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Abstract 

Background:  Large-scale gut microbiome sequencing has revealed key links between microbiome dysfunction 
and metabolic diseases such as type 2 diabetes (T2D). To date, these efforts have largely focused on Western popula‑
tions, with few studies assessing T2D microbiota associations in Middle Eastern communities where T2D prevalence is 
now over 20%. We analyzed the composition of stool 16S rRNA from 461 T2D and 119 non-T2D participants from the 
Eastern Province of Saudi Arabia. We quantified the abundance of microbial communities to examine any significant 
differences between subpopulations of samples based on diabetes status and glucose level.

Results:  In this study we performed the largest microbiome study ever conducted in Saudi Arabia, as well as the 
first-ever characterization of gut microbiota T2D versus non-T2D in this population. We observed overall positive 
enrichment within diabetics compared to healthy individuals and amongst diabetic participants; those with high 
glucose levels exhibited slightly more positive enrichment compared to those at lower risk of fasting hyperglycemia. 
In particular, the genus Firmicutes was upregulated in diabetic individuals compared to non-diabetic individuals, and 
T2D was associated with an elevated Firmicutes/Bacteroidetes ratio, consistent with previous findings.

Conclusion:  Based on diabetes status and glucose levels of Saudi participants, relatively stable differences in stool 
composition were perceived by differential abundance and alpha diversity measures. However, community level dif‑
ferences are evident in the Saudi population between T2D and non-T2D individuals, and diversity patterns appear to 
vary from well-characterized microbiota from Western cohorts. Comparing overlapping and varying patterns in gut 
microbiota with other studies is critical to assessing novel treatment options in light of a rapidly growing T2D health 
epidemic in the region. As a rapidly emerging chronic condition in Saudi Arabia and the Middle East, T2D burdens 
have grown more quickly and affect larger proportions of the population than any other global region, making a 
regional reference T2D-microbiome dataset critical to understanding the nuances of disease development on a global 
scale.
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Background
The human gut hosts 100 trillion microorganisms, 
encompassing thousands of species collectively, weigh-
ing an average 1.5  kg per person [1, 2]. The human 
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microbiota is important because of its metagenomic rep-
ertoire, which is estimated to be 100 times larger than the 
human genome and encodes a vast array of functionality 
critical for host physiology and metabolism [2]. Differ-
ences in human gut microbiome composition have been 
linked to metabolic diseases such as type 2 diabetes (T2D) 
and obesity [3–7]. Identifying specific bacterial biomark-
ers within the microbiome could help predict the occur-
rence of T2D or tailor treatments in high-risk subjects 
to prevent or delay the onset of metabolic diseases. The 
molecular mechanisms through which the intestinal 
microbiota play a key role in metabolic diseases are linked 
to an increased energy harvesting and the triggering of 
the low-grade inflammatory status characterizing insulin 
resistance and obesity [8, 9].

The prevalence of T2D is increasing worldwide, with 
current data indicating that at least 8.5% of the world’s 
population is affected, with the worldwide prevalence 
expected to reach 12% by 2025 [10, 11]. T2D is mainly 
caused by insulin resistance and relative insulin defi-
ciency [12]. Saudi Arabia, with a total population of over 
20 million, has an estimated T2D constituting 25% of the 
total population [13]. The rapid rate of increase of T2D 
disease in some areas of Saudi Arabia, which increased 
from 16% in 2005 to over 25% in 2011, is thought to be 
due to rapid lifestyle changes such as diet and sedentary 
lifestyle, as well as adverse environmental factors [13].

We analyzed the composition of 16S rRNA from the 
stool samples collected from Saudi Arabian participants 
residing in the Eastern Province and quantified the abun-
dance of microbial communities to determine significant 
differences between subpopulations of samples based 
on diabetes status and glucose level. We assessed alpha 
diversity between the subpopulations to measure spe-
cies richness and evenness among samples noting that an 
increased Firmicutes:Bacteriodetes ratio has previously 
been observed in the microbiota of obese/diabetic indi-
viduals compared to the microbiota of healthy individu-
als [14, 15]. Furthermore, individuals with diabetes were 
tracked for high glucose level (> 126  mg/dL) as it is an 
indicator of fasting hyperglycemia, which could poten-
tially lead to severe long-term complications including 
cardiovascular disease, neuropathy and kidney failure.

Results 
Principal coordinate analysis (PCoA) of the generated 
16S datasets is shown in Supplementary Fig. S1a and b. 
The first and second principal coordinated explained 23% 
and 14%; 23% and 12% of the Diabetes Status and sex 
variance, respectively. Levels of the 150 most abundance 
microbial genera within T2D and non-T2D participants 
were observed to differ significantly in stool microbiota 

abundance derived from 16S sequencing (Supplementary 
Fig. S2a and b).

Figure  1a and b shows the rank abundant curve and 
Permutational Multivariate Analysis of Variance (PER-
MANOVA) cloud, respectively for Saudi T2D and con-
trol 16S stool microbiota datasets. These show that the 
microbiome communities differ globally between T2D 
and non-T2D subjects at statistical significance, p = 0.01. 
The abundance of Taxonomic Composition in males and 
females is clearly evident in both females (Supplemen-
tary Fig. S3a and b) and in males (Supplementary Fig. S4a 
and b). We also compared Saudi T2D participants with 
higher glucose > 126  mg/dL versus lower glucose strata 
<  = 126 mg/dL glucose using the top 150 genera. Amongst 
the 298 samples with glucose data, n = 193 were in the 
higher glucose strata and n = 105 were in the lower strata 
(Supplementary Fig. S5). Unlike previous studies con-
ducted on Western populations, the Saudi participants 
with T2D and higher glucose levels showed a trend toward 
increased diversity, a result that is similar to another 
recently reported study from a United Arab Emirates 
cohort [3, 4, 16].

Alpha diversity was compared in males versus females 
(n = 204 and 226, respectively) with no significant dif-
ferences observed using various different classifications: 
ACE (Abundance-based Coverage Estimator) and Chao1 
indices to estimate richness (measurement of OTUs 
expected in samples given all the bacterial species iden-
tified in the samples); Shannon–Weaver, Simpson and 
Inverse Simpson to define different levels of resolution 
(phylum, class, order, family, genus, and species); and 
Fisher (Supplementary Fig. S6). Alpha diversity of T2D 
versus non-T2D participants revealed statistically signifi-
cant enrichment of the Shannon–Weaver and Simpson 
metrics (Supplementary Figs. S7 and S8) (p < 2.26 × 10–10 
(CI: -0.392 to -0.718)) and p < 4.63 × 10–7 (CI: -0.049 
to -0.108) for Shannon and Simpson diversity, respec-
tively. Saudi T2D cases versus controls showed an asso-
ciation with an elevated Bacteroidetes/Firmicutes ratio, 
p = 2.1 × 10–5 t-test (Supplementary Fig. S8).

We observed an overall positive enrichment of micro-
biota genus/families for diabetics compared to healthy 
individuals. In addition, among T2D patients, those 
with high glucose levels exhibited slightly more positive 
enrichment compared to those at lower risk of fasting 
hyperglycemia (Fig. 2a and b and Table S1). In particu-
lar, the Akkermansia, Acidaminococcus, Megamonas, 
Dialister, Lactobacillus and Paraprevotella genus were 
enriched at p < 1 × 10–9 in T2D versus non-T2D. The 
Bacteroides, Dialister, Akkermansia and Prevotella 
genus were enriched in low versus high-risk T2D using 
a fasting glucose cutoff of 126 mg/dL.
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Fig. 1  Rank abundance curve (a) and permutational multivariate analysis of variance (PERMANOVA) (b) for Saudi T2Ds and control 16S stool 
microbiota datasets. This figure shows the rank abundant curve and PERMANOVA respectively comprised of Saudi T2D and control 16S stool 
microbiota samples. These show that the microbiome communities differ globally between T2D and non-T2D subjects at statistical significance, 
p = 0.01
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Fig. 2  Fold change plots of enriched OTUs for: T2D vs control (a) and glucose levels for high vs low T2D status (b). An overall positive enrichment 
of microbiota phylum/genus for diabetics compared to non-T2D individuals and amongst diabetic participants was observed. Those with high 
glucose levels exhibited slightly more positive enrichment compared to those as lower risk of fasting hyperglycemia
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Discussion 
In this study we performed the largest microbiome study 
ever conducted in Saudi Arabia, as well as the first-ever 
characterization of gut microbiota T2D versus non-T2D 
in this population. We used 16  s rRNA metagenomic 
sequencing to reads identifiable down to genus level from 
the stool samples of 461 T2D and 119 non-T2D Saudi 
individuals from the Eastern Province of Saudi Arabia, 
a region particularly affected by T2D [17]. We assessed 
the microbiota abundance based on diabetes status and 
glucose levels and examined community diversity pat-
terns to compare with other T2D microbiota studies 
from around the globe. These efforts are important and 
warranted given the scarcity of microbiome data in Mid-
dle Eastern populations, and these results provide a use-
ful addition to the global microbiome reference dataset 
in an under-examined community. Saudi Arabian T2D 
costs have risen over 500% in two decades with 10 mil-
lion individuals estimated to be diabetic or pre-diabetic, 
therefore comparing overlapping and varying patterns in 
gut microbiota with other studies is critical to assessing 
novel treatment options in light of a rapidly growing T2D 
health epidemic [17, 18].

Community level differences are evident in the Saudi 
population between T2D and non-T2D individuals, and 
diversity patterns appear to vary from well-characterized 
microbiota from Western cohorts. Indeed, in contrast to 
Western cohorts that often show associations between 
decreased gut microbiota diversity and insulin resistance, 
here we show that Saudi participants with T2D exhib-
ited higher relative diversity in comparison to normal 
metabolic counterparts [19]. These results are similar to a 
recent report from Al Bataineh and colleagues who char-
acterized microbiomes in a cohort of 50 T2D and non-
T2D individuals from the United Arab Emirates, though 
higher diversity in that smaller T2D cohort was deter-
mined to be insignificant when controlling for age [20]. 
Sex was not found to play a role in community structural 
differences, and results were independently validated 
between females and males. The role of overall commu-
nity diversity decreasing in T2D populations has been 
widely cited in early studies on Western populations, yet 
larger meta-analyses involving global populations have 
distorted this pattern and highlight the importance of 
locally representative studies [21, 22].

We observe significant differences between T2D and 
non-T2D individuals for many microbial taxa, as well 
as between T2D individuals with high and low fasting 
blood glucose levels. Concordant with studies con-
ducted on Western populations is the association of 
increasing Bacteroidetes/Firmicutes ratio with T2D 
and in our overweight and obese T2D cohort, increased 

Bacteroidetes may be functionally related to metabo-
lism of branched chain amino acids which has been 
linked to obesity-related metabolic phenotypes [3, 23]. 
Among OTUs assigned at the genus taxonomic level, 
Prevotella and Bacteroides OTUs showed some of the 
most significant log-fold increases in abundance for 
diabetics (over four-fold increases in abundance), spe-
cies of which have been functionally associated with 
the development of insulin resistance and glucose 
intolerance [24]. Among Firmicutes however, levels of 
Acidaminococcus and Megasphaera were positively cor-
related with T2D, as has been previously observed, and 
could functionally relate with increases to Bacteroidetes 
through complementary amino acid metabolism [24–
26]. We observed higher levels of Akkermansia in the 
Saudi T2D group, despite potential protective effects 
for obesity and metabolic disease. Associations of lev-
els of Akkermansia, a mucus-consuming taxon, have 
been observed to be associated with health and with 
ethnicity in Western populations and may represent 
an impact of dietary and lifestyle effects on microbiota 
composition, as this microbe is rarely observed in more 
traditional cultures across large geographic regions 
[27]. It should be noted however that Akkermansia lev-
els are also often increased in response to metformin 
intake in T2D subjects (metformin use metadata is not 
known for the current cohort) [28]. Taxonomic differ-
ences associated with T2D likely reflect shared or com-
plementary functional and metabolic traits but may be 
regionally specific based on dietary and environmental 
variations known to influence the microbiome [27–29].

Based on diabetes status and quantified glucose lev-
els of Middle Eastern participants, relatively stable 
differences in stool composition were observed by dif-
ferential abundance and alpha diversity measures. 
Many studies have examined T2D associations with gut 
microbiota in populations around the globe, and while 
some patterns generally validate across studies such as 
individual taxon abundance variation, others such as 
overall community diversity do not replicate consist-
ently. Obesity, diet, lifestyle and ancestry are all factors 
that influence T2D and each varies significantly from 
culture to culture around the globe, meaning that the 
patterns in T2D development and roles of the microbi-
ome likely vary as well. As a rapidly emerging chronic 
condition in Saudi Arabia and the Middle East, T2D 
burdens have grown more quickly and affect larger pro-
portions of the population than any other global region, 
making a regional reference T2D-microbiome dataset 
critical to understanding the nuances of disease devel-
opment on a global scale.
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Conclusions
This is the largest microbiome study ever conducted in 
Saudi Arabia, as well as the first-ever characterization of 
gut microbiota T2D versus non-T2D in this population. 
In addition, it has shown that community level differ-
ences are evident in the Saudi population between T2D 
and non-T2D individuals, and diversity patterns appear 
to vary from well-characterized microbiota from West-
ern cohorts. Comparing overlapping and varying pat-
terns in gut microbiota with other studies is critical to 
assessing novel treatment options in light of a rapidly 
growing T2D health epidemic in the region. As a rap-
idly emerging chronic condition in Saudi Arabia and the 
Middle East, T2D burdens have grown more quickly and 
affect larger proportions of the population than any other 
global region, making a regional reference T2D-microbi-
ome dataset critical to understanding the nuances of dis-
ease development on a global scale.

Methods
Study populations
Between 2015–2019, stool samples and data were col-
lected from 461 consecutive diabetic patients attending 
the Diabetic Clinics, King Fahd Hospital of the Univer-
sity, Al-Khobar, Saudi Arabia and from 119 healthy con-
trols. Controls were selected from the general population 
with age ranged from 30–75 years and had a body mass 
index (BMI) ranging from 22 to 33  kg/m2 and had no 
diabetes or family history of diabetes. The T2D patients 
had a minimum disease duration of 5 years. Table 1 out-
lines the patient demographics and clinical characteris-
tics. Baseline measurements included anthropometric 
measurements, physical examinations and in-person sur-
veys. Participants who had been treated with antibiotics 
in the previous three months, were pregnant or lactating, 
or had inflammatory bowel disease were excluded from 
the study. Blood and stool samples were collected from 
participants and were stored immediately after collection 
at − 80 °C.

Methods for DNA library preparation and sequencing
Stool samples were taken from T2D (n = 461) and from 
healthy (n = 119) participants and were immediately 
stored at − 80  °C. Bacterial DNA extraction from stool 
samples was performed using QIAamp Fast DNA Stool 
Mini Kit (Qiagen, Hilden, Germany) according to the 
manufacturer’s instructions. Three independent extrac-
tions were performed from each sample to ensure 
robust representation of all microbial content.

Sequencing was performed using either the Swift 
Amplicon 16S panel (Swift Biosciences) or a custom 
protocol. For the Swift protocol, 20 ng of stool-derived 
DNA was used for 16S sequencing library preparation 
using the 16S Primer Panel v2, the Swift Normalase 
Amplicon Panels (SNAP) Core Kit, and the SNAP 
Combinatorial Dual Index Primer Kit (Sets 1A and 1B) 
(Swift Biosciences, CA). The indexed libraries were on 
average 620 base pairs (bp) in length, and individual 
DNA libraries were diluted to 2.5 nM, pooled in equi-
molar proportion, and sequenced on a NovaSeq 6000 
SP flow cell (Illumina, CA) using 250  bp paired end 
reads. For the custom approach, PCR was performed 
on each sample using the 515F primer (forward primer) 
and one of the 100 806rcbc primers (reverse primer). 
These primers contained: sequence homologous to 
region V4 of the 16S rRNA in forward and reverse; 
Illumina adaptors; and the reverse primers contained 
indexing sequences. Taq PCR Master Mix from Qia-
gen was used to prepare the PCR master mix. A PCR 
reaction was performed on each extracted DNA sam-
ple, i.e. each stool sample had three PCR reactions. The 
PCR product was run on 1% agarose gel. The band of 
expected size (381  bp) was excised from gel and puri-
fied with gel purification kit from Qiagen. The three 
PCR products from each sample were pooled together. 
The pooled and purified PCR product was quantified 
with NanoDrop 2000 (Thermo Sciences, USA). Equal 
concentrations of DNA from each sample (5  ng of 
DNA) were pooled together. For each sequencing run, 
DNA from 50 samples was pooled to make the DNA 
library for each batch.

The final concentration of the DNA library was 
quantified with real time PCR using the Kapa library 
quantification kit (Roche, USA) according to the manu-
facturer’s instructions. The DNA library of each batch 
was sequenced using the MiSeq platform from Illumina 
(Illumina, USA) using the MiSeq reagent V2 500 cycles 
Kit from Illumina and the custom read1 (TAT​GGT​AAT​
TGT​GTG​CCA​GCMGCC​GCG​GTAA), read2 (AGT​CAG​
TCA​GCC​GGA​CTA​CH VGGG​TWT​CTAAT) and index 
(ATT​AGA​WACCCBDGTA​GTC​CGG​CTG​ACT​GAC​
T) sequencing primers. PhiX DNA (Illumina, USA) was 
used as a control library.

Table 1  Clinical and demographic characteristics for Saudi Arabian 
Type 2 diabetes cases (n-461) and controls (n = 119)

Ratio Male Female
Sex 1: 0.83 54.50% 45.50%

Mean ± SD
Total Male Female

Age (Years) 52.6 ± 8.83 51.82 ± 9.28 53.5 ± 8.25

Glucose(mg/dl) 165.7 ± 68.89 161.45 ± 57.71 166.8 ± 74.09

HBA1c (%) 8.55 ± 1.76 8.45 ± 1.65 8.65 ± 1.85

Duration (Years) 3–25 4–25 3–22

BMI (kg/m2) 22–30 23–32 25–33
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Analysis
Supplementary Fig. S9 overviews the analytical pipeline 
and workflow employed for these analyses. 16S rRNA (V4 
region) sequences were used in this study and sequenced 
with Illumina software which handled the initial primer 
and barcode processing of all raw sequences. Raw 
sequences were demultiplexed with Illumina’s bcl2fastq2 
v2.20 [30]. FastQC was then used for further processing to 
remove samples with low quality scores across the major-
ity of bases [31]. After de-multiplexing the raw sequences 
and screening via FastQC, the majority of data process-
ing was executed in QIIME2. Paired-end reads were 
joined using VSEARCH. Chimera amplicon removal and 
abundance filtering were processed using Deblur [20]. 
Amplicon sequences were clustered and assembled into 
Operational Taxonomical Units (OTUs) using closed ref-
erence clustering against the Greengenes 13_8 database 
via VESEARCH. Taxonomic assignment was performed 
using a pre-trained Naïve Bayes classifier with Greengenes 
OTU database. The abundance tables and data obtained 
from QIIME2 were combined into a Phyloseq object and 
further analyzed in R with custom scripts [32]. Briefly, we 
removed taxa with less than 5% prevalence across all sam-
ples as well as set a cutoff that samples must have 1000 
OTU counts (default phyloseq setting) to be carried into 
downstream analyses to filter out noisy samples. No sam-
ples were removed. Principle Coordinate Analysis (PCA) 
using Bray–Curtis dissimilarity was performed on relative 
abundance using  phyloseq  ordinate and plotordination 
functions. Heatmaps of top OTUs were generated using 
relative abundance as input to  phyloseq  plot_heatmap 
[1]. Alpha diversity was performed on counts using phy-
loseq estimate_richness and plot_richness functions [32]. 
Taxonomic bar plots generated on relative abundance 
aggregated to family level using  phyloseqplot_compo-
sition [32]. Differentially expressed OTUs calculated 
using DESeq2 package [33]. Phyloseq object with counts 
was transformed using phyloseq_to_deseq2 and DESe-
qwith the default Wald test used to identify significant 
OTUs for the contrast of interest [34]. Bacteroidetes-Fir-
micutes ratio calculated using the  microbiome  package 
bfratio on relative abundance aggregated to the phylum 
level [35]. Visualization of population density and micro-
biome variation generated using  microbiome  plot land-
scape (https://​github.​com/​micro​biome/​micro​biome/​blob/​
master/​R/​plot_​lands​cape.R) with Non-Metric Multidi-
mensional Scaling (NMDS) and Bray–Curtis dissimilarity 
metrics. PERMANOVA performed using  vegan  package 
and adonis function with default parameters. Rank abun-
dance input is counts into Biodiversity R rankabundance 
[36]. The resulting output from rankabundance was visu-
alized using  BiodiversityR  rankabuncomp and  ggplot2 
(https://​ggplo​t2.​tidyv​erse.​org).

Abbreviations
T2D: Type 2 diabetes; PCoA: Principal coordinate analysis; ACE: Abundance-
based Coverage Estimator; OTUs: Operational Taxonomical Units; BMI: Body 
mass index; PCR: Polymerase chain reaction.
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