to the default polishing 

in all cases (Fig. 4d), with 42.9%, 42% and 21.7% reduction in fArcCen1, rGopEvg1 

and bTaeGut1, respectively. Ultimately, 1% or less of genes had code breaks in all cases 

when using Merfin. Frameshifts were also positively affected (Fig. 4e), with 38%, 49.6% 

and 19.5% reductions in fArcCen1, rGopEvg1 and bTaeGut1, respectively. Less than 3% 

of genes had frameshifts in all cases when using Merfin. Similarly, the number of protein-

coding gene predictions labelled as ‘low quality’ were reduced (Fig. 4f). From these results, 

Merfin has been included in the VGP pipeline (v1.7).
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Consistent with the variant filtering for genotyping, the improvements in QV with Merfin 

superseded any hard-filtering attempt using variant call quality score (QUAL) cutoffs at 

the Arrow polishing step (Fig. 5a-c, Supplementary Table 9). For the primary assembly, 

QV* estimates were consistently higher than the best results attainable by hard filtering 

(fArcCen1: Q32.5 vs. Q31.9 at QUAL≥18, rGopEvg1: Q38.7 vs. Q36.7 at QUAL≥21, 

bTaeGut1: Q44.4 vs. Q42.4 at QUAL≥21). The best QUAL cutoff was not necessarily 

consistent between species, indicating that a single cutoff cannot produce the best outcome 

in all cases. The alternate assembly (i.e. alternate haplotype) behaved similarly to the 

primary assembly, again with Merfin always performing best (fArcCen1: Q31.6 vs Q31.1 

at QUAL≥23, rGopEvg1: Q35.2 vs. Q34.2 at QUAL≥26, bTaeGut1: Q42.0 vs. Q40.6 at 

QUAL≥23). However, it notably differed in best QUAL cutoff values to maximize QV. At 

increased QUAL cutoffs, both genuine and erroneous corrections are filtered out. Thus, 

hard-filtering cutoffs perform best when the number of errors corrected exceeds the number 

of errors introduced at maximum. In contrast, variants selected by Merfin had a wide range 

of quality scores, with the majority containing higher quality scores, and yet including many 

below 25 (Fig. 5d-f). Notably, a significant fraction of variants with the highest quality 

score assigned were introducing error k-mers and thus were rejected by Merfin. Potentially, 

accumulated sequencing biases in long-reads could lead to erroneous variant calls but can be 

filtered with more accurate k-mers from short-reads. No hard-filtering methods were able to 

achieve QV improvements in polishing as observed with Merfin.

Effect of k-size and computational requirements

The minimum size of k can be determined by a given genome size and a tolerable k-mer 

collision rate39. This has been adapted in Merqury16 and used for k-mer based assembly 

evaluation. In brief, under a maximum allowed collision rate of 0.5%, k=21 is suggested 

as the minimum length of k for genomes of size typically found in vertebrate species (1.2 

~ 4 Gb), including human, and is used throughout our benchmarks. In theory, a larger 

k-size could result in more accurate filtering variants with the cost of k-mer coverage drop 

and increased computational burden. We tested if using k=31 provides a better F1 score 

over k=21 on the variant filtering GIAB benchmark, and found it provided a marginal 

improvement in the F1 scores (0.04%, Supplementary Table 10) at the cost of using 1.5 

times more memory and 1.6 to 2.6 times more computation. As a large fraction of the 

read k-mers occur exactly once in the reads (72~89% of all distinct k-mers), we tested 

how excluding these would affect the performance of Merfin. Excluding unique k-mers in 

the filtering slightly increased the F1 score (0.01% to 0.03%) compared to using the entire 

k-mer set, by removing additional false positive calls. Memory requirement significantly 

reduced from 122.6 GB to 49.2 GB for loading k-mers obtained from ~60x Illumina 

reads and 68 GB to 24.3 GB for loading ~25x Illumina reads along with reduced CPU 

hours (Supplementary Tables 10-12). As the filtering, evaluation, and polishing results at 

different k-size or filtering were nearly identical, we recommend avoiding using larger k 
and excluding all unique k-mers before applying Merfin to maximize results with minimal 

computational burden.
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Discussion

We described and demonstrated Merfin, a k-mer based tool to evaluate and filter variant 

calls for improved genotyping accuracy and polishing. Importantly, while adding only a 

modest runtime to variant calling, Merfin allows an innovative alignment-free evaluation 

and filtering of variants (VCF) generated from any dataset or variant calling method. 

Merfin successfully removes false positive calls, superseding any hard-filter based cutoff 

for both genotyping and polishing. Contrary to the plateau effect usually observed in 

traditional polishing, our approach is a monotonic function, predicted to improve the 

consensus accuracy until no more useful variants are produced by the variant caller. This 

lets polishing pipelines have a stopping condition to set, i.e. to stop iterative polishing when 

no more variants survives Merfin’s filtering. Merfin depends on the accuracy of the bases 

in the suggested alternate sequence called by the variant caller. Long alternate insertion-like 

sequence from noisy long-reads (e.g. CLR or ONT) bear a higher chance to have base errors, 

which are more likely to get rejected. This could be avoided by applying other tools to 

validate large insertions such as VaPoR40 before running Merfin. However, we note that the 

variant size ranges from CLR and ONT before and after polishing were well preserved as 

shown in Supplementary Table 6.

In addition to implementing variant evaluation and filtering in Merfin, we revised K*, a 

metric based on the copy number agreement between the reads and the assembly, to identify 

and analyze local expansions and collapses at each k-mer genome-wide. We also devised 

QV* and K* completeness, new quality metrics that account for over and underrepresented 

k-mers undetected by previous methods16. On the first complete human genome, we 

demonstrated that our approach allows orthogonal validation of both consensus sequence 

and variants with multiple sequencing data type.

Like all k-mer-based estimates, K* is influenced by the choice of k, which is dependent 

on the quality of the reads. The results presented here assume high-accuracy reads (e.g. 

Illumina) for evaluation and variant filtering, and may therefore not work best with k-mers 

derived from noisy long-reads (i.e. CLR reads and early ONT data). Presence of sequencing 

biases also results in biased K*, such as the GC bias in Illumina reads or the GA dropouts 

in HiFi reads25. We found Illumina reads were overall better in correcting systematic 

homopolymer and 2-mer microsatellite errors often introduced by HiFi reads41. Yet, these 

effects are limited only to certain regions of the genome, and it could be potentially further 

mitigated by methods that correct sequencing reads for known biases42.

In parallel, the completeness of the assembly also affects the K*. Pseudo-haploid or haploid 

representation of a genome may potentially lead to suboptimal evaluation because of the 

missing sequence. However, we argue this is a limitation of the assemblies, rather than a 

limitation of the methods used to evaluate and polish them. Representing a diploid genome 

as a haploid or pseudo-haploid assembly introduces complications in the evaluation, since 

the k-mers in the consensus will not fully reflect the k-mers in the read set. Homozygous 

k-mers will be underrepresented, and some of the alternate haplotype k-mers will be 

completely missing. While haploid or partially phased (e.g. FALCON-Unzip36) assemblies 

can be preferred for some applications, a faithful reconstruction of the complete genome 
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(e.g. using trio binning33,43) should be preferred for both evaluation and comparative 

purposes, as well as for many biological analyses that can benefit from the presence of 

both haplotypes. The recent developments in assembly graphs enable the representation of 

complete haplotypes with enhanced accuracy and completeness44, suggesting that assembly 

tools and state-of-the-art assemblies are moving in this direction. If this condition is met, the 

information contained in the reads can be fully harnessed to evaluate and improve genome 

assemblies.

Merfin presents the first k-mer based variant filtering to the best of our knowledge, enabling 

higher precision in genotyping and improving assembly accuracy. This will become critical 

particularly in medical genomics and many other applications, where reliable genotyping 

is essential. Polishing with Merfin will also rescue assemblies built from noisy long-reads 

when more accurate reads are not accessible, or when sequencing biases are subject for 

correction using complementary sequencing data.

Methods

Genotyping benchmark

Variant calls from HG002 submitted to precisionFDA Truth Challenge1 were downloaded 

from https://data.nist.gov/od/id/mds2-2336 (SEX9X, NFT0L, 23O09, and QUE7Q). In brief, 

~35x Illumina PCRfree, ~36x PacBio HiFi, and ~47x ONT reads were aligned to the 

human genome reference (GRCh38) with no alternates. Variants were called with GATK 

HaplotypeCaller v4. Unfiltered and hard-filtered set was downloaded and a subset of the 

call on Chr. 20 was extracted with bcftools v1.10.2 (https://github.com/samtools/bcftools). 

The variant calls were then benchmarked against the GIAB truth set v4.2.1 within the 

confident region using hap.py (v0.3.12–2-g9d128a9, https://github.com/Illumina/hap.py)26. 

The GIAB variant calling truth set and confident region for HG002 can be found in: ftp://ftp-

trace.ncbi.nlm.nih.gov/giab/ftp/release/AshkenazimTrio/HG002_NA24385_son/NISTv4.2.1. 

We used the following commands for the evaluation:

hap.py \

 HG002_GRCh38_1_22_v4.2.1_benchmark.chr20.vcf \

 $QRY.vcf. \

 -f HG002_GRCh38_1_22_v4.2.1_benchmark_noinconsistent.bed \

 -r GCA_000001405.15_GRCh38_no_alt_analysis_set.fna \

 -o OUTPUT \

 --threads 24

Precision and recall were then collected before and after filtering the variants with Merfin 

from happy.py output.

To run Merfin filtering, PCR-free Illumina paired-end reads (2×250 bp) 

were obtained from NIST (https://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio/

HG002_NA24385_son/NIST_Illumina_2×250bps/) and 21-mers were collected using Meryl 

v1.3. K-mers with frequency > 1 were used as read k-mers to avoid k-mer collisions 
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from sequencing errors and improved computational performance. Likewise, 21-mers from 

GRCh38 primary assembly (GCA_000001405.15) were collected with Meryl and used as 

the sequence k-mers. The following commands were used to build meryl k-mer databases:

meryl count k=21 reads.fastq.gz output HG002.k21.meryl

meryl count k=21 hg38.fna output hg38.k21.meryl

Command lines to run Merfin can be found in the Runtime and memory section below.

Revised K*

K-mers are substrings of length k of a given DNA sequence. Given the assembly consensus 

sequence, we compute all its constituent k-mers. Similarly, we compute all k-mers 

represented in a set of WGS reads from the same individual. We then ask how the frequency 

of each k-mer in the read set is mirrored in the assembly k-mer set. If the read set is a 

faithful representation of the genome (i.e. in the absence of random DNA sampling and 

sequencing biases), then the closer the consensus sequence is to the read set, the closer it is 

also to the genome the reads were generated from. This principle can be usefully represented 

by our revised K*, where for each k-mer in the consensus we can calculate (Fig. 1a):

KC = k-mer count in the consensus sequence

KR = k-mer count in the read set

To account for the uncertainty associated with the underlying Poisson sampling process, 

in any sequencing experiment the read set covers on average the original genome multiple 

times. It is therefore useful to determine the expected copy number of a particular k-mer in 

the assembly given the read set, Kr, as:

c = haploid peak from KR histogram

Kr = the k-mer count expected in the consensus based on the read set, i.e. ⎿ KR / c ⏌

Note that Kr - KC expresses the number of copies of any particular k-mer that is 

underrepresented (collapsed; positive value) or overrepresented (expanded; negative value) 

in the assembly.

With these definitions, we can now define K* as:

K* = Kr / KC – 1 if Kr > KC (collapsed k-mers)

K* = – (KC / Kr – 1) if Kr < KC (expanded k-mers)

Which can be reduced to:

K∗ = (Kr − KC)/min(Kr, KC)
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Note that K* converges to 0 if the k-mer frequency in the assembly matches the expected 

copy number in the reads. Missing k-mers (i.e. found in the assembly but not in the read set) 

have a special behavior, with K* being “undefined” for Kr = 0.

Probabilistic K-mer copy-number estimation

To estimate k-mer copy-number in the genome, we modified Genomescope227 to obtain the 

associated probability at each KR. Our additions were subsequently integrated in the current 

version of Genomescope2 (https://github.com/tbenavi1/genomescope2.0). Unmodified fitted 

model 1- to 4-copy k-mer distributions were used to infer the probability that a particular k-

mer frequency observed in the read set implied a particular copy k-mer in the genome. Using 

this model, Merfin provides a script generating a lookup table for each k-mer frequency 

in the raw data with the most plausible k-mer multiplicity and its associated probability 

(https://github.com/arangrhie/merfin/tree/master/scripts/lookup_table).

QV estimation using the K*

An average genome-wide QV* is obtained by counting all k-mers not present compared to 

the expected copy number estimated from the read set. We collect all k-mers excessively 

found in the assembly (KE) and estimate the error rate given all k-mers in the assembly 

(Ktotal).

KE = ∑ KC - Kr when KC > Kr for all positions in the assembly

The Phred-scaled QV* can be computed using the implementation in Merqury16.

We follow the implementation in Merqury and compute the probability P that a base in the 

assembly is correct and in its expected frequency:

P   =   Ktotal −  KE  /Ktotal
1/k

Which leads to error rate E being:

E = 1 − P

Hence the Phred scaled QV* becomes:

QV * = − 10 log E

Assembly completeness using the K*

To estimate completeness, we collect all k-mers that should be present but are absent from 

the assembly. Unlike Merqury, we account for the k-mer frequency and count any k-mer that 

should be added to meet the expected frequency from the reads KA.

KA = ∑ (Kr - KC) when Kr > KC for all Kr, including KC = 0

We compute the completeness Comp given all Kr:
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Comp % = Kr − KA /Kr = 1 − KA/Kr

Sequence data

For the HG002 results, data can be found at https://github.com/human-pangenomics/

HG002_Data_Freeze_v1.0. For the VGP datasets, PacBio CLR and 10x Genomics linked 

reads can be found at https://vgp.github.io/genomeark/5.

Evaluation of CHM13 assemblies

All scripts used for CHM13 evaluation can be found here: https://github.com/gf777/misc/

tree/master/merfin. Briefly, we generated genome-wide K* tracks using Merfin option 

-dump (merfin_dump.sh). K-mer counts databases for both the assemblies and the raw 

Illumina and HiFi reads were computed using Meryl (https://github.com/marbl/meryl). 

Peak values of 106.8 and 31.8 derived as the kcov value from Genomescope were used 

for Illumina and HiFi k-mers, respectively, which is now obtainable with Genomescope2 

-p 1(commit version fdeb89178d506c9af2c5d0d103e0135a164889a3). The tracks were 

converted to bigWig and loaded in IGV45 for visualization. We used a custom script 

(simplify_dump.sh) to count the number of bases with the same K* values for both Illumina 

and HiFi k-mers, which were then used to generate the genome-wide K* comparison. The 

titration experiment was performed downsampling the reads with the ‘seqtk sample’ 

command (https://github.com/lh3/seqtk, v1.3).

Variant calling and polishing of HG002 assemblies

Variant calling and polishing of HG002 assemblies was performed using medaka v1.2.6 

(https://github.com/nanoporetech/medaka) using the models specified in Supplementary 

Table 3 for each dataset. Medaka was first run in the consensus mode (medaka_consensus) 

and subsequently in the variant mode (medaka_variant) to generate the vcf of the variant 

calls. Illumina 21-mers from the HG002 benchmark were re-used for evaluation and filtering 

with Merfin. Medaka filtered variant set was then used in conjunction with bcftools v1.9 

in the consensus mode with the -H 1 option to generate a consensus sequence. The same 

procedure was followed for the Merfin assemblies, except that Merfin was used to filter 

Medaka vcf prior to consensus generation. Polishing was repeated twice, and in the second 

round the assembly polished with Merfin was used as reference. Additional best practices 

for running Merfin can be found in the Github repository (https://github.com/arangrhie/

merfin/wiki/Best-practices-for-Merfin).

Assembly-based small variant calling assessment

We used dipcall v0.3 (https://github.com/lh3/dipcall) to generate the small variants from the 

assembly. Dipcall takes a diploid assembly and a reference genome to produce a variant 

call file (vcf) that contains all variants that are present in the assembly compared to the 

reference. We then compared the variant calls against GIAB truth set v4.2.1 using hap.py as 

described in the Genotyping benchmark session. We used the following commands for the 

evaluation:
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./run-dipcall <output_prefix> <GRCh38.fa> <pat.fa> <mat.fa> -t 8 -x 

hs38.PAR.bed

hap.py HG002_GRCh38_1_22_v4.2.1_benchmark.vcf.gz \

 DIPCALL_OUTPUT.dip.vcf.gz \

  -f HG002_GRCh38_1_22_v4.2.1_benchmark_noinconsistent.chr20.bed \

  -r GCA_000001405.15_GRCh38_no_alt_analysis_set.fna -o OUTPUT \

  --pass-only --engine=vcfeval --threads=32

Variant calling and polishing of VGP assemblies

While the original assemblies were generated with different versions of the VGP pipeline5 

(https://github.com/VGP/vgp-assembly/tree/master/pipeline), to polish the assemblies of the 

flier cichlid (v1.0), the Goode’s thornscrub tortoise (v1.5), and the zebra finch (v1.6) 

with Merfin we used the VGP pipeline v1.6 (Extended Data Fig. 7). In the first round 

of polishing, PacBio CLR reads were aligned with pbmm2 v1.0.0, variants were called 

with variantCaller v2.3.3 (arrow) with the -o ${asm}.vcf option. A custom script (https://

github.com/arangrhie/merfin/blob/master/scripts/reformat_arrow/) included in Merfin was 

used to properly format the vcf file (reshape_arrow.sh). 21-mer databases for both the 

assemblies and the 10x linked-reads were generated with Meryl. 10x barcodes were trimmed 

from the reads using the script available in Meryl. The haploid 21-mer coverage and the 

lookup tables were computed using our modified Genomescope2 script included in Merfin:

Rscript $merfin/lookup.R ${asm}.21.meryl.hist 21 ${asm}.21.lookup 2

Similarly to HG002, the consensus was generated with bcftools v1.9 using the filtered vcf 

generated by Merfin. The same strategy was applied for the other polishing steps, except 

that Longranger v2.2.2 was used for mapping the 10x Genomics linked-reads and Freebayes 

v1.3.1 (https://github.com/freebayes/freebayes) for variant calling.

For variant calling and polishing of zebra finch 

trio, curated primary (bTaeGut2.pri.cur.20191112.fasta) and alternate 

(bTaeGut2.alt.cur.20181019.fasta) pseudo-haploid assembles were downloaded 

from genomeark (https://genomeark.s3.amazonaws.com/index.html?prefix=species/

Taeniopygia_guttata/bTaeGut2/assembly_curated/). 10x linked reads were aligned with 

Freebayes on the primary and alternate assembly using Longranger with default options. 

Freebayes calls were filtered using Bcftools v1.9 with the -i’(GT=“AA” || GT=“Aa”)’ 

option prior to Merfin filtering. K-mer counts databases for both the assemblies and the raw 

Illumina reads were computed using Meryl, and Merfin was run with a peak value of 35.2 

derived as the kcov value from Genomescope2.

Evaluation of the assemblies

QV and phasing analyses of HG002 and zebra finch trios were performed using Merqury16 

(https://github.com/marbl/merqury/) in the trio mode using 21-mers and default parameters. 
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Similarly, primary and alternate scaffolds of the VGP assemblies were separated and 

Merqury QV was estimated on both using 21-mers and default parameters.

Gene annotation of VGP assemblies

Annotation was performed using the NCBI annotation pipeline5, using the same transcript, 

protein and RNA-Seq input evidence for the annotation of the unpolished, polished and 

Merfin assemblies of each species. For Taeniopygia guttata, a total of 100,000 Taeniopygia 
guttata ESTs, GenBank and known RefSeq37 and 10 billion same-species reads for over 

13 tissues were aligned to the genome, in addition to all GenBank Aves proteins, known 

Aves, human and Xenopus RefSeq proteins, and RefSeq model proteins for Parus major, 
Gallus gallus, Columbia livia and Pseudopodoces humilis. For Gopherus evgoodei, 1.22 

billions RNA-Seq reads from 5 tissue types from Gopherus and Chelonoidis species were 

aligned to the assemblies in addition to all known RefSeq proteins from human, Xenopus, 
and Sauropsida, and model RefSeq proteins from Chrysemys picta, Pelodiscus sinensis. For 

Archocentrus centrarchus, 476 million same species RNA-Seq reads from 9 tissue types 

were aligned to the assemblies in addition to all Actinoipterygii GenBank proteins, human 

and Actinopterygii known RefSeq proteins and Oryzias latipes, Oreochromis niloticus, 

Monopterus albus, Xiphophorus maculatus model RefSeq proteins. In brief, the genome 

sequences masked with Windowmasker46 before annotation. Transcription RNA-Seq data 

were aligned with BLAST47 followed by Splign48, and RefSeq and GenBank proteins 

were aligned using Blast and ProSplign. The gene model’s structure and boundaries were 

obtained with Gnomon (https://www.ncbi.nlm.nih.gov/genome/annotation_euk/gnomon/) by 

manipulating a hidden Markov model trained on the species. tRNAs were prediced with 

tRNAscan-SE v1.2349 and small non-coding RNAs were predicted with RFAM v12.0 

HMMs using cmsearch from the Infernal package50.

Runtime and memory requirements

Computational requirements for k=21 and k=31 are reported in Supplementary Table 10-12. 

Commands used were:

HG002 GIAB benchmark:

Merfin -filter       \

 -sequence GRCh38_no_alt_analysis_set_clean.fasta \

 -seqmers hg38.meryl      \

 -readmers HG002.k$K.[gt1.]meryl    \

 -vcf $in_vcf -debug -output $out

T2T-CHM13v1.0 assembly evaluation:

merfin -hist -threads 24 -sequence $fasta   \

 -seqmers $fasta.k21.[gt1.]meryl     \

 -readmers chm13.k21.[gt1.]meryl     \
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 -prob lookup_table.k21.txt -peak 106.7 -output $out.hist

merfin -hist -sequence $fasta      \

 -seqmers $fasta.k31.[gt1.]meryl     \

 -readmers chm13.k31.[gt1.]meryl     \

 -prob lookup_table.k31.txt -peak 99.59 -output $out.hist

fArcCen1 Arrow polishing:

merfin -polish -sequence fArcCen1_s4.fasta.gz   \

 -readmers fArcCen1.k21.[gt1.]meryl    \

 -prob lookup_table.k21.txt      \

 -peak 10.8 -vcf fArcCen1_s4.reshaped.vcf.gz -output $out

merfin -polish -sequence fArcCen1_s4.fasta.gz   \

 -seqmers $seqmers -readmers fArcCen1.k31.[gt1.]meryl \

 -prob lookup_table.k31.txt -peak 9.1     \

 -vcf fArcCen1_s4.reshaped.vcf.gz -output $out

Output variants from the fArcCen1 experiment were compressed with bcftools (bcftools 
consensus -f $fa -H 1 $vcf.gz > $out.fasta) and used for generating the polished 

consensus. Evaluation of the polished fArcCen1 experiments were performed on k=21 

with merfin options -hist -prob lookup_table.k21.txt -peak 10.8 -readmers 

fArcCen1.k21.meryl. All probability lookup tables were generated with Genomescope2 

with options --fitted_hist -p 1 (ploidy=1) for CHM13 evaluation. Experiments were 

run on Biowulf, NIH HPC clusters with 24 threads allowed. Maximum memory and detailed 

cluster specifications are in Supplementary Tables 10–12.

Data Availability

HG002 variant call data was downloaded from https://data.nist.gov/od/id/mds2-2336 

(SEX9X, NFT0L, 23O09, and QUE7Q). Sequencing data and assemblies for CHM13, 

HG002, and VGP genomes are available at https://github.com/marbl/CHM13, https://

github.com/human-pangenomics/HG002_Data_Freeze_v1.0 and https://vgp.github.io/.

Source data used for generating all figures in this manuscript are available at https://

github.com/gf777/misc/tree/master/merfin/paper/figures.

The K* tracks for HiFi and Illumina of the CHM13 are browsable in the associated UCSC 

browser (http://genome.ucsc.edu/cgi-bin/hgTracks?db=hub_2395475_t2t-chm13-v1.1). All 

variant calls used in the genotyping benchmarks, k-mer databases, fitted histogram tables 

and K* tracks are available to download at https://s3-us-west-2.amazonaws.com/human-

pangenomics/index.html?prefix=publications/MERFIN_2021/ with a step-by-step guideline 

available at https://github.com/arangrhie/merfin/wiki/Best-practices-for-Merfin. All data are 

publicly open for download with no restrictions.
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Code Availability

A stable release and the C++ source code for Merfin, and examples from this work are 

available under Apache License 2.0 at GitHub (https://github.com/arangrhie/merfin) and 

Zenodo (https://doi.org/10.5281/zenodo.5527270)51. The only dependency is the k-mer 

counter Meryl, which comes with the release. Merfin can be run in five modes: 1) the 

-filter mode scores each variant, or variants within distance k and their combinations by 

error k-mers for improved genotyping; 2) the -completeness mode generates completeness 

metrics; 3) the -dump mode computes KC, KR, K* for each base in the assembly along 

with QV and QV* for each sequence; 4) the -hist mode provides a K* histogram and 

genome-wide QV and QV* averages; 5) the -polish mode scores each variant, or variants 

within distance k and their combinations by the K* for polishing. Merfin is fully parallelized 

using OpenMP. A combination of bash and Rscript used for data analysis and visualization 

is available at https://github.com/gf777/misc/tree/master/merfin/paper/figures.

Extended Data

Extended Data Fig. 1 |. Flowchart diagram of each mode in Merfin.
Text inside gray boxes on the top represents input files required (solid) or optional (dashed) 

for Merfin. a, genotyping (-filter) and polishing (-polish) modes. b, K* histogram (-hist) and 

K* completeness (-completeness) modes. Steps listed in bullet points are marked in gray if it 

is only applicable in -polish (a) or -completeness (b) mode.
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Extended Data Fig. 2 |. Genome-wide density distribution of the K* using Illumina k-mers.
When the assembly is in agreement with the raw data, the K* is normally distributed with 

mean 0, and the smaller the standard deviation the higher the agreement. CHM13v1.0 shows 

a less dispersed distribution of the K* compared to a regular HiCanu assembly.
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Extended Data Fig. 3 |. A region of negative K* highlighting sequencing bias.
An example of low coverage in both HiFi and Illumina reads associated with high guanine 

content, and specifically a GA-rich repeat (heatmap). GA bias has been reported in PacBio 

HiFi data, and results in gaps in the assembly that in CHM13 were filled with Nanopore 

data22. The K* both from HiFi and Illumina k-mers (top tracks) recapitulate the coverage 

drop. Nanopore coverage appears less affected. Position Chr. 12:~129,862,000 bp.

Formenti et al. Page 20

Nat Methods. Author manuscript; available in PMC 2022 December 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Extended Data Fig. 4 |. The K* can identify issues in the assembly at the base level.
a, 40 bp window with K* close to 0, highlighting perfect agreement of the assembly with 

the raw reads. Position Chr18:~7,000,000 bp. b, A region of negative K* in coincidence with 

two heterozygous indels. Position Chr1:~105,008,350 bp.
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Extended Data Fig. 5 |. Coverage titration experiment and impact on QV*.
The QV* is only marginally influenced by the coverage of the dataset being considered.
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Extended Data Fig. 6 |. Haplotype phasing before and after polishing with Merfin.
In both parental assemblies, the haplotypes remained fully phased, and the size of the blocks 

significantly increased compared to the unpolished version (a,b) after polishing with Merfin 

(c,d). A theoretical human genome size of 3.1 Gbp was used to normalize NG* values.
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Extended Data Fig. 7 |. VGP assembly pipeline.
Compared to the previous v1.6, the introduction of Merfin in v1.7 (green) resulted in a 

minimal change of the workflow, but in a generalized improvement in QV scores and gene 

annotations. Pipeline available at https://github.com/VGP/vgp-assembly.
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Extended Data Fig. 8 |. Phase block analysis of zebra finch pseudo-haploid assembly.
a, Phase blocks in the primary assembly after mapping the reads to both the primary and 

alternate assemblies. b, Phase blocks in the primary assembly after mapping the reads to 

both the primary only. c, Phase blocks in the alternate assembly after mapping the reads to 

both the primary and alternate assemblies. d, Phase blocks in the alternate assembly. In all 

cases, the application of Merfin filtering minor heterozygous variants (green) leads to block 

sizes better or comparable to prior polishing methods alone (blue). Unpolished assembly in 

gray. Results of Merfin without filtering in red. A genome size of ~1.03 Gbp derived from 

Genomescope2 was used to normalize NG* values.
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Extended Data Fig. 9 |. Effect of merfin correction on the kinetochore scaffold 1 (KNL1) 
annotation.
a, Deleterious presence of an extra A around position 1,321,620 of scaffold_7 (red box) in 

the polished, non-merfin-corrected sequence is indicated by a 1-base gap in the alignments 

of zebra finch PacBio IsoSeq SRR8695295.20794.1 and KNL1 transcripts from three other 

Passeriformes songbirds. This insertion causes a disruption in the frame and a premature 

stop codon in the translated sequence (see amino acid sequence in red). b, Corresponding 

span in the merfin-corrected assembly, with gapless alignments of the IsoSeq read and 

Passeriformes transcripts, and uninterrupted translation.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1 |. Algorithms and results used in Merfin.
a, Two variant calls and its potential consensus paths. The bases and k-mers in red are 

errors not found in the reads. The path with A>C has no error k-mers and gets chosen 

for genotyping (*). For polishing, the average K* is computed in addition to the missing 

k-mers using the predicted absent k-mers. b, Precision, recall, and F1 from a benchmark on 

HG002 genotyping. Merfin always achieves higher precision and F1 scores compared to the 

hard-filtered approach with almost no loss in recall. Default, no filtering; Red, hard-filtering 

on default. c, K-mer frequency found in the consensus sequence (KC), reads (KR) with 

average coverage at 4 (c), expected copy number based on the corrected k-mer frequency 

(Kr = KR / c), and K*. Positive and negative K* values are colored in green and red. The 

highlighted region (gray) shows the same k-mers and values used to compute K* as affected 

by the A base in the reference. If two alternatives bear the same number of missing k-mers 

the alternative with the K* closest to zero is chosen. d. K* distribution. K* values deviated 

from 0 indicate collapsed (+) or expanded (−) k-mers in the assembly. e, Genomescope 

2.0 k-mer frequency histogram with theoretical k-multiplicity curves (top) and probabilities 

(bottom) for 0, 1, 2, 3, and 4-copy k-mers, generated using the --fitted_hist option. Note that 

the 3-copy peak is fully contained in the 2 and 4-copy peaks. f, Diagram for estimating QV* 

and completeness from k-mers. Each k-mer is a block colored by its state of presence. In the 

block tower, each column represents the identical k-mer with its state colored by its presence 

in the assembly, reads, or in both. Note the QV* and K* completeness is using all k-mers 

including their frequency.
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Fig. 2 |. CHM13 evaluation and polishing.
a, Genome-wide K* for the CHM13 assembly v1.0. Satellites are associated with repeat- 

and technology-specific biases. Yet to be resolved rDNA arrays (red) are highlighted by 

positive K*. b, Highlight of the centromeric satellite repeats (manuscript in preparation) and 

segmental duplications23 (orange most similar, yellow less, gray least) on chromosome 9. 

c, Genome-wide density distribution of the K* using HiFi k-mers. When the assembly 

is in agreement with the raw data, the K* is normally distributed with mean 0, and 

the smaller the standard deviation the higher the agreement. CHM13 v1.0 shows a less 

dispersed distribution of the K* compared to a less complete v0.7 assembly. d, Genome-

wide comparison of the K* computed using HiFi vs Illumina k-mers on the CHM13 

v1.0 assembly. Agreement between the assembly and the raw reads supported by the two 

technologies is found around (0, 0). The upper right quadrant highlights where both HiFi 

vs Illumina technologies suggest the presence of underrepresented k-mers that were largely 

contributed from the un-assembled rDNAs later resolved in v1.122; the lower left quadrant 

highlights where both technologies suggest the presence of overrepresented k-mers (with 

perfect agreement found on the diagonals). The axes correspond to regions of substantial 
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disagreement between the two technologies. Diamonds indicate k-mers missing from one (x 

or y axis) or both (0, 0) technologies.
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Fig. 3. |. HG002 human trio polishing and evaluation.
a, Distribution of QV scores as measured by Merqury for maternal and paternal contigs 

polished with Medaka only, or with variants generated by Medaka filtered with Merfin, 

from the experiment (test 4, Supplementary Table 3) using latest basecaller (Guppy 4.2.2) 

and highest coverage (~50x). The first panel represents the unpolished contigs, the mid 

panel the first round of Medaka polishing and filtering, and the last panel the second round 

applied to the Merfin results from the previous round. The number of contigs without 

evidence of errors as judged by Merqury QV are reported on the right side. b, Size of the 

haplotype blocks before and after polishing with or without Merfin for both the maternal and 

paternal assemblies. First round of polishing is represented by the dotted lines. c, Number 

of variants generated by Medaka for polishing and remaining variants after Merfin filtering 

for both the maternal and paternal assemblies. d, Assembly-based HG002 small variant 

calling performance of Merfin vs regular Medaka against GIAB truth set. Variants from the 

assembly are derived against GRCh38 using dipcall.
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Fig. 4. |. Polishing and evaluation of VGP pseudo-haploid assemblies.
a-c, Polishing results of primary and alternate assemblies for the flier cichlid (fArcCen1), 

the Goode’s desert tortoise (rGopEvg1), and the zebra finch (bTaeGut1) using the VGP 

pipeline. Graphed are the unpolished QV values, and the Merqury QV that accounts only 

for missing k-mers (a), the Merqury QV corrected using Merfin models for 0-copy k-mers 

(b), and QV* that also accounts for overrepresented k-mers (c). d-f, the general QV increase 

was reflected in the quality of the gene annotation, with consistent reduction in the number 

of genes affected by premature stop codons (d), frameshifts errors (e), and low quality 

protein-coding gene predictions (f).
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Fig. 5. |. Merfin results against quality scores.
a-c, QV after polishing as a function of hard-filtered quality score cutoff in primary 

(black) and alternate (gray) assembly. Results achieved with Merfin are represented by the 

horizontal lines for comparison. d-f, Number and proportion of variants by quality score 

selected by Merfin.
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