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a b s t r a c t

COVID-19 raised the need for automatic medical diagnosis, to increase the physicians’ efficiency in
managing the pandemic. Among all the techniques for evaluating the status of the lungs of a patient
with COVID-19, lung ultrasound (LUS) offers several advantages: portability, cost-effectiveness, safety.
Several works approached the automatic detection of LUS imaging patterns related COVID-19 by
using deep neural networks (DNNs). However, the decision processes based on DNNs are not fully
explainable, which generally results in a lack of trust from physicians. This, in turn, slows down the
adoption of such systems. In this work, we use two previously built DNNs as feature extractors at
the frame level, and automatically synthesize, by means of an evolutionary algorithm, a decision tree
(DT) that aggregates in an interpretable way the predictions made by the DNNs, returning the severity
of the patients’ conditions according to a LUS score of prognostic value. Our results show that our
approach performs comparably or better than previously reported aggregation techniques based on
an empiric combination of frame-level predictions made by DNNs. Furthermore, when we analyze the
evolved DTs, we discover properties about the DNNs used as feature extractors. We make our data
publicly available for further development and reproducibility.

© 2022 Elsevier B.V. All rights reserved.
1. Introduction

Since the outbreak of the coronavirus disease 2019 (COVID-19)
andemic, the use of lung ultrasound (LUS) has been globally and
astly spreading. Indeed, the main advantages of LUS (portability,
ost-effectiveness, real-time imaging, and safety) compared to
ther imaging technologies such as, e.g., Computed Tomography
CT), allowed LUS to be widely adopted to evaluate the state of
ungs in patients affected by COVID-19 [1–9]. Moreover, LUS can
e nowadays used for patients’ monitoring and for the triage of
ymptomatic patients [1]. In particular, LUS is often exploited to
etect COVID-19 associated interstitial pneumonia and follow its
volution [2,10]. To perform this task, different imaging protocols
ave been proposed together with semi-quantitative scoring sys-
ems [11]. Indeed, even though quantitative approaches aiming at
ssessing the condition of lung parenchyma with ultrasound are
merging [10,12–16], these strategies are not available for emer-
ency contexts, due to their current preliminary state. Therefore,

∗ Corresponding author.
E-mail address: giovanni.iacca@unitn.it (G. Iacca).
ttps://doi.org/10.1016/j.asoc.2022.109926
568-4946/© 2022 Elsevier B.V. All rights reserved.
semi-quantitative scoring systems based on specific LUS imaging
patterns (e.g., vertical and horizontal artifacts, or consolidations)
have been extensively exploited during the pandemic [2].

Even though a LUS quantitative analysis cannot be performed
with the currently available technologies, the use of artificial
intelligence (AI) for the classification of LUS frames according to
a semi-quantitative scoring system can be exploited to reduce
subjectivity in the evaluation and to reduce the time required to
perform the analysis [17–20].

In the hereby study we exploit a standardized imaging pro-
tocol based on 14 scanning areas and on a four-level scoring
system, which allows the grading of the state of lungs [2]. A
recent study demonstrated how this standardized protocol and
scoring system have a prognostic value when evaluating the
cumulative score (sum of scores obtained in the 14 scanning
areas) at exam-level [21]. We acquire 1808 LUS videos from 100
COVID-19 positive patients, which consist of 366,301 frames in
total. These frames are then fed to two DNNs [17] that were
previously trained to perform automatic scoring and segmen-
tation of LUS frames according to the above-mentioned four-
level scoring system [2]. We successively use the scores given

https://doi.org/10.1016/j.asoc.2022.109926
https://www.elsevier.com/locate/asoc
http://www.elsevier.com/locate/asoc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.asoc.2022.109926&domain=pdf
mailto:giovanni.iacca@unitn.it
https://doi.org/10.1016/j.asoc.2022.109926
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Fig. 1. Block diagram of the prediction process.
s output by two DNNs (respectively for segmentation and la-
eling) [17] to train and test a novel automatic approach, based
n decision trees (DTs) automatically synthesized by evolutionary
omputation, aiming at passing from frame-based labeling to
ideo-based labeling. Specifically, we compare the video-level
cores given by our automatic approach with scores given by
xpert clinicians. Indeed, to perform their evaluation, clinicians
ssociate a score to each video rather than to each frame. We
hen assess the performance of our aggregation approach (both
t video-level and exam-level) by comparing the results obtained
y the proposed method with the empirical aggregation tech-
ique previously reported in [22], which represents the current
tate-of-the-art. We hypothesize that, even though this existing
echnique achieves good performance, the fact that its decisions
re obtained by aggregating the outputs of the DNNs by means
f a simple threshold-based approach may be sub-optimal. To
vercome this limitation, we instead use a fully data-driven DT-
ased approach, that is in principle more flexible and does not
equire empirical choices of thresholds. To summarize, the main
ontributions of this work are the following:

1. we propose a neuro-symbolic approach to the automatic
scoring of COVID-19 patients by combining DNNs and in-
terpretable DTs;

2. we compare single-objective and multi-objective evolu-
tionary approaches to synthesize DTs optimized w.r.t. three
different metrics of interest;

3. we interpret the evolved DTs to understand their decision
policies;

4. we obtain decision support systems that have both higher
prognostic agreement and less variance w.r.t. the approach
previously proposed in the state-of-the-art work in the
field [22].

The paper is organized as follows. Firstly, we present the
ataset and the design of our study, as well as the proposed
ethod aiming at aggregating LUS frame-based predictions to ob-

ain video-level predictions (Section 2). Successively, the results
re presented (Section 3), followed by a detailed analysis of the
volved DTs (Section 4). Finally, the conclusions are derived and
iscussed (Section 5).

. Materials and methods

We use the two models from [17] as feature extractors, whose
utputs are aggregated and given in input to an evolved DT,
hich will then make a prediction of the score related to the
ideo. A block diagram of the process is shown in Fig. 1.

.1. Data

The investigated population consists of 100 patients diagnosed
s COVID-19 positive by a reverse transcription polymerase chain
2

reaction (RT-PCR) swab test. Of the 100 patients, 63 (35 male, 28
female; ages ranging from 26 to 92 years, and average age equal
to 63.72 years) were examined within the Fondazione Policlinico
San Matteo (Pavia, Italy), 19 (16 male, 3 female; ages ranging
from 34 to 84 years, and average age equal to 63.95 years)
within the Lodi General Hospital (Lodi, Italy), and 18 (8 male, 10
female; ages ranging from 23 to 95 years, and average age equal
to 52.11 years) within the Fondazione Policlinico Universitario
Agostino Gemelli (Rome, Italy). As a subgroup of patients was
examined multiple times, on different dates, a total of 133 LUS
exams were performed (94 at Pavia, 20 at Lodi, and 19 at Rome).
A total of 1808 LUS videos were thus acquired (1290 at Pavia, 276
at Lodi, 242 at Rome), which consist of 366,301 frames (292,943
at Pavia, 44,288 at Lodi, 29,070 at Rome).

The data from Pavia have been acquired using a convex probe
with an Esaote MyLab Twice scanner, and an Esaote MyLab 50,
setting an imaging depth from 8 to 12 cm (depending on the pa-
tient) and an imaging frequency from 5.0 to 6.6 MHz (depending
on the scanner). The data from Lodi have been acquired using a
convex probe with an Esaote Mylab Sigma scanner, and a Min-
dRay TE7, setting an imaging depth from 8 to 12 cm (depending
on the patient) and an imaging frequency from 3.5 to 5.5 MHz.
The data from Rome have been acquired using a convex probe
with an Esaote MyLab 50, an Esaote MyLab Alpha, and a Philips
IU22, setting an imaging depth from 8 to 12 cm (depending on
the patient), and an imaging frequency from 3.5 to 6.6 MHz
(depending on the scanner).

This study was part of a protocol that has been registered
(NCT04322487) and received approval from the Ethical Commit-
tee of the Fondazione Policlinico Universitario San Matteo (proto-
col 20200063198), of Milano area 1, the Azienda Socio-Sanitaria
Territoriale Fatebenefratelli-Sacco (protocol N0031981), of the
Fondazione Policlinico Universitario Agostino Gemelli, Istituto di
Ricovero e Cura a Carattere Scientifico (protocol 0015884/20 ID
3117). All patients gave informed consent.

The patients were examined by applying a standardized ac-
quisition protocol based on 14 scanning areas [2]. This protocol
is based on a four-level scoring system consisting in assigning a
score that ranges from 0 to 3, depending on the observed LUS
patterns, with score 0 indicating a healthy lung surface, and 1, 2,
3 an increasingly altered lung surface [2]. All the 1808 LUS videos
were thus scored by LUS medical experts (in this case, the authors
T.P., F.T., and A.S.). Each expert labeled the videos acquired by
himself, i.e., T.P. labeled videos from Pavia, F.T. from Lodi, and A.S.
from Rome. The distribution of scores assigned at video-level by
the experts is shown in Fig. 2.

2.1.1. Inputs
All the 1808 videos are fed to the two DNNs presented by Roy

et al. [17], i.e., a labeling DNN derived from Spatial Transformer
Networks and a segmentation DNN derived from U-Nets and
DeepLab v3+. The former provides as output a score for each
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Fig. 2. The distribution of scores assigned at video-level by the three clinical experts is shown. The percentage of scores 0, 1, 2, and 3 is shown for each hospital
Pavia, Lodi, and Rome) and for the entire dataset (overall). The total number of videos for each group is provided on top.
Fig. 3. Examples of frames labeled as scores 0, 1, 2, and 3 are shown.
nput frame, whereas the latter provided semantic segmentation
nd assigned one or multiple scores to each frame [17]. As the
egmentation DNN can provide multiple scores for the same
rame, we assign only the highest score predicted by this DNN to
ach considered frame (i.e., the worst-case score). Moreover, it is
mportant to highlight how the segmentation DNN could provide
o scores in output (if it does not find any relevant LUS pattern).
herefore, an extra score indicating the absence of LUS patterns
characteristic of the four scores) is considered when evaluating
he output provided by segmentation DNN (we called it score -1).
hese two DNNs have been previously trained with the dataset
resented by Roy et al. [17], which does not depend on the
ataset exploited in the hereby work. Fig. 3 shows examples of
rames labeled as scores 0, 1, 2, and 3. Fig. 4 shows the distribu-
ion of scores assigned at frame-level by the exploited two DNNs.
onsidering the entire dataset (see the overall distribution, Fig. 4,
3

right), there is a high percentage of score 0 and 2 for both labeling
and segmentation DNNs, whereas score 1 is less frequently given
as output. It is also observable how the percentage of score 3 is
significantly higher when looking at the segmentation DNN.

2.1.2. Targets
Given the frame-level labeling provided by the two DNNs, our

target consists in finding an aggregation technique that allows us
to pass from a frame-level score to a video-level score, which
is the output needed by physicians to perform their clinical
evaluation. Therefore, the goal of the proposed technique is to
optimize three metrics of interest that compare the video-level
scores obtained by our algorithm and the ones assigned by clinical
experts (see Fig. 2). These three metrics are: the video-level
agreement, the exam-level agreement, and the prognostic-level
agreement [22].
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Fig. 4. The distribution of scores assigned at frame-level by the labeling and segmentation DNNs presented in [17], exploited in this work, is shown. The percentage
of scores 0, 1, 2, and 3 is shown for each hospital (Pavia, Lodi, and Rome) and for the entire dataset (overall). The frame-level scores given by each architecture
are shown separately. As the segmentation DNN can provide multiple scores for the same frame, we scored each frame with the worst-case (i.e., maximum) score
predicted by the segmentation DNN. As the segmentation DNN could provide no output (if it does not find any relevant LUS pattern), an extra distribution represented
as score −1 is observable in the left bars. The total number of frames for each group is provided on top.
The video-level agreement consists of the percentage of videos
that are correctly classified by the algorithm (i.e., the score as-
signed by the expert coincides with the score assigned by algo-
rithm) [22]. We also evaluate the video-level agreement when
allowing a disagreement up to 1 point (e.g., if the algorithm
classified a video as score 2 and the expert as score 1 or 3, the
evaluation is correct) [22]. To distinguish these two video-level
agreements, we denote the agreement characterized by exact
match between video-level scores as video-level agreement with
threshold (Th) equal to 0, whereas we refer to the video-level
agreement allowing a disagreement up to 1 point as video-level
agreement with Th equal to 1.

The exam-level agreement is instead computed by considering
the cumulative score obtained by summing the video-level scores
assigned to each of the 14 scanning areas [2,22]. Specifically,
we compute the exam-level agreement as the percentage of LUS
exams (133 in total) having a cumulative score (ranging from 0
to 3× 14 = 42) allowing a disagreement between algorithm and
clinical experts of up to 2, 5, and 10 points (i.e., Th equal to 2, 5,
and 10, respectively) [22]. To support the stratification between
patients at high risk of clinical worsening and patients at low risk,
we need to consider the prognostic value of the aforementioned
protocol [2], which has been recently proven in a single-center
study on 52 patients [21]. In particular, the patient is at low risk
of clinical worsening when the exam-based cumulative score is
less than or equal to 24, whereas the patient is at high risk of
worsening when the exam-based cumulative score is greater than
24 [21].

We thus evaluate the algorithm capability of automatically
stratifying these two categories of patients by measuring the
prognostic-level agreement [22]. Specifically, clinical experts and
algorithm are considered in prognostic agreement when both
cumulative scores are less than or equal to 24 (low risk) or greater
than 24 (high risk) (Th equal to 24) [22].

As we will show in detail in Section 2.3.1, it should be noted
that we use a proxy for the first two metrics, i.e., the Mean Square
Error (MSE), which gives us an advantage over optimizing directly
the agreement. In fact, in [22] the authors use several tolerances
for the video-level and exam-level agreement: this implies that
in practical scenarios one should either use n objectives for each
etric, where n is the number of tolerances (e.g., maximize the
xam-level agreement with tolerances 2, 5, and 10); or, one
hould choose one tolerance among all the tolerances, which may
ead to DTs that perform well only for that particular tolerance.
nstead, using the MSE as we do here allows us to maximize
imultaneously the agreement for all the tolerances.
4

2.1.3. Splitting of the data
We split the data randomly in 5 folds. To prevent data leakage,

we make sure that all the data belonging to a patient are assigned
to the same fold. Moreover, we use 4 folds for the training phase
(i.e., to compute the fitness of the individuals) and the remaining
one to assess the generalization capabilities of the best evolved
DTs (i.e., as test set).

2.2. Feature extraction and aggregation of the outputs

The DT (as shown in Fig. 1) expects as input video-level
features. Instead, the two DNNs’ input consists in single frames
of each video. To convert the features from frame-level to video-
level, we aggregate the outputs of each DNN. For the labeling
DNN, we simply use as features the relative frequency of the
prediction of each class (i.e., the argmax of the output vector of
each frame). For the segmentation DNN, instead, we aggregate the
features by computing the relative frequency of the worst-case
(i.e., maximum) predicted classes inside each frame. This distinc-
tion between the two DNNs is needed since the segmentation
DNN does not produce a single prediction but, instead, it produces
a mask for the frame taken in input. Moreover, we add to the
feature vector also the minimum and the maximum prediction
made by the two DNNs.

The resulting feature vector is thus composed by 12 features:
l0, l1, l2, l3, lmin, lmax, s0, s1, s2, s3, smin, smax where: li, i = 0, 1, 2, 3,
represents the relative frequency of the prediction of the class i
made by the labeling DNN; lmin and lmax represent the minimum
and the maximum gravity level predicted by the labeling DNN; si,
i = 0, 1, 2, 3, represents the number of cases in which the class
i corresponds to the worst-case in the predictions made by the
segmentation DNN; smin and smax represent the minimum and the
maximum gravity level predicted by the segmentation DNN. Note
that, while lmin and lmax range in [0, 3], the segmentation DNN can
also detect the absence of LUS patterns (i.e. the pixel is assigned
a score of −1). For this reason, smin and smax range in [−1, 3].

2.3. Evolutionary settings

We use Grammatical Evolution (GE) [23] to evolve programs
that resemble DTs (i.e., they are based on an if-then-else struc-
ture). GE is an evolutionary algorithm that allows the evolution
of grammars, encoded in the Backus–Naur form. It makes use of
a genotype, which consists in a list of integers (called codons).
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Table 1
Grammar used to evolve the DTs. The symbol ‘‘|’’ denotes the possibility to
hoose between different symbols. When using the grammar to translate a
enotype into a phenotype, the rules are expanded in one of the possible choices
isted in their production, depending on the value of the genotype.
Rule Production

dt ⟨if ⟩
if if ⟨condition⟩ then ⟨output⟩ else ⟨output⟩
condition ⟨var⟩⟨op⟩⟨const⟩ | ⟨var⟩⟨op⟩⟨var⟩
var {inputi}; i ∈ [0, 12[
op < | > | ==

output 0 | 1 | 2 | 3 | ⟨if ⟩
const [0, 1] with step 10−2

Table 2
Parameters used for the grammatical evolution algorithm.
Parameter Value

Pop size 1000
Generations 1000
Genotype length 50
Crossover probability 0.8
Mutation probability 1
Crossover One-point
Mutation Uniform with pcodon = 0.05
Selection Best

When the genotype has to be evaluated, it makes use of a trans-
lator, which allows to convert the grammar to the corresponding
phenotype. The grammar we employ is shown in Table 1.

We consider two GE settings, namely: (1) a single-objective
ne, in which we optimize either the video-level MSE, the exam-
evel MSE, or the prognostic-level agreement (see Section 2.3.1
or details on the three metrics); and (2) a multi-objective one, in
hich we optimize simultaneously all the three objectives stated
reviously.
The pseudo-code of the algorithm is shown in Algorithm 1.

he algorithm consists in an initialization step (Line 1) followed
y an evolutionary loop (Lines 4–10). The evolutionary loop starts
ith the evaluation of the population (Line 4), followed by the
eplacement of the individuals in the population (Line 5). Then,
e performs the usual evolutionary steps, i.e., selection (Line 6),
rossover (Line 7), and mutation (Line 8).
We should note that the GE algorithm we use here has some

ifferences with respect to the original one described in [23].
irst of all, we do not make use of a variable-length genotype
ut, instead, we fix its length (as shown in Table 2). Fixing the
ength of the genotype to small values constrain the resulting DTs

Algorithm 1: Evolutionary process for the optimization of
Ts
Input: sp: the size of the population
Input: g: the number of generations
Result: pop: The final population

1 pop← create_population(sp);
2 old_pop← [];
3 for i = 0; i < g; i++ do
4 fitnesses← evaluate(pop);
5 pop← replacement(pop, old_pop, fitnesses);
6 parents← select(pop, fitnesses);
7 offspring ← crossover(parents);
8 offspring ← mutation(offspring);
9 old_pop← pop;

10 pop← offspring;
11 end
12 return pop;
s

5

to be small and, thus, more interpretable than the ones we can
obtain by having longer genotypes. Moreover, instead of using
the genetic operators described in [23], we use traditional oper-
ators for genetic algorithms. The reason underlying this choice is
due to the fact that, from preliminary experiments, the original
operators seem to achieve worse performance than traditional
genetic operators. For this reason, we employ standard operators,
described below.

We make use of the replacement operator (Line 5) described
in [24], which replaces a parent from the population only if there
is an offspring that outperforms it. In case there are two offspring
whose performance are better than only one of the two parents,
then the best offspring replaces the worst parent.

Moreover, we use of two different parent-selection opera-
tors (for Line 6), depending on whether we are working in the
single-objective or multi-objective setting. In the single-objective
setting, we use the ‘‘best-wise’’ selection operator, i.e., a selection
operator that reorders the population by descending fitness such
that, when performing crossover, the (2i)th best mates with the
(2i + 1)th best. Conversely, in the multi-objective setting, the
selection operator we use is the NSGA-II [25] operator, which
proved to work very well for multi-objective problems.1

The crossover operator (Line 7), instead, is the one-point
crossover, which produces two offspring from two parents by
splitting their genotypes in a randomly chosen point and mixing
the corresponding sub-strings obtained from the two parents.

While mutating a solution (Line 8), we employ a uniform
mutation, which mutates each codon of the genotype according
to a given probability pcodon. Its new value is sampled randomly
from the possible values.

The parameters we use are presented in Table 2. The parame-
ters shown in the table were obtained by manual tuning.

2.3.1. Fitness evaluation
The fitness evaluation phase works as follows. For each train-

ing fold, we feed the features of each video to the DT and record
its predictions. Then, we compute the following metrics of inter-
est:

1. Video-level MSE (to be minimized):

1
Nvideos

Nvideos∑
i=1

(yv
i − ŷv

i )
2
; (1)

2. Exam-level MSE (to be minimized):

1
Nexams

Nexams∑
j=1

(yej − ŷej )
2
; (2)

3. Prognostic-level agreement (to be maximized):

1
Nexams

Nexams∑
j=1

I(ypj = ŷpj )
2
; (3)

where: yv
i is the ground truth for the video i; yej =

∑14
i=1 y

v
j,i is the

ground truth for exam j, i.e., the sum of the scores of each video
f the exam; ypj = I(yej > 24) is the ground truth for the prognosis

1 Since the most ‘‘important’’ metric is the prognostic-level agreement, an
ttentive reader may point out that using Pareto optimization may not be the
deal choice in this case. However, we cannot use a lexicographic selection, since
his would require specifying a preference also between the exam- and the video-
evel MSE while, in this case, we do not have a clear preference. Moreover, using
weighted sum of the three objectives is also not feasible, since this would

equire assigning a specific weight to each of the three objectives. For these
easons, we optimize the objectives using Pareto optimization and, then, we
elect the best solution according to the prognostic-level agreement.
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; I is the indicator function, i.e., it outputs 1 if the argument is
rue, otherwise 0. The notation ŷab refers to the output of the DT
iven the output b in setting a, i.e., it is the approximation made
y the DT of the variable yab.
The pseudo-code for the fitness evaluation function (in the

ost general case, i.e., multi-objective) is shown in Algorithm 2.
n the pseudo-code, a lowercase bold variable represents a vector,
hile an uppercase bold variable represents a matrix. Otherwise
he variable is assumed to be scalar.

The reason underlying the optimization of different metrics is
he following. Our overall goal is to maximize the agreement for
ll the three metrics, as done in [22]. However, as we discussed
arlier optimizing the video- and exam-level agreement requires
lso a specification of the tolerances to use for the computation
f the agreement (e.g., in [22], the authors compute the exam-
evel agreement with a tolerance of 2, 5, and 10 points). Instead,
y optimizing the MSE for these two metrics (Lines 6–7 of Algo-
ithm 2) allows us to evolve DTs that minimize the distance of
he predictions from the ground truth, no matter the threshold.
inally, for the prognostic-level agreement, we cannot use the
SE because this variable is not a score but, instead, it is a
inary variable. So, in this case, using the MSE does not give any
dvantage over directly optimizing the agreement (Line 8).
Then, for each metric, we use as fitness the worst value ob-

ained on the 4 folds used for training (Lines 11–13).
While the single-objective fitness corresponds to a scalar value

hat consists in the value of a single metric, in the multi-objective
etting it is composed of a list of three values, i.e., the video-level
SE, the exam-level MSE, and the prognostic-level agreement.

Algorithm 2: Fitness evaluation function (multi-objective
case)

Input: T : the DT to evaluate
Input: X1,X2,X3,X4: input features of each fold
Input: v1, v2, v3, v4: video-level ground truth
Input: e1, e2, e3, e4: exam-level ground truth
Input: p1, p2, p3, p4: prognostic-level ground truth
Result: f : a list of fitnesses

1 num_folds← 4 // Number of folds used for the
training

2 ev ← [];
3 ee ← [];
4 ap ← [];
// Iterate over the folds

5 for (i = 0; i < num_folds; i++) do
// For each fold, compute the metrics and

concatenate
6 ev ← concatenate(ev, [video_mse(T ,Xi, vi)])

// Eq. (1)
7 ee ← concatenate(ee, [exam_mse(T ,Xi, ei)])

// Eq. (2)
8 ap ← concatenate(ap, [prognostic_agreement(T ,Xi, pi)])

// Eq. (3)
9 end
// Assign the worst-case to each metric

10 f ← [];
11 f [0] ← max(ev);
12 f [1] ← max(ee);
13 f [2] ← min(ap);
14 return f ;

3. Results

We perform 10 independent runs for the proposed method
n each of the four settings: single-objective, video-level MSE;
6

Table 3
Descriptive statistics of the video-level agreement on all the folds. ‘‘Th’’ stands
for the video-level threshold (i.e., the tolerance) used for the evaluation of the
results.
Method Th Min Mean Std Med Max

JASA L 0 44.70 50.40 4.28 50.68 57.38
1 82.74 85.87 2.49 85.91 89.76

JASA L+S 0 42.35 50.10 5.48 51.43 56.67
1 82.74 85.87 2.43 85.36 89.29

Video 0 42.75 46.08 2.41 46.07 49.88
1 88.63 92.40 2.14 93.41 94.52

Exam 0 42.35 47.82 4.74 46.14 54.29
1 80.78 84.42 3.00 85.91 87.86

Prognostic 0 41.18 48.21 4.46 50.68 52.62
1 79.61 83.71 2.79 85.48 86.43

3 objectives 0 45.88 49.48 2.24 49.77 52.86
1 85.47 88.31 2.29 87.84 92.14

single-objective, exam-level MSE; single-objective, prognostic-
level agreement; multi-objective. For each run, we test (on the
test fold) only the best evolved DT, i.e., for the single-objective
runs it is the individual with the best fitness, while for the multi-
objective runs it is the one with the maximum prognostic-level
agreement (i.e., the most important metric).

Tables 3, 5, 7 show the descriptive statistics computed on the
agreement (%) (with the physicians opinion) computed across all
the 5 folds. Bold values represent the best score across all the
methods. We compute the statistics on all the 5 folds for the
following reason. Since this work is meant to work in a medical
scenario, we are not really interested in knowing the training
and the test agreements as such. Instead, we are interested in
knowing the worst-case scenario and, to compute it, we need
to compute the statistic on all the 5 folds. Note that, for each
fold, we compute the three agreement scores on that fold and
then we use these scores to compute the statistics across folds. In
the tables, ‘‘Video’’, ‘‘Exam’’, ‘‘Prognostic’’ and ‘‘3 objectives’’ refer
to, respectively, our method evolved on video, exam, prognostic
and three objectives. In the same tables, we also report the
state-of-the-art results presented in [22] listed as ‘‘JASA L’’ and
‘‘JASA L+S’’, which refer to, respectively, the approach using only
he labeling DNN, and the one using both the labeling and the
egmentation DNNs. Note that we do not use the results shown
n [22] but rather we evaluate them on the same folds used for
he DTs, to guarantee a uniform evaluation of all the methods.

Finally, it should be considered that even if we use MSE as
he metric for the first two objectives, we are still interested in
valuating the agreement with the physicians. For this reason, we
o not show the MSE in the tables, but the agreement at video-
nd exam-level. This allows us also to use the same thresholds as
n [22], keeping a consistency on the method used for evaluating
uch models.
Analyzing the results obtained in the single-objective setting,

e observe that, for each metric, the model that achieves the
aximum performance (especially for higher thresholds) is the
ne that has been specifically evolved for that metric. On the
ther hand, we observe that the model evolved on three objec-
ives in some cases has a smaller minimum/mean agreement than
hat of the model specifically evolved on each metric. However, it
s never smaller than the minimum/mean agreement of the other
wo models evolved on the other metrics. This suggests that the
odel evolved by means of multi-objective optimization has a
ood trade-off between the three objectives.
Surprisingly, we observe that in some cases the performance

f the DTs evolved in the multi-objective setting (i.e., the ones
volved on the three objectives simultaneously) exceeds even the
erformance of the best DTs found in the single-objective setting.
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Fig. 5. Best DT evolved on the video-level MSE.
Table 4
Statistical comparison of the different approaches on the video-level agreement. ‘‘+’’ means ‘‘statistically better’’,
‘‘=’’ means ‘‘statistically equivalent’’, and ‘‘–’’ means ‘‘statistically worse’’ (Welch T-test, α = 0.05).
Method Th JASA L JASA L+S Video Exam Prognostic 3 objectives

JASA L 0 = = = = = =

1 = = – = = =

JASA L+S 0 = = = = = =

1 = = – = = =

Video 0 = = = = = –
1 + + = + + +

Exam 0 = = = = = =

1 = = – = = =

Prognostic 0 = = = = = =

1 = = – = = –

3 objectives 0 = = + = = =

1 = = – = + =
Table 5
Descriptive statistics of the exam-level agreement on all the folds. ‘‘Th’’ stands
for the exam-level threshold (i.e., the tolerance) used for the evaluation of the
results.
Method Th Min Mean Std Med Max

JASA L
2 21.05 32.30 6.75 32.26 41.94
5 45.00 56.95 9.43 57.90 70.97
10 80.00 89.44 6.44 89.47 100.00

JASA L+S
2 21.05 30.97 7.58 35.00 38.71
5 45.16 59.44 13.23 52.63 80.64
10 80.00 84.58 6.27 81.25 96.77

Video
2 21.05 29.65 8.41 25.81 45.16
5 40.00 57.75 12.14 63.16 70.97
10 80.00 85.85 4.47 84.38 93.55

Exam
2 25.00 31.90 7.89 29.03 46.88
5 61.29 64.27 3.28 63.16 70.00
10 73.68 88.01 7.62 90.32 95.00

Prognostic
2 26.32 30.38 3.77 29.03 37.50
5 45.00 58.50 8.81 59.38 67.74
10 78.95 87.06 4.96 87.50 93.55

3 objectives
2 21.05 36.36 9.68 38.71 46.88
5 45.00 63.98 11.35 62.50 77.42
10 85.00 91.51 5.34 90.32 100.00

This suggests that optimizing for all the metrics simultaneously
can keep a ‘‘consistency’’ between the different metrics and al-
lows the DT to learn better strategies for classifying the samples.
7

In fact, we find that the DTs evolved on single objectives do not
generalize well to the other objectives. Instead, the DT evolved
in the multi-objective setting is able to keep a good trade-off
between the objectives.

In Tables 4, 6 and 8 show the results of a statistical comparison
performed with a Welch T-test with confidence level α = 0.05.
The ‘‘+’’, ‘‘=’’, and ‘‘−’’ in the tables indicate respectively statis-
tically better, equal or worse performance of the method on the
row w.r.t. the method on the column. We observe that we can
reject the null hypotheses (i.e., that the samples come from the
same distribution) in just a few cases, namely:

• the DT evolved on the video-level MSE outperforms all the
other approaches in the setting with threshold 1;
• the DT evolved with the multi-objective approach outper-

forms the other approaches in three cases.

In all the other case, the methods result statistically equivalent.
However, we should note that this lack of statistical significance
is likely due to the small number of folds (i.e., samples for the T-
test), even though this has been manually tuned to balance fold
size (to reduce overfitting and assess better the generalization
capabilities) and number of folds.

Finally, compared with the two methods described in [22]
we observe that while the DTs evolved in the multi-objective
setting have a comparable (usually better) minimum agreement
than that of JASA L and JASA L+S, they perform substantially
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Table 6
Statistical comparison of the different approaches on the exam-level agreement. ‘‘+’’ means ‘‘statistically better’’,
‘‘=’’ means ‘‘statistically equivalent’’, and ‘‘–’’ means ‘‘statistically worse’’ (Welch T-test, α = 0.05).
Method Th JASA L JASA L+S Video Exam Prognostic 3 objectives

JASA L
2 = = = = = =

5 = = = = = =

10 = = = = = =

JASA L+S
2 = = = = = =

5 = = = = = =

10 = = = = = –

Video
2 = = = = = =

5 = = = = = =

10 = = = = = =

Exam
2 = = = = = =

5 = = = = = =

10 = = = = = =

Prognostic
2 = = = = = =

5 = = = = = =

10 = = = = = =

3 objectives
2 = = = = = =

5 = = = = = =

10 = + = = = =
Table 7
Descriptive statistics of the prognostic-level agreement on all the folds. ‘‘Th’’
stands for the (prognostic) threshold used for the evaluation of the results.
Method Th Min Mean Std Med Max

JASA L 24 63.13 78.12 7.96 80.64 85.00
JASA L+S 24 57.90 76.78 12.01 83.87 90.00
Video 24 57.89 79.63 11.68 85.00 90.32
Exam 24 61.29 76.25 12.76 77.42 95.00
Prognostic 24 73.68 81.89 5.27 81.25 90.00
3 objectives 24 68.42 82.11 7.51 84.38 90.00

better when considering the mean agreement computed on the
folds. Also in this case, due to the small number of folds, we can
statistically confirm only the increase in performance w.r.t. JASA
L+S in the exam-level mean agreement when using a threshold
of 10.

4. Analysis of the decision trees

In this section, we show the best evolved DTs in each setting
and interpret them to understand the relationships they captured
on the predictions made by the DNNs. We consider as ‘‘best
DT’’ the trees that satisfy the following properties (over the best
solutions obtained in the 10 runs). For the setup considering only
the video-level MSE, the best tree is the one that obtains the
smallest MSE. When we only consider exam-level MSE, the best
tree is the tree that achieves the smallest exam-level MSE. When
we consider only the prognostic-level agreement, the best tree
is the one with the highest prognostic-level agreement. Finally,
when we consider all the objectives simultaneously, the best tree
is the one that achieves the best prognostic-level agreement. In
this case, if there are ties between two solutions, we choose the
one that has the best trade-off between video- and exam-level
MSE. In all the cases, the conditions of the DT are numbered as
when doing a pre-order traversal of the DT.

4.1. Decision tree evolved on the video-level MSE

Fig. 5 shows the best DT obtained in this setting. While this DT
performs worse than JASA L and JASA L+S when no tolerance is
given to the prediction, it outperforms them significantly when
a threshold of 1 is allowed. For this reason, we will interpret it
considering that each prediction ŷ must be considered as a value

ˆ ˆ
ranging in [y− 1, y+ 1] (constraining the values in [0, 3]).

8

This DT checks very few things about the predictions made by
the two DNNs. In fact, in the first split (lmax > smax) it captures a
very simple pattern: when the maximum class of risk predicted
by the labeling DNN is greater than the maximum risk class pre-
dicted by the segmentation DNN, then it assigns the video a risk
varying in [0, 2], i.e., it excludes the class 3. On the other hand,
when the root condition is false, it checks whether the fraction of
frames classified as maximum risk (by the labeling DNN) is bigger
than the fraction of predictions made by the segmentation DNN
in which the highest score is 2 (s2 < l3). If so, it assigns the video
a score varying in [2, 3], i.e., high risk. Basically, this condition
checks whether the video refers to a high-risk patient. In fact, the
condition can be interpreted as:

If the ratio of samples classified as maximum risk by the labeling
DNN is bigger than the ratio of samples classified as risk 2 by the
segmentation DNN, then give the priority to the labeling DNN and
assign the maximum score to the video.

To confirm this hypothesis, in Fig. 6(c) we plot the histogram of
the number of videos assigned to each class that fall in the case
explained above (note that in the other sub-figures of Fig. 6 we do
the same for all the other conditions in the DT). We observe that
the number of videos belonging to class 3 is significantly higher
w.r.t. the other classes. Finally, in the third condition (l2 < 0.15)
the DT makes an extremely simple check:

If the ratio of frame labeled with class 2 is low (i.e., under a
threshold of 0.15), then probably the number of frames assigned
to class 3 will be even lower, so assign a score ranging in [0, 2]
to the video. Otherwise, there is a high chance that the severity
score is higher than 0, so assign a score ranging in [1, 3] to the
video.

From this DT, we infer that the labeling DNN may be ‘‘biased’’
towards high scores. The DT is then evolved to make use of the
output of the segmentation DNN in order to reduce this bias.

4.2. Decision tree evolved on the exam-level MSE

This DT (shown in Fig. 7) achieves a better worst-case agree-
ment with low thresholds (2 and 5). However, in this case (and
the following ones), we cannot use the threshold as a tolerance
value to be used on the output value of the DT. This is due to the
fact that, in this case, the DT outputs the gravity for each video,

but the tolerance is expressed at the exam level.
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Table 8
Statistical comparison of the different approaches on the prognostic-level agreement. ‘‘+’’ means ‘‘statistically better’’,
‘‘=’’ means ‘‘statistically equivalent’’, and ‘‘–’’ means ‘‘statistically worse’’ (Welch T-test, α = 0.05).
Method Th JASA L JASA L+S Video Exam Prognostic 3 objectives

L 24 = = = = = =

L+S 24 = = = = = =

Video 24 = = = = = =

Exam 24 = = = = = =

Prognostic 24 = = = = = =

3 objectives 24 = = = = = =
Fig. 6. Class histograms for each of the branches of the DT shown in Fig. 5. Note that the nodes are counted as in a pre-order traversal of the DT.
w
(
i
i

o

The first condition of this DT (l0 < 0.72) checks that the sever-
ty of the patient is high, by ensuring that the fraction of frames
abeled as minimum risk is lower than an evolved threshold. If
o, it then assesses the severity of the conditions by using the
egmentation DNN, checking if the fraction of frames that are
lassified as maximum risk is more than the half (s3 > 0.51).
If so, it assigns the maximum risk to the video.

If the first condition is false, then the DT performs additional
checks. In fact, the right part of the DT is basically a decision list,
i.e., an extremely unbalanced DT, which isolates one particular
case at each split. While the first condition on the right (s2 > lmax)
may make no sense at a first sight, it is a simple trick that the
DT uses to perform an and between two conditions. In fact, we
know that s2 ∈ [0, 1] and lmax ∈ {0, 1, 2, 3}. This means that the
condition s2 > lmax evaluates to true only in case s2 > 0 and
max = 0.

The second case isolated by the decision list checks for a
articular case (s = l ). By analyzing the training set, we observe
1 3 m

9

that this case only happens when s1 = l3 = 0. Moreover, in these
cases s1 and l3 are the only variables that are always equal to
zero. While this may seem a remote possibility, we found that
this condition (conjoined with the conditions that are evaluated
before it) evaluates to true for about a quarter of the samples in
the training set. Hence, this condition exploits a bias of the two
DNNs to detect cases in which the severity is likely to be low (45%
of the cases with score 0, 31% of the cases with score 1, 17% with
score 2, 7% with score 3).

The third condition on the right branch (smin = 0) checks
hether the patient has at least one frame with minimum risk
i.e., 0, opposed to a case in which no damaged tissue is detected,
.e., −1) by checking the outputs of the segmentation DNN. If so,
t assigns the class 2 to the video.

Finally, the last condition (s0 > 0.37) checks the number
f frames with minimum risk (detected by the segmentation
odel): if they consist of more than the 37% of the frames in the
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Fig. 7. Best DT evolved on the exam-level MSE.
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ideo, the risk assigned to the video is very high (3), otherwise it
s assigned a lower score (1).

It is important to note that the video-level predictions per-
ormed by this model aim to reduce the worst-case exam-level
SE w.r.t. the physicians’ judgment.
Also in this case, for the sake of completeness we report in

ig. 8 the distribution of classes for each condition in the DT.

.3. Decision tree evolved on the prognostic-level agreement

This DT (shown in Fig. 9) achieves the best worst-case
rognostic-level agreement among all the best evolved DTs (in
his case, evolved with the single threshold value, 24).

In the root condition (l3 < s1), this DT checks whether the
onfidence given to class 3 from the labeling DNN is smaller than
he confidence given to class 1 by the segmentation DNN. This,
ntuitively, tries to filter out the cases where the probability of
aving the maximum risk is high. In fact, as shown in Fig. 10(a),
he ratio of samples belonging to class 3 is not so high in this case
12.5%), see the other sub-figures in Fig. 10 for the distributions
f classes corresponding to the other conditions in the DT.
The second condition (i.e., the left branch of the root, l0 >

.75) naturally follows the first one: given that, as shown in
ig. 10(a), the distribution of the classes is skewed towards class
, is there a way to filter out the samples belonging to class
? While this condition does not filter perfectly the samples
elonging to class 2, it is able to filter 67.9% of them (as shown
n Figs. 10(c) and 10(d)).

The third condition (lmax = lmin) seeks for cases in which the
aximum class and the minimum class predicted by the labeling
NN are equal. Of course, this condition is way more likely to
appen in low-risk frames, as confirmed by Fig. 10(e). However,
10
s we can see from Fig. 10(f), not all the samples with low risk
re filtered out by this condition.
For this reason, the purpose of the fourth condition (s3 < s0)

s to separate the low-risk cases from the higher-risk ones. In
act, what it does is simply checking the predictions made by
he segmentation DNN: if the ratio of samples assigned to class
is higher than the ratio of samples assigned to class 3, then it
redicts 0, otherwise 2.
Note that this DT has been optimized to maximize the

rognostic-level agreement. This explains why, in some cases, the
utputs are not coherent with what a human expects when trying
o predict the label for each video. In fact, we hypothesize that
hese counter-intuitive tests aim to soften the contributions of
ach video to the prognostic score. This can be seen in the fact
hat predictions for the class 3 never appear in this DT, and also
hat the predictions for class 1 are not frequent (even when they
ould minimize the video-level MSE, which is not taken into
ccount when optimizing this DT).

.4. Decision tree evolved on three objectives

This DT (shown in Fig. 11) has comparable, but often better,
erformance with respect to all the other DTs evolved in the
ther settings. One interesting feature of this DT is that it uses
he labeling DNN to make coarse-grained decisions, that are then
efined by using the segmentation DNN.

In the first condition (l3 > l0), this DT simply checks the
utputs coming from the labeling DNN to address the gravity of
he conditions. Surprisingly, only checking if the ratio of samples
ssigned to risk 3 is higher than the ratio of samples assigned to
isk 0 is enough to discriminate very well the high-risk cases, as
hown in Fig. 12(a) (see the other sub-figures in Fig. 12 for the
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Fig. 8. Class histograms for each of the branches of the DT shown in Fig. 7. Note that the nodes are counted as in a pre-order traversal of the DT.

Fig. 9. Best DT evolved on the prognostic-level agreement.

11
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Fig. 10. Class histograms for each of the branches of the DT shown in Fig. 9. Note that the nodes are counted as in a pre-order traversal of the DT.
istributions of classes corresponding to the other conditions in
he DT).

In the second condition (l2 > 0.07), the DT checks the ratio of
abels assigned to class 2 by the labeling DNN. If they are more
han 7%, then it makes a simple refinement using the segmenta-
ion DNN: if the segmentation DNN classifies all the samples as
lass 3 (s3 = 1), then it assigns the video the maximum score,
therwise it assigns the video a score of 2.
If the second condition evaluates to false, then the DT checks

hether lmax < 0.97. Since lmax is an integer, this corresponds to
hecking whether lmax = 0. If so, again, the DT makes use of the
segmentation DNN to refine the decision: if the ratio of samples
12
assigned to class 3 by the segmentation DNN is more than the
60% (s3 > 0.60), then it assigns the video a score of 2. Otherwise,
the gravity of the condition is not high enough, so it assigns a
score 0 to the video. This condition handles a bias of the labeling
DNN, that happens when this DNN classifies all the frames with a
severity of 0, but, instead, their actual score is very different from
0.

Finally, if lmax > 0.97, it uses a similar check (s3 > 0.59) to
assign the samples either to class 0 or 1. Surprisingly, when s3 is
greater than 59%, the DT assigns the sample to class 0 while, as
we can see from Fig. 12(k), assigning it a value equal to 1 would
reduce the video-level MSE. However, this reasoning applies to
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Fig. 11. Best DT evolved on the three objectives.
y

he video-level predictions, but it may affect negatively the other
wo metrics. On the other hand, when s3 ≤ 0.59, we observe
hat the probability for class 3 is quite low, so the DT classifies
he sample as belonging to class 1, probably to minimize the
ideo-level MSE.

. Conclusions

The use of LUS techniques to monitor the state of the lungs
n COVID-19 patients is spreading, due to its numerous advan-
ages compared to other techniques. Moreover, with COVID-19,
he need for an automatic diagnosis emerged. For this purpose,
everal approaches have been proposed to perform automatic
OVID-19 patients’ evaluation from LUS images [17–20]. A pre-
ious approach [22] proposed a combination of two DNNs to
ncrease the overall performance. This approach used an empiric
hreshold-based approach that, while performing well, did not
ive any insight on the biases of the DNNs used as input.
In recent years, a new need has emerged at the intersection

etween AI and healthcare: the need for interpretability [26].
n fact, especially in this domain, the users (in this case, the
hysicians) usually do not trust decisions suggested by a black
ox model (such as one base on DDNs). Instead, they want to
e able to understand each decision made by the model, to
nsure its correctness. Interpretable AI allows to have data-driven
odels that are inherently understandable and ‘‘simulatable’’ by
umans, thus ensuring that a physician can actually understand
he decisions made by the model.

In this work, we use two previously proposed DNNs as feature
extractors, and then we use a DT for combining the two pre-
dictions. We use both single- and multi-objective evolutionary
optimization to evolve the DT that takes in input the predictions
made by the two DNNs aggregated at the video-level (i.e., a
collection of frames). When evaluating our approach on three
different levels of agreement with the physicians’ judgment, we
13
find that the multi-objective optimization approach leads to DTs
that, in general, perform in most cases comparably or better than
the DTs evolved on single objectives. Moreover, our approach
appears to perform better (in terms of descriptive statistics) than
the approach presented in [22], even though, due to the small
number of samples used for the comparison, we were able to
quantify the statistical significance of the results only in a small
number of cases.

This aspect, i.e., the fact that the limited number of samples,
in some cases, does not allow a statistically significant compar-
ison w.r.t. the baseline algorithm from [22], represents one of
the main limitations of the current work. Another limitation of
this study is that the DTs use orthogonal conditions (i.e., they
compare a variable with a constant), or conditions that compare
one variable to another variable. Since there are more expressive
types of conditions (e.g., oblique conditions), better results may
be achievable through the use of different types of conditions.
Moreover, considering more complex conditions to describe the
relationship between more than two variables may lead to better
insights about the biases of the DNNs.

In the light of these limitations, future research directions
will be aimed at collecting more data, in order to increase the
size of the dataset, and evolving DTs by using different types of
conditions, including oblique ones.

Finally, we highlight that we make our data publicly available
for further development and reproducibility.2 Moreover, in a
separate repository3 we release the scripts used to produce the
results shown in this paper.

2 https://drive.google.com/drive/folders/1Or4dF2fAM23H5fd_
xtq1vyAS8b7pL0s.
3 https://gitlab.com/leocus/neurosymbolic-covid19-scoring.

https://drive.google.com/drive/folders/1Or4dF2fAM23H5fd_yxtq1vyAS8b7pL0s?usp=sharing
https://drive.google.com/drive/folders/1Or4dF2fAM23H5fd_yxtq1vyAS8b7pL0s?usp=sharing
https://gitlab.com/leocus/neurosymbolic-covid19-scoring
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Fig. 12. Class histograms for each of the branches of the DT shown in Fig. 11. Note that the nodes are counted as in a pre-order traversal of the DT.
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