
Merfin: improved variant filtering, assembly evaluation and
polishing via k-mer validation

Giulio Formenti*,†,1, Arang Rhie*,†,2, Brian P. Walenz2, Françoise Thibaud-Nissen3, Kishwar
Shafin4, Sergey Koren2, Eugene W. Myers5, Erich D. Jarvis1, Adam M. Phillippy2

1Vertebrate Genome Lab, The Rockefeller University, New York, NY, USA; Laboratory of
Neurogenetics of Language, The Rockefeller University, New York, NY, USA; Howard Hughes
Medical Institute, Chevy Chase, MD, USA

2Genome Informatics Section, Computational and Statistical Genomics Branch, National Human
Genome Research Institute, National Institutes of Health, Bethesda, MD, USA

3National Center for Biotechnology Information, National Library of Medicine, National Institutes of
Health, Bethesda, MD, USA

4UC Santa Cruz Genomics Institute, Santa Cruz, CA, USA

5Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany

Abstract

Variant calling has been widely used for genotyping and for improving the consensus accuracy

of long-read assemblies. Variant calls are commonly hard-filtered with user-defined cutoffs.

However, it is impossible to define a single set of optimal cutoffs, as the calls heavily depend

on the quality of the reads, the variant caller of choice, and the quality of the unpolished assembly.

Here, we introduce Merfin, a k-mer based variant filtering algorithm for improved accuracy in

genotyping and genome assembly polishing. Merfin evaluates each variant based on the expected

k-mer multiplicity in the reads, independently of the quality of the read alignment and variant

caller’s internal score. Merfin increased the precision of genotyped calls in several benchmarks,

improved consensus accuracy and reduced frameshift errors when applied to human and non-

human assemblies built from Pacific Biosciences HiFi and CLR reads, or Oxford Nanopore reads,

including the first complete human genome. Moreover, we introduce novel assembly quality and

completeness metrics that account for the expected genomic copy numbers.

†Co-correspondent: gformenti@mail.rockefeller.edu and arang.rhie@nih.gov.
*These authors contributed equally to the work.
Author Contributions Statement
A. R., G. F., B. P. W. and E. M. implemented Merfin. G. F. and A. R. performed the validation analyses. K. S. performed the GIAB
variant calling analysis on HG002. F. T. generated the gene annotations for the VGP genomes. S. K. contributed to the conceptual
development. G. F. and A. R. wrote the manuscript. G. F., A. R., E. D. J. and A. M. P. conceived the study. All authors reviewed,
edited, and approved the manuscript.

Competing Interests Statement
S.K. has received travel funds to speak at symposia organized by Oxford Nanopore. The remaining authors declare no competing
interests.

HHS Public Access
Author manuscript
Nat Methods. Author manuscript; available in PMC 2022 December 13.

Published in final edited form as:
Nat Methods. 2022 June ; 19(6): 696–704. doi:10.1038/s41592-022-01445-y.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Introduction

Accurate variant calling has been a challenge in medical genomics, especially to achieve

both high recall and precision in hard to measure regions1. The advent of Next Generation

Sequencing (NGS) and long-read sequencing technologies streamlined variant calling2,

which typically includes: 1) aligning all reads to a reference genome; 2) calling variants

from the alignment; and 3) filtering to remove false positives. The final outcome relies

heavily on the precision of this multistep procedure, which depends on: 1) the quality of

the read set; 2) the precision of the read mapping algorithm; and 3) the precision of the

variant caller in generating reliable calls3. To remove false positives, variant calls are often

hard-filtered using heuristics, such as requiring a minimum coverage support, genotype

quality, or other internal quality scores2. However, no universally applicable cutoffs exist as

they vary depending on the sequencing technology used. Therefore, the accuracy of a variant

corresponds to the theoretical limit of the algorithms and the cutoffs employed, and not the

theoretical limit given the quality of the raw data.

In parallel, new sequencing technologies greatly expanded our genome assembly toolkit.

While the short-read assemblies stumbled resolving repetitive regions4, long-reads have

considerably improved the contiguity of genome assemblies5. However, reduced consensus

accuracy (hereby noted as QV) has been progressively acknowledged due to the lower

base calling accuracy in long-reads, at least until the more recent Pacific Biosciences

(PacBio) High-Fidelity (HiFi) reads became available6. Still, lower QV remains even in

HiFi reads for simple repeat sequences, particularly homopolymers7,8. Reduced QV has

detrimental impacts on many downstream analyses, e.g. gene annotation, which requires

an accurate consensus to predict the correct coding sequence7. To mitigate this issue,

“polishing” tools have been developed, such as Pilon, Arrow, Racon and Medaka9–11,

while established variant calling tools such as GATK, Freebayes, DeepVariant12–14 have

been repurposed to detect errors and find candidate corrections. Unlike re-sequencing based

methods, the assembly from the same genome is used as a reference for polishing, and thus

all homozygous variants suggest corrections to be made. Once corrections are collected, the

consensus can be updated using tools such as Bcftools15. The process is usually repeated

with different read sets (e.g. long and short-reads), until the QV reaches a set standard.

QV has been historically measured from the variant calling process as described above,

however, bearing biases caused from mapping or variant calling. In our previous work, we

presented Merqury16, an alignment-free approach to estimate base-level QV using k-mers

(genomic substrings of length k). In Merqury, k-mers found only in the assembly and not

in the reads are considered as errors, disregarding the expected copy number. As a result,

overly represented k-mers from sequence expansion (i.e. false duplications) in the assembly

are considered as correct bases. Merqury also presents a completeness metric from the

portion of k-mers found in the assembly from a given reliable k-mer set in reads. However,

this k-mer completeness metric does not account for the k-mer multiplicity in the reads,

limiting the scope in the non-repetitive k-mer space. As a result, any two assemblies with

identical distinct k-mers will score the same completeness metric, regardless of one having

higher sequence collapses or expansions.

Formenti et al. Page 2

Nat Methods. Author manuscript; available in PMC 2022 December 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Ideally, the sequence of an error-free and complete genome assembly is in perfect agreement

with the sequence data, assuming genomic DNA is randomly sampled with negligible

sequencing biases. Therefore, any changes introduced during polishing should improve the

assembly-read agreement. This principle has been widely used to visually evaluate genome

assembly copy number spectrum (e.g. spectra-cn analysis16,17), and more recently, used to

detect errors and improve read alignment18–20. However, none of the evaluation metrics or

polishing methods have fully utilized assembly-read agreement.

Here, we introduce a k-mer based filtering approach applicable on genomic variant calls,

which achieved higher F1 scores compared to parameter based hard-filtering methods.

Next, we propose revised QV and completeness scores that account for the expected

sequence copy number given a k-mer frequency, driven by our refined K* definition21 for

genome assembly evaluation. Our K* enables the detection of collapses and expansions,

and significantly improves the QV when used to filter variants for polishing. We applied

this approach to evaluate the most complete HiFi-based assembly of CHM1322–25,

simultaneously released by the Telomere-to-Telomere (T2T) Consortium22. Next, we

polished a Nanopore-based trio assembly from the Human Pangenome Reference Project

(HPRC) and three CLR-based haploid and pseudo-haploid assemblies (a fish, reptile, and

bird) generated by the Vertebrate Genomes Project (VGP)5, all resulting in significantly

higher consensus accuracy and annotation quality. This approach is implemented as Merfin
(k-mer based finishing tool) and is publicly available. Merfin requires k-mers from highly

accurate reads (e.g. Illumina) that reflect the k-mer frequency in the genome.

Results

Variant call filtering for higher precision

A reference genome (i.e. GRCh38) with its sequence replaced at all alternate variant calls

can be considered a “consensus” sequence and evaluated with k-mers. Unlike using a de
novo assembled genome of the same individual as a reference, natural biological differences

between the sequenced individual and the reference genome or the incomplete state of the

reference (i.e. missing a segmental duplication) imposes challenges to reliably call variants.

Nevertheless, it is possible to construct consensus paths from a variant or series of variants

within k base pairs (bp) and confirm its validity. We can score each path by the number of

k-mers never found in the reads (error k-mer) and choose the best path to contain minimal

error k-mers (Fig. 1a and Extended Data Fig. 1a, “-filter” mode).

To test the validity of this filtering approach, we benchmarked against unfiltered (default)

and hard-filtered variant calls submitted to precisionFDA challenge II, HG0021. The variants

were called from Illumina reads or from multiple platforms (Illumina, PacBio HiFi, and

ONT) using GRCh38 as the reference with GATK HaplotypeCaller. Hard-filtering was

performed using the variant caller’s internal scores such as PASS, QD, MQ and QUAL.

When comparing precision, recall, and F1 (harmonic mean of precision and recall) on a truth

set of Chr. 2026, Merfin always achieved higher precision with minimal loss in recall on

both default and hard-filtered sets (Fig. 1b). The hard-filtered set had higher precision, with

the price of losing more true positives, resulting in a lower F1 score when compared to the

default set. Merfin was able to remove additional false positives on the hard-filtered set. True

Formenti et al. Page 3

Nat Methods. Author manuscript; available in PMC 2022 December 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

positive variants used in this analysis, ranging from 48 bp deletions to 47 bp insertions, were

all recovered by Merfin.

Assembly evaluation

When a reference genome is constructed from the same individual, the k-mer multiplicity

seen in the reads is expected to match the reference. This property can be used for evaluating

de novo assembled genomes. Here, we introduce our revised K*, which identifies potentially

collapsed and expanded regions in an assembly, and quantitative metrics for representing

assembly copy-number concordance and completeness.

Identifying collapsed and expanded regions—The K* metric was defined previously

to detect identical collapsed repeats on each k-mer in the assembly21. The method proposed

K* = KR / KC, where KR is the frequency of a k-mer found in the reads; and KC is the

frequency of a k-mer across the entire consensus sequence of the assembly. In regions with

no collapsed repeats, K* will be equal to c, the average coverage of sequencing reads. Here

we revised the K* such that it evaluates both collapses and expansions. We propose K* = (Kr

- KC) / min (Kr, KC), where Kr is the expected copy number inferred from the reads (Fig.

1c). For a perfect genome assembly and an unbiased read set, K* is normally distributed

with mean 0, and deviations from the mean reflect natural variation in the Poisson sampling

process (Fig. 1d). Conversely, any large deviation from the normal distribution can be

interpreted either as a bias in the assembly (i.e. an assembly error) or a bias in the read

set. Specifically, a positive K* implies that the assembly contains fewer copies of k-mers

than suggested by the read set (collapsed), while negative K* implies more copies in the

assembly than suggested by the read set (expanded).

The Kr can be obtained by rounding to the nearest integer, ⎿ KR / c ⏌, where c is

the haploid (1-copy) peak of the k-mer distribution of the reads. Here we assume that

rounding Kr is sufficient to account for the standard deviation associated with the Poisson

process underlying read generation. While this is true in the case of a perfectly sampled

sequencing set, the validity of this generalization is challenged in the presence of sampling

bias, systematic error in the reads, and variable degrees of heterozygosity that results in

different likelihoods of specific copy-numbers. To account for this uncertainty and improve

the accuracy of the results, we modified Genomescope227 to probabilistically infer Kr for

each KR, using the observed k-mer count distribution in the read set. If supplied, Merfin will

use these probabilities for Kr ≤4. (Fig. 1e).

QV* estimation—An average genome-wide QV accounting for excessive copy numbers

(hereby defined as QV*) can be obtained using ∑ KC - Kr as errors when KC > Kr for

all positions in the assembly (Fig. 1f and Extended Data Fig. 1b, “-hist” mode). These

excessive and error k-mers can be generalized as ‘errors’ in Phred-scale QV, as in Merqury16

or YAK28.

Assembly completeness—The sum of Kr – KC (over all positions where Kr > KC)

expresses absent k-mers that should be present in the assembly, and can be directly

translated into a measure of assembly completeness as 1 - ∑ (Kr – KC) / Kr (Fig. 1f).

Formenti et al. Page 4

Nat Methods. Author manuscript; available in PMC 2022 December 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Importantly, contrary to other measures of assembly completeness based on a subset of the

k-mers (e.g. relying only on the occurrence of distinct k-mers as in Merqury16), Merfin uses

all k-mers, including their frequency, and computes the fraction of the expected total number

of k-mers (Extended Data Fig. 1b, “-completeness” mode).

Sequence polishing

The K* becomes particularly useful in polishing. Increased QV is achievable through a

dedicated polishing tool or via corrections identified by a standard variant calling method.

Even when using polishing tools, generating a set of potential corrections in variant call

format (VCF) allows finer control over the outcome and can be assessed with Merfin.

In Merfin, the impact of each correction or combination of corrections are assessed from

the given correction candidates by comparing the change in K*- metrics (Fig. 1a,c and

Extended Data Fig. 1a, “-polish” mode). In addition to the error k-mers collected in each

predicted consensus path, we compute the consequent k-mer frequency change, and choose

the correction only when it improves the assembly-read agreement. For example, when a

suggestive correction (replacing AT with A as shown in Fig. 1a) introduces more error

k-mers, it should not be used for polishing. Even when no error k-mers are introduced, K*
theoretically informs whether a path improves the assembly-read agreement in polishing.

The current implementation evaluates each path independently, and thus only a local

optimum is guaranteed. Variants within distance k are considered in all combinations,

allowing Merfin to filter variant calls close to each other. This approach is fully independent

of the raw dataset employed. For instance, the assembly could be generated using long-

reads, and the calls evaluated using either short or long-reads or both, taking advantage of

the strengths of each sequencing platform, making accurate orthogonal validation possible,

ultimately maximizing the assembly-read agreement.

Evaluating a complete human genome: T2T-CHM13

The CHM13hTERT (CHM13) cell line originates from a complete hydatidiform mole (46,

XX), where both haplotypes are nearly identical29. This cell line was used to generate the

most complete high-quality human reference to date, resolving all centromeric and telomeric

repeats and all segmental duplications and satellite arrays22,23. Notably, T2T-CHM13v0.9

was polished from a variety of variant calls, filtered with an earlier version of Merfin, which

improved the consensus accuracy of the final assembly25. We further evaluated candidate

assemblies to identify collapses and expansions using Merfin using k-mers from HiFi and

Illumina reads. We found that the T2T-CHM13v1.0 assembly shows a remarkable agreement

with the raw data, with only a few regions having K* largely different from 0, coinciding

with satellite repeats (Fig. 2a). Rather than being assembly errors, these disagreements

were associated with context-dependent augmentation or depletion in HiFi and GC bias in

Illumina22,25. In HiFi, the sequencing coverage depends on sequence content22. Illumina has

a similar dependence in GC context, introducing biases during library preparation, but not

necessarily in the same direction seen in HiFi. Indeed, K* derived from HiFi and Illumina

k-mers showed opposite behavior in some regions, i.e. the HSat3 of Chr. 9 (Fig. 2b). These

effects were observed only on the highly repetitive regions of the genome.

Formenti et al. Page 5

Nat Methods. Author manuscript; available in PMC 2022 December 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Compared to a less complete and less accurate preliminary assembly, T2T-CHM13v0.730,

T2T-CHM13v1.0 had a higher agreement of the assembly with the k-mers derived from

HiFi (Fig. 2c) and Illumina reads (Extended Data Fig. 2). We found a general agreement

in K* between HiFi and Illumina PCR-free k-mers, including regions with sequencing

bias common to the two technologies (Extended Data Fig. 3). In other cases, the direct

comparison of the K* computed from the two technologies highlighted technology-specific

sequencing biases (Fig. 2a,d). Particularly, genome-wide comparison of the K* computed

using HiFi vs Illumina k-mers on the CHM13 v1.0 assembly show substantial agreement

between the assembly and the raw reads (Fig. 2d, coordinates 0, 0). The only k-mers

consistently seen as underrepresented in both technologies (Fig. 2d, upper right quadrant)

were mostly contributed from the un-assembled rDNAs later resolved in v1.122. At base

resolution, the K* could distinguish regions with accurate consensus from base pair errors,

small and large indels, heterozygous sites, and collapsed/expanded regions (Extended Data

Figs. 4a-b).

Both QV and QV* measured with Merqury and Merfin improved from v0.7 to v0.9 25,

which involved a complete reassembly of the genome using HiFi reads and patches from

v0.7 at GA-rich sequence dropouts in the HiFi reads (Supplementary Table 1). Merqury

QV improved from v0.7 to v0.9, due to the dramatic decrease in error k-mers, however the

Merfin QV* only marginally increased as the number of error k-mers is small compared

to the number of overly-represented k-mers, likely due to sequencing biases. We argue that

QV* may still be a more reliable metric, because it accounts for all expected k-mer copy

numbers, reflecting the full extent of genome representation. QV* is also only marginally

influenced by the coverage, as shown by a titration experiment (Extended Data Fig. 5,

Supplementary Table 2).

Polishing a completely phased assembly: HG002

The need for polishing is particularly evident in genome assemblies generated using noisy

long reads. Therefore, we tested Merfin’s variant calling filtering algorithm on a Nanopore-

based assembly of human HG002 trio data generated by the HPRC using Flye31,32. We

benchmarked Merfin on Medaka, by comparing polishing outcomes from Medaka with

or without filtering with Merfin. In a trio setting, the optimal approach is to polish

each parental assembly separately, by aligning the binned reads and performing variant

calling5,33. This will reduce the introduction of haplotype switches. However, our k-mer

based evaluation of the corrections is best performed on a combined assembly so that it

faithfully represents the expected copy-number of each k-mer given the read set.

We first called variants separately from the binned reads used in the assembly with Medaka,

and then combined the variant calls and the parental assemblies for the Merfin variant

filtering step. K-mers used in Merfin were computed from Illumina sequencing reads. We

conducted five different experiments using read sets that differ in coverage, version of the

Guppy basecaller, and read length cut-off (Supplementary Table 3). Two rounds of polishing

were conducted in all experiments, with the second round performed on the consensus

from the first round generated with the additional Merfin step. Overall, in all experiments

we observed comparable improvements in base calling accuracy as measured by Merqury

Formenti et al. Page 6

Nat Methods. Author manuscript; available in PMC 2022 December 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

QV when Merfin filtering was applied (Supplementary Table 3). This increase reflected a

dramatic positive shift in the QV distribution of individual contigs, with most low-quality

contigs being rescued by Merfin, and a sharp increase in the number of contigs found

without errors, leading to a final Q43.2 and Q42.8 for maternal and paternal haplotypes,

respectively (Fig. 3a). In the second round of polishing, the QV ceased to improve or even

decreased when Merfin was not applied (Fig. 3a, Supplementary Table 3), suggesting that

the best trade-off between errors corrected and introduced in the assembly was already

reached in the first round. In contrast, QV continued to increase relative to the first round

with Merfin. Haplotype blocks as defined by Merqury increased in a comparable if not better

way when using Merfin (Fig. 3b), while haplotypes remained fully phased (Extended Data

Fig. 6). Importantly, the results with Merfin were achieved by introducing only a fraction

of the variants proposed by Medaka, making this approach more conservative than regular

polishing (Fig. 3c).

We further validated the HG002 unpolished and polished assembly by aligning each

haplotype assembly to GRCh38 and deriving small variants. When benchmarked against

GIAB v4.2.1 truth set26, the results show that using Merfin we get a better F1-score,

particularly at INDELs (Fig. 3d, Supplementary Table 4)26,34,35.

Evaluation, polishing and annotation of pseudo-haploid assemblies

We next applied Merfin to the polishing steps of the VGP assembly pipeline5 (Extended

Data Fig. 7) on pseudo-haploid assemblies from three species (flier cichlid, Archocentrus
centrarchus, fArcCen1; Goode’s desert tortoise, Gopherus evgoodei, rGopEvg1; and zebra

finch, Taeniopygia guttata, bTaeGut1). Using PacBio continuous long-reads (CLR) and

10x Genomics linked-reads for polishing, we observed a general improvement in QV as

measured by Merqury (Fig. 4a, Supplementary Table 5). The largest improvement was

observed in the first round of Arrow polishing step using CLR. Arrow can replace low

quality sequences with patch sequences generated de novo from the reads that align to

the region, i.e., independent of the original reference quality. We observed low coverage

sequencing biases (i.e. homopolymer shortening), and mosaic haplotypes in the generated

patches, leading to cases of lower QV in the polished assembly (e.g. Fig. 4a, rGopEvg1).

Merfin rescued the QV decrease or improved the QV in all cases. The variant length range

(−453:2,242) was not compromised after Merfin (−453:1,618), and many of the variants

well above 50 bp were retained by Merfin (Supplementary Table 6), supporting the notion

that if the quality of the consensus sequence is sufficient, large calls will not be negatively

impacted.

In the subsequent polishing steps performed using Freebayes, the benefit of running Merfin

to filter the variant set was less pronounced but still present (Fig. 4a, dashed lines). This

was true in all cases but the zebra finch, where the default pipeline performed marginally

better. However, when considering low frequency k-mers as errors from the probability

model in Merfin, the QV as well as QV* increased in all cases (adjusted QV and QV* in

Fig. 4b,c, Supplementary Table 5). Merqury QV counts all k-mers never seen in the reads as

errors, while the adjusted QV additionally counts low frequency k-mers based on the k-mer

frequency spectrum as errors. The QV* further includes overrepresented k-mers as errors,

Formenti et al. Page 7

Nat Methods. Author manuscript; available in PMC 2022 December 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

therefore capturing not only base accuracy errors, but also false duplications, expressing the

uncertainty associated with any particular base given the support from the raw reads.

Most long-read assemblers generate locally phased haplotypes (e.g. Falcon-Unzip36), and

it is therefore important that the polishing does not introduce haplotype switches. To test

whether the increase in QV from Merfin was due to introducing haplotype switches, we

tested a zebra finch (Taeniopygia guttata, bTaeGut2) pseudo-haploid assembly for which

parental sequence information is available to evaluate, using parent-specific k-mers, the size

of haplotype blocks and the number of haplotype switches5. When Merfin was applied to

filter variants generated by Freebayes on the Longranger alignments of the 10x reads in

the zebra finch pseudo-haploid setting, we noticed an increase in the number of haplotype

switches as measured with Merqury (Supplementary Table 7). We realized that this was

due to many heterozygous variants being called by Freebayes, when individual reads were

mapped to collapsed regions or preferentially to the more accurate primary assembly5. The

missing true heterozygous k-mers in the collapsed or lower quality regions were recovered

by the heterozygous variant call, and thus preferred by Merfin. Further, even in almost

complete pseudo-haploid assemblies, short-reads can be easily mis-mapped, leading to

spurious heterozygous calls. To overcome this issue, we decided to remove all heterozygous

variants before applying Merfin. This substantially prevented haplotype switches (Extended

Data Fig. 8), wihtout affecting the QV increase (Supplementary Table 7). In conclusion, we

suggest removing all heterozygous variants prior to Merfin as the best practice for polishing

pseudo-haploid and haploid assemblies.

In addition, we validated our results using gene annotations, which are sensitive to

consensus accuracy error, and particularly to frameshift errors caused by indel errors.

We performed de novo gene annotation using the RefSeq37 gene annotation pipeline

(GNOMON)38 on the VGP assemblies polished with the conventional VGP pipeline (v1.6)

and compared against assemblies where Merfin was applied at every polishing step. In

GNOMON, if a protein alignment supports a predicted model with an indel introducing

frameshift or premature stop codons, the model is labeled as ‘low quality’ and a base is

added or removed from the predicted model to compensate for the indel in the genome.

If more than 1 in 10 coding genes in an assembly require corrections, the assembly is

excluded from RefSeq. Based on information provided by the submitters, almost all rejected

assemblies used ONT or PacBio CLR reads.

Again, Merfin substantially reduced the number of genes affected by frameshifts, validating

QV and QV* results (Fig. 4d-f, Supplementary Table 8 and example in Extended Data Fig.

9). Premature stop codons were significantly reduced with respect to the default polishing

in all cases (Fig. 4d), with 42.9%, 42% and 21.7% reduction in fArcCen1, rGopEvg1

and bTaeGut1, respectively. Ultimately, 1% or less of genes had code breaks in all cases

when using Merfin. Frameshifts were also positively affected (Fig. 4e), with 38%, 49.6%

and 19.5% reductions in fArcCen1, rGopEvg1 and bTaeGut1, respectively. Less than 3%

of genes had frameshifts in all cases when using Merfin. Similarly, the number of protein-

coding gene predictions labelled as ‘low quality’ were reduced (Fig. 4f). From these results,

Merfin has been included in the VGP pipeline (v1.7).

Formenti et al. Page 8

Nat Methods. Author manuscript; available in PMC 2022 December 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Consistent with the variant filtering for genotyping, the improvements in QV with Merfin

superseded any hard-filtering attempt using variant call quality score (QUAL) cutoffs at

the Arrow polishing step (Fig. 5a-c, Supplementary Table 9). For the primary assembly,

QV* estimates were consistently higher than the best results attainable by hard filtering

(fArcCen1: Q32.5 vs. Q31.9 at QUAL≥18, rGopEvg1: Q38.7 vs. Q36.7 at QUAL≥21,

bTaeGut1: Q44.4 vs. Q42.4 at QUAL≥21). The best QUAL cutoff was not necessarily

consistent between species, indicating that a single cutoff cannot produce the best outcome

in all cases. The alternate assembly (i.e. alternate haplotype) behaved similarly to the

primary assembly, again with Merfin always performing best (fArcCen1: Q31.6 vs Q31.1

at QUAL≥23, rGopEvg1: Q35.2 vs. Q34.2 at QUAL≥26, bTaeGut1: Q42.0 vs. Q40.6 at

QUAL≥23). However, it notably differed in best QUAL cutoff values to maximize QV. At

increased QUAL cutoffs, both genuine and erroneous corrections are filtered out. Thus,

hard-filtering cutoffs perform best when the number of errors corrected exceeds the number

of errors introduced at maximum. In contrast, variants selected by Merfin had a wide range

of quality scores, with the majority containing higher quality scores, and yet including many

below 25 (Fig. 5d-f). Notably, a significant fraction of variants with the highest quality

score assigned were introducing error k-mers and thus were rejected by Merfin. Potentially,

accumulated sequencing biases in long-reads could lead to erroneous variant calls but can be

filtered with more accurate k-mers from short-reads. No hard-filtering methods were able to

achieve QV improvements in polishing as observed with Merfin.

Effect of k-size and computational requirements

The minimum size of k can be determined by a given genome size and a tolerable k-mer

collision rate39. This has been adapted in Merqury16 and used for k-mer based assembly

evaluation. In brief, under a maximum allowed collision rate of 0.5%, k=21 is suggested

as the minimum length of k for genomes of size typically found in vertebrate species (1.2

~ 4 Gb), including human, and is used throughout our benchmarks. In theory, a larger

k-size could result in more accurate filtering variants with the cost of k-mer coverage drop

and increased computational burden. We tested if using k=31 provides a better F1 score

over k=21 on the variant filtering GIAB benchmark, and found it provided a marginal

improvement in the F1 scores (0.04%, Supplementary Table 10) at the cost of using 1.5

times more memory and 1.6 to 2.6 times more computation. As a large fraction of the

read k-mers occur exactly once in the reads (72~89% of all distinct k-mers), we tested

how excluding these would affect the performance of Merfin. Excluding unique k-mers in

the filtering slightly increased the F1 score (0.01% to 0.03%) compared to using the entire

k-mer set, by removing additional false positive calls. Memory requirement significantly

reduced from 122.6 GB to 49.2 GB for loading k-mers obtained from ~60x Illumina

reads and 68 GB to 24.3 GB for loading ~25x Illumina reads along with reduced CPU

hours (Supplementary Tables 10-12). As the filtering, evaluation, and polishing results at

different k-size or filtering were nearly identical, we recommend avoiding using larger k
and excluding all unique k-mers before applying Merfin to maximize results with minimal

computational burden.

Formenti et al. Page 9

Nat Methods. Author manuscript; available in PMC 2022 December 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Discussion

We described and demonstrated Merfin, a k-mer based tool to evaluate and filter variant

calls for improved genotyping accuracy and polishing. Importantly, while adding only a

modest runtime to variant calling, Merfin allows an innovative alignment-free evaluation

and filtering of variants (VCF) generated from any dataset or variant calling method.

Merfin successfully removes false positive calls, superseding any hard-filter based cutoff

for both genotyping and polishing. Contrary to the plateau effect usually observed in

traditional polishing, our approach is a monotonic function, predicted to improve the

consensus accuracy until no more useful variants are produced by the variant caller. This

lets polishing pipelines have a stopping condition to set, i.e. to stop iterative polishing when

no more variants survives Merfin’s filtering. Merfin depends on the accuracy of the bases

in the suggested alternate sequence called by the variant caller. Long alternate insertion-like

sequence from noisy long-reads (e.g. CLR or ONT) bear a higher chance to have base errors,

which are more likely to get rejected. This could be avoided by applying other tools to

validate large insertions such as VaPoR40 before running Merfin. However, we note that the

variant size ranges from CLR and ONT before and after polishing were well preserved as

shown in Supplementary Table 6.

In addition to implementing variant evaluation and filtering in Merfin, we revised K*, a

metric based on the copy number agreement between the reads and the assembly, to identify

and analyze local expansions and collapses at each k-mer genome-wide. We also devised

QV* and K* completeness, new quality metrics that account for over and underrepresented

k-mers undetected by previous methods16. On the first complete human genome, we

demonstrated that our approach allows orthogonal validation of both consensus sequence

and variants with multiple sequencing data type.

Like all k-mer-based estimates, K* is influenced by the choice of k, which is dependent

on the quality of the reads. The results presented here assume high-accuracy reads (e.g.

Illumina) for evaluation and variant filtering, and may therefore not work best with k-mers

derived from noisy long-reads (i.e. CLR reads and early ONT data). Presence of sequencing

biases also results in biased K*, such as the GC bias in Illumina reads or the GA dropouts

in HiFi reads25. We found Illumina reads were overall better in correcting systematic

homopolymer and 2-mer microsatellite errors often introduced by HiFi reads41. Yet, these

effects are limited only to certain regions of the genome, and it could be potentially further

mitigated by methods that correct sequencing reads for known biases42.

In parallel, the completeness of the assembly also affects the K*. Pseudo-haploid or haploid

representation of a genome may potentially lead to suboptimal evaluation because of the

missing sequence. However, we argue this is a limitation of the assemblies, rather than a

limitation of the methods used to evaluate and polish them. Representing a diploid genome

as a haploid or pseudo-haploid assembly introduces complications in the evaluation, since

the k-mers in the consensus will not fully reflect the k-mers in the read set. Homozygous

k-mers will be underrepresented, and some of the alternate haplotype k-mers will be

completely missing. While haploid or partially phased (e.g. FALCON-Unzip36) assemblies

can be preferred for some applications, a faithful reconstruction of the complete genome

Formenti et al. Page 10

Nat Methods. Author manuscript; available in PMC 2022 December 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

(e.g. using trio binning33,43) should be preferred for both evaluation and comparative

purposes, as well as for many biological analyses that can benefit from the presence of

both haplotypes. The recent developments in assembly graphs enable the representation of

complete haplotypes with enhanced accuracy and completeness44, suggesting that assembly

tools and state-of-the-art assemblies are moving in this direction. If this condition is met, the

information contained in the reads can be fully harnessed to evaluate and improve genome

assemblies.

Merfin presents the first k-mer based variant filtering to the best of our knowledge, enabling

higher precision in genotyping and improving assembly accuracy. This will become critical

particularly in medical genomics and many other applications, where reliable genotyping

is essential. Polishing with Merfin will also rescue assemblies built from noisy long-reads

when more accurate reads are not accessible, or when sequencing biases are subject for

correction using complementary sequencing data.

Methods

Genotyping benchmark

Variant calls from HG002 submitted to precisionFDA Truth Challenge1 were downloaded

from https://data.nist.gov/od/id/mds2-2336 (SEX9X, NFT0L, 23O09, and QUE7Q). In brief,

~35x Illumina PCRfree, ~36x PacBio HiFi, and ~47x ONT reads were aligned to the

human genome reference (GRCh38) with no alternates. Variants were called with GATK

HaplotypeCaller v4. Unfiltered and hard-filtered set was downloaded and a subset of the

call on Chr. 20 was extracted with bcftools v1.10.2 (https://github.com/samtools/bcftools).

The variant calls were then benchmarked against the GIAB truth set v4.2.1 within the

confident region using hap.py (v0.3.12–2-g9d128a9, https://github.com/Illumina/hap.py)26.

The GIAB variant calling truth set and confident region for HG002 can be found in: ftp://ftp-

trace.ncbi.nlm.nih.gov/giab/ftp/release/AshkenazimTrio/HG002_NA24385_son/NISTv4.2.1.

We used the following commands for the evaluation:

hap.py \

 HG002_GRCh38_1_22_v4.2.1_benchmark.chr20.vcf \

 $QRY.vcf. \

 -f HG002_GRCh38_1_22_v4.2.1_benchmark_noinconsistent.bed \

 -r GCA_000001405.15_GRCh38_no_alt_analysis_set.fna \

 -o OUTPUT \

 --threads 24

Precision and recall were then collected before and after filtering the variants with Merfin

from happy.py output.

To run Merfin filtering, PCR-free Illumina paired-end reads (2×250 bp)

were obtained from NIST (https://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio/

HG002_NA24385_son/NIST_Illumina_2×250bps/) and 21-mers were collected using Meryl

v1.3. K-mers with frequency > 1 were used as read k-mers to avoid k-mer collisions

Formenti et al. Page 11

Nat Methods. Author manuscript; available in PMC 2022 December 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://data.nist.gov/od/id/mds2-2336
https://github.com/samtools/bcftools
https://github.com/Illumina/hap.py
ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/AshkenazimTrio/HG002_NA24385_son/NISTv4.2.1
ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/AshkenazimTrio/HG002_NA24385_son/NISTv4.2.1
https://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio/HG002_NA24385_son/NIST_Illumina_2x250bps/
https://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio/HG002_NA24385_son/NIST_Illumina_2x250bps/

from sequencing errors and improved computational performance. Likewise, 21-mers from

GRCh38 primary assembly (GCA_000001405.15) were collected with Meryl and used as

the sequence k-mers. The following commands were used to build meryl k-mer databases:

meryl count k=21 reads.fastq.gz output HG002.k21.meryl

meryl count k=21 hg38.fna output hg38.k21.meryl

Command lines to run Merfin can be found in the Runtime and memory section below.

Revised K*

K-mers are substrings of length k of a given DNA sequence. Given the assembly consensus

sequence, we compute all its constituent k-mers. Similarly, we compute all k-mers

represented in a set of WGS reads from the same individual. We then ask how the frequency

of each k-mer in the read set is mirrored in the assembly k-mer set. If the read set is a

faithful representation of the genome (i.e. in the absence of random DNA sampling and

sequencing biases), then the closer the consensus sequence is to the read set, the closer it is

also to the genome the reads were generated from. This principle can be usefully represented

by our revised K*, where for each k-mer in the consensus we can calculate (Fig. 1a):

KC = k-mer count in the consensus sequence

KR = k-mer count in the read set

To account for the uncertainty associated with the underlying Poisson sampling process,

in any sequencing experiment the read set covers on average the original genome multiple

times. It is therefore useful to determine the expected copy number of a particular k-mer in

the assembly given the read set, Kr, as:

c = haploid peak from KR histogram

Kr = the k-mer count expected in the consensus based on the read set, i.e. ⎿ KR / c ⏌

Note that Kr - KC expresses the number of copies of any particular k-mer that is

underrepresented (collapsed; positive value) or overrepresented (expanded; negative value)

in the assembly.

With these definitions, we can now define K* as:

K* = Kr / KC – 1 if Kr > KC (collapsed k-mers)

K* = – (KC / Kr – 1) if Kr < KC (expanded k-mers)

Which can be reduced to:

K∗ = (Kr − KC)/min(Kr, KC)

Formenti et al. Page 12

Nat Methods. Author manuscript; available in PMC 2022 December 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Note that K* converges to 0 if the k-mer frequency in the assembly matches the expected

copy number in the reads. Missing k-mers (i.e. found in the assembly but not in the read set)

have a special behavior, with K* being “undefined” for Kr = 0.

Probabilistic K-mer copy-number estimation

To estimate k-mer copy-number in the genome, we modified Genomescope227 to obtain the

associated probability at each KR. Our additions were subsequently integrated in the current

version of Genomescope2 (https://github.com/tbenavi1/genomescope2.0). Unmodified fitted

model 1- to 4-copy k-mer distributions were used to infer the probability that a particular k-

mer frequency observed in the read set implied a particular copy k-mer in the genome. Using

this model, Merfin provides a script generating a lookup table for each k-mer frequency

in the raw data with the most plausible k-mer multiplicity and its associated probability

(https://github.com/arangrhie/merfin/tree/master/scripts/lookup_table).

QV estimation using the K*

An average genome-wide QV* is obtained by counting all k-mers not present compared to

the expected copy number estimated from the read set. We collect all k-mers excessively

found in the assembly (KE) and estimate the error rate given all k-mers in the assembly

(Ktotal).

KE = ∑ KC - Kr when KC > Kr for all positions in the assembly

The Phred-scaled QV* can be computed using the implementation in Merqury16.

We follow the implementation in Merqury and compute the probability P that a base in the

assembly is correct and in its expected frequency:

P = Ktotal − KE /Ktotal
1/k

Which leads to error rate E being:

E = 1 − P

Hence the Phred scaled QV* becomes:

QV * = − 10 log E

Assembly completeness using the K*

To estimate completeness, we collect all k-mers that should be present but are absent from

the assembly. Unlike Merqury, we account for the k-mer frequency and count any k-mer that

should be added to meet the expected frequency from the reads KA.

KA = ∑ (Kr - KC) when Kr > KC for all Kr, including KC = 0

We compute the completeness Comp given all Kr:

Formenti et al. Page 13

Nat Methods. Author manuscript; available in PMC 2022 December 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/tbenavi1/genomescope2.0
https://github.com/arangrhie/merfin/tree/master/scripts/lookup_table

Comp % = Kr − KA /Kr = 1 − KA/Kr

Sequence data

For the HG002 results, data can be found at https://github.com/human-pangenomics/

HG002_Data_Freeze_v1.0. For the VGP datasets, PacBio CLR and 10x Genomics linked

reads can be found at https://vgp.github.io/genomeark/5.

Evaluation of CHM13 assemblies

All scripts used for CHM13 evaluation can be found here: https://github.com/gf777/misc/

tree/master/merfin. Briefly, we generated genome-wide K* tracks using Merfin option

-dump (merfin_dump.sh). K-mer counts databases for both the assemblies and the raw

Illumina and HiFi reads were computed using Meryl (https://github.com/marbl/meryl).

Peak values of 106.8 and 31.8 derived as the kcov value from Genomescope were used

for Illumina and HiFi k-mers, respectively, which is now obtainable with Genomescope2

-p 1(commit version fdeb89178d506c9af2c5d0d103e0135a164889a3). The tracks were

converted to bigWig and loaded in IGV45 for visualization. We used a custom script

(simplify_dump.sh) to count the number of bases with the same K* values for both Illumina

and HiFi k-mers, which were then used to generate the genome-wide K* comparison. The

titration experiment was performed downsampling the reads with the ‘seqtk sample’

command (https://github.com/lh3/seqtk, v1.3).

Variant calling and polishing of HG002 assemblies

Variant calling and polishing of HG002 assemblies was performed using medaka v1.2.6

(https://github.com/nanoporetech/medaka) using the models specified in Supplementary

Table 3 for each dataset. Medaka was first run in the consensus mode (medaka_consensus)

and subsequently in the variant mode (medaka_variant) to generate the vcf of the variant

calls. Illumina 21-mers from the HG002 benchmark were re-used for evaluation and filtering

with Merfin. Medaka filtered variant set was then used in conjunction with bcftools v1.9

in the consensus mode with the -H 1 option to generate a consensus sequence. The same

procedure was followed for the Merfin assemblies, except that Merfin was used to filter

Medaka vcf prior to consensus generation. Polishing was repeated twice, and in the second

round the assembly polished with Merfin was used as reference. Additional best practices

for running Merfin can be found in the Github repository (https://github.com/arangrhie/

merfin/wiki/Best-practices-for-Merfin).

Assembly-based small variant calling assessment

We used dipcall v0.3 (https://github.com/lh3/dipcall) to generate the small variants from the

assembly. Dipcall takes a diploid assembly and a reference genome to produce a variant

call file (vcf) that contains all variants that are present in the assembly compared to the

reference. We then compared the variant calls against GIAB truth set v4.2.1 using hap.py as

described in the Genotyping benchmark session. We used the following commands for the

evaluation:

Formenti et al. Page 14

Nat Methods. Author manuscript; available in PMC 2022 December 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/human-pangenomics/HG002_Data_Freeze_v1.0
https://github.com/human-pangenomics/HG002_Data_Freeze_v1.0
https://vgp.github.io/genomeark/
https://github.com/gf777/misc/tree/master/merfin
https://github.com/gf777/misc/tree/master/merfin
https://github.com/marbl/meryl
https://github.com/lh3/seqtk
https://github.com/nanoporetech/medaka
https://github.com/arangrhie/merfin/wiki/Best-practices-for-Merfin
https://github.com/arangrhie/merfin/wiki/Best-practices-for-Merfin
https://github.com/lh3/dipcall

./run-dipcall <output_prefix> <GRCh38.fa> <pat.fa> <mat.fa> -t 8 -x

hs38.PAR.bed

hap.py HG002_GRCh38_1_22_v4.2.1_benchmark.vcf.gz \

 DIPCALL_OUTPUT.dip.vcf.gz \

 -f HG002_GRCh38_1_22_v4.2.1_benchmark_noinconsistent.chr20.bed \

 -r GCA_000001405.15_GRCh38_no_alt_analysis_set.fna -o OUTPUT \

 --pass-only --engine=vcfeval --threads=32

Variant calling and polishing of VGP assemblies

While the original assemblies were generated with different versions of the VGP pipeline5

(https://github.com/VGP/vgp-assembly/tree/master/pipeline), to polish the assemblies of the

flier cichlid (v1.0), the Goode’s thornscrub tortoise (v1.5), and the zebra finch (v1.6)

with Merfin we used the VGP pipeline v1.6 (Extended Data Fig. 7). In the first round

of polishing, PacBio CLR reads were aligned with pbmm2 v1.0.0, variants were called

with variantCaller v2.3.3 (arrow) with the -o ${asm}.vcf option. A custom script (https://

github.com/arangrhie/merfin/blob/master/scripts/reformat_arrow/) included in Merfin was

used to properly format the vcf file (reshape_arrow.sh). 21-mer databases for both the

assemblies and the 10x linked-reads were generated with Meryl. 10x barcodes were trimmed

from the reads using the script available in Meryl. The haploid 21-mer coverage and the

lookup tables were computed using our modified Genomescope2 script included in Merfin:

Rscript $merfin/lookup.R ${asm}.21.meryl.hist 21 ${asm}.21.lookup 2

Similarly to HG002, the consensus was generated with bcftools v1.9 using the filtered vcf

generated by Merfin. The same strategy was applied for the other polishing steps, except

that Longranger v2.2.2 was used for mapping the 10x Genomics linked-reads and Freebayes

v1.3.1 (https://github.com/freebayes/freebayes) for variant calling.

For variant calling and polishing of zebra finch

trio, curated primary (bTaeGut2.pri.cur.20191112.fasta) and alternate

(bTaeGut2.alt.cur.20181019.fasta) pseudo-haploid assembles were downloaded

from genomeark (https://genomeark.s3.amazonaws.com/index.html?prefix=species/

Taeniopygia_guttata/bTaeGut2/assembly_curated/). 10x linked reads were aligned with

Freebayes on the primary and alternate assembly using Longranger with default options.

Freebayes calls were filtered using Bcftools v1.9 with the -i’(GT=“AA” || GT=“Aa”)’

option prior to Merfin filtering. K-mer counts databases for both the assemblies and the raw

Illumina reads were computed using Meryl, and Merfin was run with a peak value of 35.2

derived as the kcov value from Genomescope2.

Evaluation of the assemblies

QV and phasing analyses of HG002 and zebra finch trios were performed using Merqury16

(https://github.com/marbl/merqury/) in the trio mode using 21-mers and default parameters.

Formenti et al. Page 15

Nat Methods. Author manuscript; available in PMC 2022 December 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/VGP/vgp-assembly/tree/master/pipeline
https://github.com/arangrhie/merfin/blob/master/scripts/reformat_arrow/
https://github.com/arangrhie/merfin/blob/master/scripts/reformat_arrow/
https://github.com/freebayes/freebayes
https://genomeark.s3.amazonaws.com/index.html?prefix=species/Taeniopygia_guttata/bTaeGut2/assembly_curated/
https://genomeark.s3.amazonaws.com/index.html?prefix=species/Taeniopygia_guttata/bTaeGut2/assembly_curated/
https://github.com/marbl/merqury/

Similarly, primary and alternate scaffolds of the VGP assemblies were separated and

Merqury QV was estimated on both using 21-mers and default parameters.

Gene annotation of VGP assemblies

Annotation was performed using the NCBI annotation pipeline5, using the same transcript,

protein and RNA-Seq input evidence for the annotation of the unpolished, polished and

Merfin assemblies of each species. For Taeniopygia guttata, a total of 100,000 Taeniopygia
guttata ESTs, GenBank and known RefSeq37 and 10 billion same-species reads for over

13 tissues were aligned to the genome, in addition to all GenBank Aves proteins, known

Aves, human and Xenopus RefSeq proteins, and RefSeq model proteins for Parus major,
Gallus gallus, Columbia livia and Pseudopodoces humilis. For Gopherus evgoodei, 1.22

billions RNA-Seq reads from 5 tissue types from Gopherus and Chelonoidis species were

aligned to the assemblies in addition to all known RefSeq proteins from human, Xenopus,
and Sauropsida, and model RefSeq proteins from Chrysemys picta, Pelodiscus sinensis. For

Archocentrus centrarchus, 476 million same species RNA-Seq reads from 9 tissue types

were aligned to the assemblies in addition to all Actinoipterygii GenBank proteins, human

and Actinopterygii known RefSeq proteins and Oryzias latipes, Oreochromis niloticus,

Monopterus albus, Xiphophorus maculatus model RefSeq proteins. In brief, the genome

sequences masked with Windowmasker46 before annotation. Transcription RNA-Seq data

were aligned with BLAST47 followed by Splign48, and RefSeq and GenBank proteins

were aligned using Blast and ProSplign. The gene model’s structure and boundaries were

obtained with Gnomon (https://www.ncbi.nlm.nih.gov/genome/annotation_euk/gnomon/) by

manipulating a hidden Markov model trained on the species. tRNAs were prediced with

tRNAscan-SE v1.2349 and small non-coding RNAs were predicted with RFAM v12.0

HMMs using cmsearch from the Infernal package50.

Runtime and memory requirements

Computational requirements for k=21 and k=31 are reported in Supplementary Table 10-12.

Commands used were:

HG002 GIAB benchmark:

Merfin -filter \

 -sequence GRCh38_no_alt_analysis_set_clean.fasta \

 -seqmers hg38.meryl \

 -readmers HG002.k$K.[gt1.]meryl \

 -vcf $in_vcf -debug -output $out

T2T-CHM13v1.0 assembly evaluation:

merfin -hist -threads 24 -sequence $fasta \

 -seqmers $fasta.k21.[gt1.]meryl \

 -readmers chm13.k21.[gt1.]meryl \

Formenti et al. Page 16

Nat Methods. Author manuscript; available in PMC 2022 December 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.ncbi.nlm.nih.gov/genome/annotation_euk/gnomon/

 -prob lookup_table.k21.txt -peak 106.7 -output $out.hist

merfin -hist -sequence $fasta \

 -seqmers $fasta.k31.[gt1.]meryl \

 -readmers chm13.k31.[gt1.]meryl \

 -prob lookup_table.k31.txt -peak 99.59 -output $out.hist

fArcCen1 Arrow polishing:

merfin -polish -sequence fArcCen1_s4.fasta.gz \

 -readmers fArcCen1.k21.[gt1.]meryl \

 -prob lookup_table.k21.txt \

 -peak 10.8 -vcf fArcCen1_s4.reshaped.vcf.gz -output $out

merfin -polish -sequence fArcCen1_s4.fasta.gz \

 -seqmers $seqmers -readmers fArcCen1.k31.[gt1.]meryl \

 -prob lookup_table.k31.txt -peak 9.1 \

 -vcf fArcCen1_s4.reshaped.vcf.gz -output $out

Output variants from the fArcCen1 experiment were compressed with bcftools (bcftools
consensus -f $fa -H 1 $vcf.gz > $out.fasta) and used for generating the polished

consensus. Evaluation of the polished fArcCen1 experiments were performed on k=21

with merfin options -hist -prob lookup_table.k21.txt -peak 10.8 -readmers

fArcCen1.k21.meryl. All probability lookup tables were generated with Genomescope2

with options --fitted_hist -p 1 (ploidy=1) for CHM13 evaluation. Experiments were

run on Biowulf, NIH HPC clusters with 24 threads allowed. Maximum memory and detailed

cluster specifications are in Supplementary Tables 10–12.

Data Availability

HG002 variant call data was downloaded from https://data.nist.gov/od/id/mds2-2336

(SEX9X, NFT0L, 23O09, and QUE7Q). Sequencing data and assemblies for CHM13,

HG002, and VGP genomes are available at https://github.com/marbl/CHM13, https://

github.com/human-pangenomics/HG002_Data_Freeze_v1.0 and https://vgp.github.io/.

Source data used for generating all figures in this manuscript are available at https://

github.com/gf777/misc/tree/master/merfin/paper/figures.

The K* tracks for HiFi and Illumina of the CHM13 are browsable in the associated UCSC

browser (http://genome.ucsc.edu/cgi-bin/hgTracks?db=hub_2395475_t2t-chm13-v1.1). All

variant calls used in the genotyping benchmarks, k-mer databases, fitted histogram tables

and K* tracks are available to download at https://s3-us-west-2.amazonaws.com/human-

pangenomics/index.html?prefix=publications/MERFIN_2021/ with a step-by-step guideline

available at https://github.com/arangrhie/merfin/wiki/Best-practices-for-Merfin. All data are

publicly open for download with no restrictions.

Formenti et al. Page 17

Nat Methods. Author manuscript; available in PMC 2022 December 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://data.nist.gov/od/id/mds2-2336
https://github.com/marbl/CHM13
https://github.com/human-pangenomics/HG002_Data_Freeze_v1.0
https://github.com/human-pangenomics/HG002_Data_Freeze_v1.0
https://vgp.github.io/
https://github.com/gf777/misc/tree/master/merfin/paper/figures
https://github.com/gf777/misc/tree/master/merfin/paper/figures
http://genome.ucsc.edu/cgi-bin/hgTracks?db=hub_2395475_t2t-chm13-v1.1
https://s3-us-west-2.amazonaws.com/human-pangenomics/index.html?prefix=publications/MERFIN_2021/
https://s3-us-west-2.amazonaws.com/human-pangenomics/index.html?prefix=publications/MERFIN_2021/
https://github.com/arangrhie/merfin/wiki/Best-practices-for-Merfin

Code Availability

A stable release and the C++ source code for Merfin, and examples from this work are

available under Apache License 2.0 at GitHub (https://github.com/arangrhie/merfin) and

Zenodo (https://doi.org/10.5281/zenodo.5527270)51. The only dependency is the k-mer

counter Meryl, which comes with the release. Merfin can be run in five modes: 1) the

-filter mode scores each variant, or variants within distance k and their combinations by

error k-mers for improved genotyping; 2) the -completeness mode generates completeness

metrics; 3) the -dump mode computes KC, KR, K* for each base in the assembly along

with QV and QV* for each sequence; 4) the -hist mode provides a K* histogram and

genome-wide QV and QV* averages; 5) the -polish mode scores each variant, or variants

within distance k and their combinations by the K* for polishing. Merfin is fully parallelized

using OpenMP. A combination of bash and Rscript used for data analysis and visualization

is available at https://github.com/gf777/misc/tree/master/merfin/paper/figures.

Extended Data

Extended Data Fig. 1 |. Flowchart diagram of each mode in Merfin.
Text inside gray boxes on the top represents input files required (solid) or optional (dashed)

for Merfin. a, genotyping (-filter) and polishing (-polish) modes. b, K* histogram (-hist) and

K* completeness (-completeness) modes. Steps listed in bullet points are marked in gray if it

is only applicable in -polish (a) or -completeness (b) mode.

Formenti et al. Page 18

Nat Methods. Author manuscript; available in PMC 2022 December 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/arangrhie/merfin
https://github.com/gf777/misc/tree/master/merfin/paper/figures

Extended Data Fig. 2 |. Genome-wide density distribution of the K* using Illumina k-mers.
When the assembly is in agreement with the raw data, the K* is normally distributed with

mean 0, and the smaller the standard deviation the higher the agreement. CHM13v1.0 shows

a less dispersed distribution of the K* compared to a regular HiCanu assembly.

Formenti et al. Page 19

Nat Methods. Author manuscript; available in PMC 2022 December 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Extended Data Fig. 3 |. A region of negative K* highlighting sequencing bias.
An example of low coverage in both HiFi and Illumina reads associated with high guanine

content, and specifically a GA-rich repeat (heatmap). GA bias has been reported in PacBio

HiFi data, and results in gaps in the assembly that in CHM13 were filled with Nanopore

data22. The K* both from HiFi and Illumina k-mers (top tracks) recapitulate the coverage

drop. Nanopore coverage appears less affected. Position Chr. 12:~129,862,000 bp.

Formenti et al. Page 20

Nat Methods. Author manuscript; available in PMC 2022 December 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Extended Data Fig. 4 |. The K* can identify issues in the assembly at the base level.
a, 40 bp window with K* close to 0, highlighting perfect agreement of the assembly with

the raw reads. Position Chr18:~7,000,000 bp. b, A region of negative K* in coincidence with

two heterozygous indels. Position Chr1:~105,008,350 bp.

Formenti et al. Page 21

Nat Methods. Author manuscript; available in PMC 2022 December 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Extended Data Fig. 5 |. Coverage titration experiment and impact on QV*.
The QV* is only marginally influenced by the coverage of the dataset being considered.

Formenti et al. Page 22

Nat Methods. Author manuscript; available in PMC 2022 December 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Extended Data Fig. 6 |. Haplotype phasing before and after polishing with Merfin.
In both parental assemblies, the haplotypes remained fully phased, and the size of the blocks

significantly increased compared to the unpolished version (a,b) after polishing with Merfin

(c,d). A theoretical human genome size of 3.1 Gbp was used to normalize NG* values.

Formenti et al. Page 23

Nat Methods. Author manuscript; available in PMC 2022 December 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Extended Data Fig. 7 |. VGP assembly pipeline.
Compared to the previous v1.6, the introduction of Merfin in v1.7 (green) resulted in a

minimal change of the workflow, but in a generalized improvement in QV scores and gene

annotations. Pipeline available at https://github.com/VGP/vgp-assembly.

Formenti et al. Page 24

Nat Methods. Author manuscript; available in PMC 2022 December 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/VGP/vgp-assembly

Extended Data Fig. 8 |. Phase block analysis of zebra finch pseudo-haploid assembly.
a, Phase blocks in the primary assembly after mapping the reads to both the primary and

alternate assemblies. b, Phase blocks in the primary assembly after mapping the reads to

both the primary only. c, Phase blocks in the alternate assembly after mapping the reads to

both the primary and alternate assemblies. d, Phase blocks in the alternate assembly. In all

cases, the application of Merfin filtering minor heterozygous variants (green) leads to block

sizes better or comparable to prior polishing methods alone (blue). Unpolished assembly in

gray. Results of Merfin without filtering in red. A genome size of ~1.03 Gbp derived from

Genomescope2 was used to normalize NG* values.

Formenti et al. Page 25

Nat Methods. Author manuscript; available in PMC 2022 December 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Extended Data Fig. 9 |. Effect of merfin correction on the kinetochore scaffold 1 (KNL1)
annotation.
a, Deleterious presence of an extra A around position 1,321,620 of scaffold_7 (red box) in

the polished, non-merfin-corrected sequence is indicated by a 1-base gap in the alignments

of zebra finch PacBio IsoSeq SRR8695295.20794.1 and KNL1 transcripts from three other

Passeriformes songbirds. This insertion causes a disruption in the frame and a premature

stop codon in the translated sequence (see amino acid sequence in red). b, Corresponding

span in the merfin-corrected assembly, with gapless alignments of the IsoSeq read and

Passeriformes transcripts, and uninterrupted translation.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Formenti et al. Page 26

Nat Methods. Author manuscript; available in PMC 2022 December 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Acknowledgments

We thank T. Rhyker Ranallo-Benavidez and Michael C. Schatz for the useful discussion on adapting
Genomescope2 models. We also thank the communities of the T2T, HPRC and VGP consortia for their constant
support. G. F. and E. D. J were supported by Rockefeller University and HHMI funds. A. R., B. P. W., S. K,
and A. M. P. were supported by the Intramural Research Program of the National Human Genome Research
Institute, National Institutes of Health (1ZIAHG200398). The work of F.T-N was supported by the Intramural
Research Program of the National Library of Medicine, National Institutes of Health. K.S. was supported by NIH/
NHGRI (R01HG010485, U41HG010972, U01HG010961, U24HG011853, OT2OD026682). E.W.M. was partially
supported by the German Federal Ministry of Education and Research (01IS18026C). Part of this work used the
computational resources of the NIH HPC Biowulf cluster (https://hpc.nih.gov).

References

1. Olson ND et al. precisionFDA Truth Challenge V2: Calling variants from short- and long-reads in
difficult-to-map regions. bioRxiv 2020.11.13.380741 (2021) doi:10.1101/2020.11.13.380741.

2. Koboldt DC Best practices for variant calling in clinical sequencing. Genome Med 12, 91 (2020).
[PubMed: 33106175]

3. Guo Y, Ye F, Sheng Q, Clark T & Samuels DC Three-stage quality control strategies for DNA
re-sequencing data. Brief. Bioinform 15, 879–889 (2014). [PubMed: 24067931]

4. Giani AM, Gallo GR, Gianfranceschi L & Formenti G Long walk to genomics: History and current
approaches to genome sequencing and assembly. Comput. Struct. Biotechnol. J 18, 9–19 (2020).
[PubMed: 31890139]

5. Rhie A et al. Towards complete and error-free genome assemblies of all vertebrate species. Nature
592, 737–746 (2021). [PubMed: 33911273]

6. Wenger AM et al. Accurate circular consensus long-read sequencing improves variant detection and
assembly of a human genome. Nat. Biotechnol 37, 1155–1162 (2019). [PubMed: 31406327]

7. Watson M & Warr A Errors in long-read assemblies can critically affect protein prediction. Nature
biotechnology vol. 37 124–126 (2019).

8. Nurk S et al. HiCanu: accurate assembly of segmental duplications, satellites, and allelic variants
from high-fidelity long reads. Genome Res 30, 1291–1305 (2020). [PubMed: 32801147]

9. Walker BJ et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome
assembly improvement. PLoS One 9, e112963 (2014). [PubMed: 25409509]

10. Hepler NL, Delaney N, Brown M, Smith ML, Katzenstein D, Paxinos EE, Alexander D. An
Improved Circular Consensus Algorithm with an Application to Detect HIV-1 Drug-Resistance
Associated Mutations (DRAMs). Poster presentation

11. Vaser R, Sović I, Nagarajan N & Šikić M Fast and accurate de novo genome assembly from long
uncorrected reads. Genome Res 27, 737–746 (2017). [PubMed: 28100585]

12. McKenna A et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-
generation DNA sequencing data. Genome Res 20, 1297–1303 (2010). [PubMed: 20644199]

13. Garrison E & Marth G Haplotype-based variant detection from short-read sequencing. arXiv
[q-bio.GN] (2012).

14. Poplin R et al. A universal SNP and small-indel variant caller using deep neural networks. Nat.
Biotechnol 36, 983–987 (2018). [PubMed: 30247488]

15. Li H A statistical framework for SNP calling, mutation discovery, association mapping and
population genetical parameter estimation from sequencing data. Bioinformatics 27, 2987–2993
(2011). [PubMed: 21903627]

16. Rhie A, Walenz BP, Koren S & Phillippy AM Merqury: reference-free quality, completeness, and
phasing assessment for genome assemblies. Genome Biol 21, 245 (2020). [PubMed: 32928274]

17. Mapleson D, Garcia Accinelli G, Kettleborough G, Wright J & Clavijo BJ KAT: a K-mer analysis
toolkit to quality control NGS datasets and genome assemblies. Bioinformatics 33, 574–576
(2017). [PubMed: 27797770]

18. Kundu R, Casey J & Sung W-K HyPo: Super Fast & Accurate Polisher for Long
Read Genome Assemblies. Cold Spring Harbor Laboratory 2019.12.19.882506 (2019)
doi:10.1101/2019.12.19.882506.

Formenti et al. Page 27

Nat Methods. Author manuscript; available in PMC 2022 December 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://hpc.nih.gov/

19. Jain C et al. Weighted minimizer sampling improves long read mapping. Bioinformatics 36, i111–
i118 (2020). [PubMed: 32657365]

20. Jain C, Rhie A, Hansen N, Koren S & Phillippy AM A long read mapping
method for highly repetitive reference sequences. bioRxiv 2020.11.01.363887 (2020)
doi:10.1101/2020.11.01.363887.

21. Phillippy AM, Schatz MC & Pop M Genome assembly forensics: finding the elusive mis-assembly.
Genome Biol 9, R55 (2008). [PubMed: 18341692]

22. Nurk S et al. The complete sequence of a human genome. bioRxiv (2021).

23. Vollger Mitchell R., Guitart Xavi, Dishuck Philip C., Mercuri Ludovica, Harvey William T.,
Gershman Ariel, Diekhans Mark, Sulovari Arvis, Munson Katherine M., Lewis Alexandra M.,
Hoekzema Kendra, Porubsky David, Li Ruiyang, Nurk Sergey, Koren Sergey, Miga Karen H.,
Phillippy Adam M., Timp Winston, Ventura Mario, Eichler Evan E. Segmental duplications and
their variation in a complete human genome. bioRxiv (2021).

24. Gershman A et al. Epigenetic patterns in a complete human genome. bioRxiv (2021).

25. Cartney Mc, Alonge Michael+, Jain Chirag, Formenti Giulio, Fungtammasan Arkarachai, Shafin
Kishwar, Paten Benedict, Miga Karen H., Bzikadze Andrey V., Mikheenko Alla, Logsdon Glennis
A., Wood Jonathan MD, Howe Kerstin, Shumate Alaina, Sović Ivan, Zook Justin M., Koren
Sergey, Phillippy Adam M., Rhie Arang, A. M. Chasing Perfection: Validation and Polishing
Strategies for Telomere-to-Telomere Genome Assemblies. biorxiv (2021).

26. Krusche P et al. Best practices for benchmarking germline small-variant calls in human genomes.
Nat. Biotechnol 37, 555–560 (2019). [PubMed: 30858580]

27. Ranallo-Benavidez TR, Jaron KS & Schatz MC GenomeScope 2.0 and Smudgeplot for reference-
free profiling of polyploid genomes. Nat. Commun 11, 1432 (2020). [PubMed: 32188846]

28. Cheng H, Concepcion GT, Feng X, Zhang H & Li H Haplotype-resolved de novo assembly using
phased assembly graphs with hifiasm. Nat. Methods 18, 170–175 (2021). [PubMed: 33526886]

29. Huddleston J et al. Discovery and genotyping of structural variation from long-read haploid
genome sequence data. Genome Res 27, 677–685 (2017). [PubMed: 27895111]

30. Miga KH et al. Telomere-to-telomere assembly of a complete human X chromosome. Nature 585,
79–84 (2020). [PubMed: 32663838]

31. Zook JM et al. Extensive sequencing of seven human genomes to characterize benchmark
reference materials. Scientific data vol. 3 160025 (2016). [PubMed: 27271295]

32. Kolmogorov M, Yuan J, Lin Y & Pevzner PA Assembly of long, error-prone reads using repeat
graphs. Nat. Biotechnol 37, 540–546 (2019). [PubMed: 30936562]

33. Koren S et al. De novo assembly of haplotype-resolved genomes with trio binning. Nat. Biotechnol
(2018) doi:10.1038/nbt.4277.

34. Li H et al. A synthetic-diploid benchmark for accurate variant-calling evaluation. Nat. Methods 15,
595–597 (2018). [PubMed: 30013044]

35. Wagner J et al. Benchmarking challenging small variants with linked and long reads. bioRxiv
2020.07.24.212712 (2020) doi:10.1101/2020.07.24.212712.

36. Chin C-S et al. Phased diploid genome assembly with single-molecule real-time sequencing. Nat.
Methods 13, 1050–1054 (2016). [PubMed: 27749838]

37. O’Leary NA et al. Reference sequence (RefSeq) database at NCBI: current status, taxonomic
expansion, and functional annotation. Nucleic Acids Res 44, D733–45 (2016). [PubMed:
26553804]

38. Gnomon - the NCBI eukaryotic gene prediction tool https://www.ncbi.nlm.nih.gov/genome/
annotation_euk/gnomon/.

39. Fofanov Y et al. How independent are the appearances of n-mers in different genomes?
Bioinformatics 20, 2421–2428 (2004). [PubMed: 15087315]

40. Zhao X, Weber AM & Mills RE A recurrence-based approach for validating structural variation
using long-read sequencing technology. Gigascience 6, 1–9 (2017).

41. Mc Cartney AM et al. Chasing perfection: validation and polishing strategies for telomere-to-
telomere genome assemblies. bioRxiv 2021.07.02.450803 (2021) doi:10.1101/2021.07.02.450803.

Formenti et al. Page 28

Nat Methods. Author manuscript; available in PMC 2022 December 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.ncbi.nlm.nih.gov/genome/annotation_euk/gnomon/
https://www.ncbi.nlm.nih.gov/genome/annotation_euk/gnomon/

42. Benjamini Y & Speed TP Summarizing and correcting the GC content bias in high-throughput
sequencing. Nucleic Acids Res 40, e72 (2012). [PubMed: 22323520]

43. Yang C et al. Evolutionary and biomedical insights from a marmoset diploid genome assembly.
Nature (2021) doi:10.1038/s41586-021-03535-x.

44. Cheng H, Concepcion GT, Feng X, Zhang H & Li H Haplotype-resolved de novo assembly with
phased assembly graphs. arXiv [q-bio.GN] (2020).

Methods References

45. Robinson JT et al. Integrative genomics viewer. Nat. Biotechnol 29, 24–26 (2011). [PubMed:
21221095]

46. Morgulis A, Gertz EM, Schäffer AA & Agarwala R WindowMasker: window-based masker for
sequenced genomes. Bioinforma. Oxf. Engl 22, 134–141 (2006).

47. Altschul SF, Gish W, Miller W, Myers EW & Lipman DJ Basic local alignment search tool. J. Mol.
Biol 215, 403–410 (1990). [PubMed: 2231712]

48. Kapustin Y, Souvorov A, Tatusova T & Lipman D Splign: algorithms for computing spliced
alignments with identification of paralogs. Biol. Direct 3, 20 (2008). [PubMed: 18495041]

49. Lowe TM & Eddy SR tRNAscan-SE: a program for improved detection of transfer RNA genes in
genomic sequence. Nucleic Acids Res 25, 955–964 (1997). [PubMed: 9023104]

50. Nawrocki EP et al. Rfam 12.0: updates to the RNA families database. Nucleic Acids Res 43,
D130–137 (2015). [PubMed: 25392425]

51. Formenti G, Rhie A & Walenz B arangrhie/merfin: merfin v1.0 (Zenodo, 2021). 10.5281/
zenodo.5527270.

Formenti et al. Page 29

Nat Methods. Author manuscript; available in PMC 2022 December 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 1 |. Algorithms and results used in Merfin.
a, Two variant calls and its potential consensus paths. The bases and k-mers in red are

errors not found in the reads. The path with A>C has no error k-mers and gets chosen

for genotyping (*). For polishing, the average K* is computed in addition to the missing

k-mers using the predicted absent k-mers. b, Precision, recall, and F1 from a benchmark on

HG002 genotyping. Merfin always achieves higher precision and F1 scores compared to the

hard-filtered approach with almost no loss in recall. Default, no filtering; Red, hard-filtering

on default. c, K-mer frequency found in the consensus sequence (KC), reads (KR) with

average coverage at 4 (c), expected copy number based on the corrected k-mer frequency

(Kr = KR / c), and K*. Positive and negative K* values are colored in green and red. The

highlighted region (gray) shows the same k-mers and values used to compute K* as affected

by the A base in the reference. If two alternatives bear the same number of missing k-mers

the alternative with the K* closest to zero is chosen. d. K* distribution. K* values deviated

from 0 indicate collapsed (+) or expanded (−) k-mers in the assembly. e, Genomescope

2.0 k-mer frequency histogram with theoretical k-multiplicity curves (top) and probabilities

(bottom) for 0, 1, 2, 3, and 4-copy k-mers, generated using the --fitted_hist option. Note that

the 3-copy peak is fully contained in the 2 and 4-copy peaks. f, Diagram for estimating QV*

and completeness from k-mers. Each k-mer is a block colored by its state of presence. In the

block tower, each column represents the identical k-mer with its state colored by its presence

in the assembly, reads, or in both. Note the QV* and K* completeness is using all k-mers

including their frequency.

Formenti et al. Page 30

Nat Methods. Author manuscript; available in PMC 2022 December 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 2 |. CHM13 evaluation and polishing.
a, Genome-wide K* for the CHM13 assembly v1.0. Satellites are associated with repeat-

and technology-specific biases. Yet to be resolved rDNA arrays (red) are highlighted by

positive K*. b, Highlight of the centromeric satellite repeats (manuscript in preparation) and

segmental duplications23 (orange most similar, yellow less, gray least) on chromosome 9.

c, Genome-wide density distribution of the K* using HiFi k-mers. When the assembly

is in agreement with the raw data, the K* is normally distributed with mean 0, and

the smaller the standard deviation the higher the agreement. CHM13 v1.0 shows a less

dispersed distribution of the K* compared to a less complete v0.7 assembly. d, Genome-

wide comparison of the K* computed using HiFi vs Illumina k-mers on the CHM13

v1.0 assembly. Agreement between the assembly and the raw reads supported by the two

technologies is found around (0, 0). The upper right quadrant highlights where both HiFi

vs Illumina technologies suggest the presence of underrepresented k-mers that were largely

contributed from the un-assembled rDNAs later resolved in v1.122; the lower left quadrant

highlights where both technologies suggest the presence of overrepresented k-mers (with

perfect agreement found on the diagonals). The axes correspond to regions of substantial

Formenti et al. Page 31

Nat Methods. Author manuscript; available in PMC 2022 December 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

disagreement between the two technologies. Diamonds indicate k-mers missing from one (x

or y axis) or both (0, 0) technologies.

Formenti et al. Page 32

Nat Methods. Author manuscript; available in PMC 2022 December 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 3. |. HG002 human trio polishing and evaluation.
a, Distribution of QV scores as measured by Merqury for maternal and paternal contigs

polished with Medaka only, or with variants generated by Medaka filtered with Merfin,

from the experiment (test 4, Supplementary Table 3) using latest basecaller (Guppy 4.2.2)

and highest coverage (~50x). The first panel represents the unpolished contigs, the mid

panel the first round of Medaka polishing and filtering, and the last panel the second round

applied to the Merfin results from the previous round. The number of contigs without

evidence of errors as judged by Merqury QV are reported on the right side. b, Size of the

haplotype blocks before and after polishing with or without Merfin for both the maternal and

paternal assemblies. First round of polishing is represented by the dotted lines. c, Number

of variants generated by Medaka for polishing and remaining variants after Merfin filtering

for both the maternal and paternal assemblies. d, Assembly-based HG002 small variant

calling performance of Merfin vs regular Medaka against GIAB truth set. Variants from the

assembly are derived against GRCh38 using dipcall.

Formenti et al. Page 33

Nat Methods. Author manuscript; available in PMC 2022 December 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 4. |. Polishing and evaluation of VGP pseudo-haploid assemblies.
a-c, Polishing results of primary and alternate assemblies for the flier cichlid (fArcCen1),

the Goode’s desert tortoise (rGopEvg1), and the zebra finch (bTaeGut1) using the VGP

pipeline. Graphed are the unpolished QV values, and the Merqury QV that accounts only

for missing k-mers (a), the Merqury QV corrected using Merfin models for 0-copy k-mers

(b), and QV* that also accounts for overrepresented k-mers (c). d-f, the general QV increase

was reflected in the quality of the gene annotation, with consistent reduction in the number

of genes affected by premature stop codons (d), frameshifts errors (e), and low quality

protein-coding gene predictions (f).

Formenti et al. Page 34

Nat Methods. Author manuscript; available in PMC 2022 December 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 5. |. Merfin results against quality scores.
a-c, QV after polishing as a function of hard-filtered quality score cutoff in primary

(black) and alternate (gray) assembly. Results achieved with Merfin are represented by the

horizontal lines for comparison. d-f, Number and proportion of variants by quality score

selected by Merfin.

Formenti et al. Page 35

Nat Methods. Author manuscript; available in PMC 2022 December 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

	Abstract
	Introduction
	Results
	Variant call filtering for higher precision
	Assembly evaluation
	Identifying collapsed and expanded regions
	QV* estimation
	Assembly completeness

	Sequence polishing
	Evaluating a complete human genome: T2T-CHM13
	Polishing a completely phased assembly: HG002
	Evaluation, polishing and annotation of pseudo-haploid assemblies
	Effect of k-size and computational requirements

	Discussion
	Methods
	Genotyping benchmark
	Revised K*
	Probabilistic K-mer copy-number estimation
	QV estimation using the K*
	Assembly completeness using the K*
	Sequence data
	Evaluation of CHM13 assemblies
	Variant calling and polishing of HG002 assemblies
	Assembly-based small variant calling assessment
	Variant calling and polishing of VGP assemblies
	Evaluation of the assemblies
	Gene annotation of VGP assemblies
	Runtime and memory requirements

	Data Availability
	Code Availability
	Extended Data
	Extended Data Fig. 1 |
	Extended Data Fig. 2 |
	Extended Data Fig. 3 |
	Extended Data Fig. 4 |
	Extended Data Fig. 5 |
	Extended Data Fig. 6 |
	Extended Data Fig. 7 |
	Extended Data Fig. 8 |
	Extended Data Fig. 9 |
	References
	References
	Fig. 1 |
	Fig. 2 |
	Fig. 3. |
	Fig. 4. |
	Fig. 5. |

