
RESEARCH ARTICLE National Science Review
9: nwac010, 2022

https://doi.org/10.1093/nsr/nwac010
Advance access publication 18 January 2022

PHYSICS

Experimental realization of non-Abelian permutations
in a three-state non-Hermitian system
Weiyuan Tang1, Kun Ding 2,∗ and Guancong Ma 1,∗

1Department of
Physics, Hong Kong
Baptist University,
Hong Kong, China and
2Department of
Physics, State Key
Laboratory of Surface
Physics, and Key
Laboratory of Micro
and Nano Photonic
Structures (Ministry of
Education), Fudan
University, Shanghai
200438, China

∗Corresponding
authors. E-mails:
kunding@fudan.edu.cn;
phgcma@hkbu.edu.hk

Received 22 June
2021; Revised 28
December 2021;
Accepted 29
December 2021

ABSTRACT
Eigenstates of a non-Hermitian system exist on complex Riemannian manifolds, with multiple sheets
connecting at branch cuts and exceptional points (EPs).These eigenstates can evolve across different
sheets—a process that naturally corresponds to state permutation. Here, we report the first experimental
realization of non-Abelian permutations in a three-state non-Hermitian system. Our approach relies on the
stroboscopic encircling of two different exceptional arcs (EAs), which are smooth trajectories of order-2
EPs appearing from the coalescence of two adjacent states.The non-Abelian characteristics are confirmed
by encircling the EAs in opposite sequences. A total of five non-trivial permutations are experimentally
realized, which together comprise a non-Abelian group. Our approach provides a reliable way of
investigating non-Abelian state permutations and the related exotic winding effects in non-Hermitian
systems.
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INTRODUCTION
Permutation is a process of both fundamental and
practical importance. For example, one way to
distinguish fermions from bosons is to consider the
exchange of the wave functions of two ormore iden-
tical particles. Permutations of multiple states can
emerge as the phenomenon ofmulti-state geometric
phases [1,2]. They are generally non-commutative
and can therefore be mapped to non-Abelian
groups. This perspective suggests the possibility
of emulating non-Abelian permutations by the
parallel transport of three ormore degenerate states.
However, despite notable attempts in the fields of
optics [3], cold atoms [4] and other topological
systems [5,6], its realization remains a considerable
experimental challenge, with the excitation and
manipulation of multiple degenerate but coupled
modes posing a major obstacle.

Recent advances in non-Hermitian physics
have sparked the development of many intriguing
applications related to optics and other classical
waves [7,8]. Although non-Hermitian systems can
be straightforwardly constructed from Hermitian
systems by the inclusion of loss and/or gain or
non-reciprocal hopping, they possess unique char-

acteristics that are not found in their Hermitian
counterparts. Perhaps the most notable distinc-
tion is that the eigenvalues are generally complex
numbers. This simple fact permits the existence of
multiple eigenvalue Riemann sheets connected at
branch cuts [9–11]. The endpoints of the branch
cuts are branch-point singularities known as ex-
ceptional points (EPs). Encircling an EP inevitably
crosses one or multiple branch cuts—a process that
causes the eigenstates to be exchanged and can even
produce fractionalwinding numbers [11–17].These
fascinating behaviors, which are useful for topo-
logical energy transfer [11] and asymmetric mode
switching [16] applications, have a topological
origin: a non-Hermitian system lives on a complex
Riemannian manifold that naturally permits state
permutations. Hence, non-Hermitian systems offer
a new vantage point for the study of state permuta-
tions. Recent theoretical investigations suggest that
the encircling of multiple order-2 EPs or higher-
order EPs is non-Abelian in character [13,18–21]
and can give rise to amyriad of exoticwinding effects
[16,22–25]. These findings are consistent with the
group theory point of view, as at least three degrees
of freedom are required for non-Abelian processes
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Figure 1. Operations comprising the D 3 group. (a) The five non-trivial operations of
the non-Abelian D 3 group depicted as symmetry operations on an equilateral trian-
gle. The μ1,, μ2 and μ3 operations flip the triangle about the mirror axis that goes
through Corners 1, 2 and 3, respectively. The ρ1 and ρ2 operations are the clockwise
and anticlockwise rotations of 2π/3 that permutate all three corners. (b) The ρ1 and ρ2

operations can be achieved by concatenating μ1 and μ3 in opposite sequences. The
non-Abelian nature is clearly seen as μ1 ◦ μ3 �= μ3 ◦ μ1.

to emerge. However, experimental confirmations of
these proposals are lacking.

In this work, we theoretically investigate and ex-
perimentally realize the non-Abelian permutations
of three states in a non-Hermitian system. By em-
bedding the system’s Riemannian manifolds in a
3D parameter space, two exceptional arcs (EAs),
smooth trajectories of order-2 EPs, are found. As we
will show, encircling them induces a unique permu-
tation of the eigenstates. Five distinct types of state
permutations are realized by encircling the EAs in-
dividually or sequentially. These five permutations,
together with an identity element, holistically form a
dihedral group of degree three, called the D3 group,
which can be used to describe the symmetry opera-
tions on an equilateral triangle, as shown in Fig. 1.
All five permutations in Fig. 1a and the equivalent
permutations in Fig. 1b are experimentally realized
via a stroboscopic approach [17,23,26–28] in acous-
tic experiments. We further show that the permuta-
tion operations are described by 3 × 3 unitary ma-
trices, also knownasU (3)non-AbelianBerry phases
(NABPs), which connect the three-state evolutions
on the system’s complex Riemannian manifold.

RESULTS
EAs in a three-state non-Hermitian
system
We begin with an exceptional nexus (EX) that
emerges in a three-state non-Hermitian Hamilto-
nian H = (ω0 + iγ0)I + HEP , where ω0 + iγ0
denotes the complex onsite energy and HEP deter-
mines the core physics and has the following form:

HEP (η, ζ, ξ) =

κ

⎡
⎢⎣

√
2 (i + η) 1 0

1 i ζ + ξ 1

0 1 −√
2 (i + η)

⎤
⎥⎦

+ i
√
2κ

⎛
⎝
g 0 0
0 0 0
0 0 −g

⎞
⎠ . (1)

HEP lives on a 3D parameter space spanned by
(η, ζ, ξ) ∈ R

3. There is also another parameter
g , which for the convenience of discussion is not
regarded as a separate dimension. Here, all coeffi-
cients are normalized by κ (where κ < 0), which is
the hopping coefficient between neighboring sites.
A ternary cavity system can be used to experimen-
tally realize the Hamiltonian in acoustics, as shown
in Fig. 2a. The second-order cavity mode is chosen
as the onsite resonancemode.The parameters η and
ξ represent detuning to onsite resonant frequencies,
while i ζ and i g are introduced as losses. Figure 2b
shows the three eigenmode profiles from a lower fre-
quency (State 1) to a higher frequency (State 3) in
the absence of non-Hermiticity. More details of the
experimental set-up are given in Section III of the
supplementary information.

When g = 0, an EX exists at (η, ζ, ξ) =
(0, 0, 0) , which is an order-3 EP that connects
to four EAs [23], each of which is a trajectory of
order-2 EPs formed by two of the three eigenstates
of Equation (1). These three eigenstates constitute
a Hilbert space, which can be figuratively referred to
as a fiber, at each parametric point (η, ξ, ζ ), thus
forming fiber bundles that stick to the base man-
ifold in the parameter space. The non-Hermiticity
of the system means that the three eigenvalue Rie-
mannian sheets connect at branch cuts, which natu-
rally allows the exchange of states by encircling the
EPs. Hence, each EA can be characterized by the
two surrounding eigenstates in the permutation. As
shown in Fig. 1, the permutationsμ1 andμ3 consti-
tute two generating operations of the D3 group and
the other elements of the D3 group can be gener-
ated by ordered operations of μ1 and μ3, i.e. ρ1 =
μ1 ◦ μ3,ρ2 = μ3 ◦ μ1 andμ2 = μ3 ◦ μ1 ◦ μ3.
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Figure 2. Three-state acoustic system and state permutations by encircling EAs. (a) The experimental set-up of the ternary
coupled acoustic cavities. (b) The simulated acoustic modes in the absence of non-Hermicity (η = ζ = ξ = g = 0).
(c) Two EAs (solid red curve) lie in a 3D parameter space spanned by ηζξ . The evolutions along the purple, green and
blue dashed loops produce the operations μ1, μ3 and μ2, respectively. (d–e) respectively show the eigenvalue Riemann
surfaces on the ζ ξ -plane at η = 0.33 (the light-green plane in c) and η = 0 (the light blue plane in (c)). The sur-
faces from the bottom to top correspond to States 1, 2 and 3 when non-Hermiticity is present. The red dots mark the in-
tersection with EA-α and EA-β . The thin black curves are branch cuts, while the purple, green and blue routes indicate
the evolutions of the eigenvalues along μ1, μ3 and μ2, respectively. All eigenvalues are normalized by the onsite reso-
nant frequency ω0 = 19 729 rad/s. The surface hues in (d–e) are for aesthetic purposes only and do not convey physical
information.

The identity element is not of interest here, since it
generates no changes. The issue of how to realize
two EAs that possess theμ1 andμ3 types of permu-
tation is therefore crucial for the demonstration of
non-Abelian permutations.

In order to achieve this, we introduce the second
term in Equation (1). When g �= 0, the EX splits
into two order-2 EPs in the ζ ξ plane at η = 0. In
this way, the four EAs converging at the EX become
a pair of smooth EAs. Figure 2c shows the two EAs,
denoted α and β , for g = 0.61. We note that the
way in which the EAs connect is dependent on the
sign of g (see Sections I and II of the supplemen-
tary information for details) andwe focus on the case
with positive values of g in the main text. This con-
figuration allows us to trace the evolution of states
around the EAs, making it suitable for analysing the

non-Abelian permutation of states that is the focus
of this work.

Two generating permutations
by encircling an EA
We first demonstrate two generating operations,μ1
andμ3, that exchange two of the three states. To fa-
cilitate thediscussion,weorder the eigenstatesbased
on the real parts of the eigenfrequencies at the start-
ing point of the loop. We set η = 0.33, which is
depicted as a light-green plane in Fig. 2c. The ζ ξ

plane intersects with both EAs at two EPs, as shown
by the red dots on the eigenvalue Riemann surface
(real part) in Fig. 2d. The purple loop encircles EA-
α, which is formed by the coalescence of States 2
and 3 at η = 0.33.Hence, one complete cyclemust
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Figure 3. Two-state permutations. The three types of two-state permutations are represented by the eigenvalue Riemann surfaces (real parts) in (a)
μ1, (d)μ3 and (g)μ2. The corresponding evolutions of the eigenvalues and the measured eigenfunctions are shown in (b, e, h) and (c, f, i), respectively.
In (b, e) and (h), the markers and lines show the experimental and theoretical results, respectively. The eigenvalues and eigenfunctions of States 1, 2
and 3 are labeled in blue, green and red, respectively. The Roman letters indicate the selected parametric points, which are also labeled in (a, d) and
(g) for better visualization of the encircling evolutions.

cross the branch cut once, resulting in the swapping
of the two states, and consequently the operation
μ1 : 123 → 132 is realized. Likewise, it is straight-
forward to see that μ3, which encloses EA-β , ex-
changes States 1 and 2, i.e.μ3 : 123 → 213.

These permutations are experimentally observed
via a stroboscopic approach. The parameters of the
acoustic system are tuned to the specific values de-
fined by the chosen loop. To achieve this, a Green’s
function method is used to determine the experi-
mental parameters at each parametric point from
the measured pressure response spectra (the details
of this process are presented in Sections IV and
IX of the supplementary information). The com-
plex eigenfrequencies are then obtained by using the
aboveparameters from theGreen’s functionmethod
and their real parts are plotted as the open circles in
Fig. 3b and e for μ1 and μ3, respectively. The solid
lines in the figure show the theoretical results and
their colors share the same notation as in Fig. 1.The
measured eigenvalues are schematically labeled on
the Riemann surfaces in Fig. 3a and d, which clearly
delineate the evolutions associated with μ1 and μ3.
The salient feature that two states exchange at the

branch cuts is clearly seen, and thus Fig. 3b and e
agree well with our expectation.

Next, the evolutions of eigenfunctions are also
obtained experimentally by measuring the acoustic
field profile in all three cavities (see Section V of the
supplementary information for details). The results
indeed show the swapping of eigenfunctions across
the branch cut where the real parts of the eigenval-
ues cross. In Fig. 3c and f, we plot the representative
eigenfunctions at five chosen points along the encir-
cling path and state exchanges are observed.The re-
sults shown inFig. 3c canbe taken as an example.We
see that at starting Point I, State 2 (shown in green)
has a large amplitude at Site A (the middle site). As
the system is driven along the μ1 path, the ampli-
tude at Site A gradually diminishes, while that at Site
C increases. At the last two points, State 2 at Point
IV smoothly connects to State 3 at Point V, as a di-
rect consequence of crossing the branch cut. Like-
wise, State 3 at Point IV (shown by the red lines)
connects to State 2 at PointV.Meanwhile, State 1 re-
mains almost unchanged throughout the evolution.
Upon the completion of one closed cycle, the final
outcome is the exchange of States 2 and 3.
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We further remark that as the parameters change,
the eigenfunctions of the three states also vary. It
is therefore crucial to correctly identify how the
eigenfunctions evolve along the parametric points,
especially in the vicinity of the branch cut where
the state exchange takes place. We examine the
inner products for all the neighboring states, i.e.
|〈ψ L

i,l+1|ψ R
j,l 〉|2, where |ψ R

j,l 〉 is the right eigenfunc-
tion of the j th state at the parametric point l and
〈ψ L

i,l+1| is the left eigenfunction of the i th state at
point l + 1, where i, j = 1, 2, 3.The two neigh-
boring eigenfunctions that yield an inner product
close to unity are connected by parallel transport
[29]. This procedure was performed for all states at
all the parametric points presented in our work.

The state permutation induced byμ1 can be cap-
tured by a U (3) NABP [1] (see Section VI of the
supplementary information for details). Using the
eigenvectors of HEP as a basis, the NABP forμ1 is:

U μ1 =
⎛
⎝
1 0 0
0 0 1
0 1 0

⎞
⎠ . (2)

From Equation (2), we can further obtain a multi-
band Berry phase as:


μ1 = −Im
[
ln

(
detU μ1

)] = −π. (3)

This phase factor can be observed as a π -phase dif-
ference between State 2 at Points I (shown in green)
and V (shown in red) in Fig. 3c. These results are
consistent with the knowledge that an order-2 EP
possesses a fractional winding number of 1/2 and
the fact that encircling the EP twice restores both
states with a Berry phase of π . Theμ3-induced state
permutation can also be seen by tracing the eigen-
function evolutions in Fig. 3f and its corresponding
NABP is:

U μ3 =
⎛
⎝
0 1 0
1 0 0
0 0 1

⎞
⎠ , (4)

which also yields a Berry phase of
μ3 = −π from
Equation (3). Although 
μ1 and 
μ3 are the same,
the two NABPs U μ1 and U μ3 are different and they
do not commute.

Non-Abelian permutations by
sequentially encircling two EAs
As shown in Fig. 1a, the D3 group has two elements
that describe three-state permutations, denoted as
ρ1 : 123 → 231 and ρ2 = 123 → 312. These can

be attained by concatenating μ1 and μ3 in differ-
ent orders, i.e. ρ1 = μ1 ◦ μ3 : 123 → 213 → 231
and ρ2 = μ3 ◦ μ1 : 123 → 132 → 312, as shown
in Fig. 1b. The permutation outcomes of ρ1 and ρ2
are clearly different and this is a manifestation of
the non-Abelian characteristics, i.e.μ3 ◦ μ1 �= μ1 ◦
μ3.

The three-state permutations are achieved by se-
quentially encircling both EA-α and EA-β . Without
loss of generality, we can anchor the two loops μ1
and μ3 at a common vantage point P η, ζ, ξ =
(0.33, 0, 0), as depicted by the black hexagon in
Fig. 2c.ThepointP is also the starting and end point
of the encircling. In Fig. 4a–c, theμ3 operation is ex-
ecuted first by encircling EA-β , which swaps States
1 and 2. The μ1 operation is then carried out by en-
circling EA-α, thus exchanging the new States 2 and
3. The net result is the swapping of all three states,
as defined by ρ1. The ρ2 operation is also experi-
mentally achieved by first encirclingα and thenβ , as
shown in Fig. 4d–f.The two experimental outcomes,
i.e. the mode profiles at the parametric Point VII in
Fig. 4c and f, are clearly distinct, thus unambiguously
validating the non-Abelian characteristics. Again, we
can summarize the three-statepermutationswith the
NABPs as:

U ρ1 = U μ1U μ3 =
⎛
⎝
0 1 0
0 0 1
1 0 0

⎞
⎠,

U ρ2 = U μ3U μ1 =
⎛
⎝
0 0 1
1 0 0
0 1 0

⎞
⎠. (5)

It is clear thatU ρ1 �= U ρ2 , although theBerry phases
in both cases are 
ρ1 = 
ρ2 = 0 [mod(2π)], as
can be identified from the mode profiles at the para-
metric Points I and VII in Fig. 4c and f. This veri-
fies the non-Abelian character by encircling different
types of EAs.

Multiple permutations of encircling EAs
We have already demonstrated four of the five
non-trivial permutations depicted in Fig. 1a. The
remaining operation is μ2 : 123 → 321, which
exchanges States 1 and 3. Following the rule used to
label the EAs, we would expect that EPs exist near
to the EX that correspond to the permutation μ2.
This can be attained by shifting the encircling loop
of EA-α to η = 0, as shown in Fig. 2c. At first sight,
it seems counterintuitive that μ2 can exist in our
system, since the hopping between Sites B and C is
zero in Equation (1). To see how μ2 emerges, we
first note that η represents onsite detuning in Sites B
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Figure 4. Three-state permutations and their non-Abelian characteristics. The two types of three-state permutations ρ1 and
ρ2 are represented by their eigenvalue Riemann surfaces (real parts) in (a and d), respectively. (b and c) respectively show
the measured evolutions of eigenvalues and eigenfunctions by encircling first EA-β and then EA-α, which corresponds to the
operation ρ1 = μ1 ◦ μ3. (e and f) The measured evolutions of the eigenvalues and eigenfunctions realize ρ2 = μ3 ◦ μ1.
The Roman letters indicate the selected parametric points, which are also labeled in (a and d) for better visualization of the
encircling evolutions.

and C, thus letting η cross zero causes the inversion
of the lowest and highest frequency modes (States
1 and 3). At η = 0, the two order-2 EPs (EP-α and
EP-β in Fig. 2e) are linked by a branch cut that is
parallel to the ζ axis, which connects the lowest and
highest frequency sheets. Hence, an evolution that
follows the blue loop in Fig. 2e exchanges States 1
and 3 and leaves State 2 unchanged, thus realizing
μ2.

The μ2 operation is also experimentally realized
using our acoustic system.The results for the eigen-
values and eigenfunctions are shown in Fig. 3h and
i, respectively, where the exchange of States 1 and
3 can clearly be seen. We have also computed the
corresponding NABP:

U μ2 =
⎛
⎝
0 0 1
0 1 0
1 0 0

⎞
⎠ , (6)

and 
μ2 = −π . We further remark that, as
an element in D3, μ2 = μ3 ◦ μ1 ◦ μ3 (or
μ2 = μ1 ◦ μ3 ◦ μ1). This indicates that the
permutation μ2 can be treated as the operation
of encircling the EAs multiple times in our non-
Hermitian system. To show this, we can shift the
position of the blue loop in Fig. 2c slightly to
η = 0.055, so that it transverses three different
branch cuts, with each traversal exchanging two
states. These results are presented in Section VII of
the supplementary information. Sinceμ2 completes
the D3 group here, all other operations that encircle
the EAs in Fig. 2c multiple times must be equivalent
to the single operation shown in Figs 3 and 4.

DISCUSSION AND CONCLUSION
A common practice for characterizing topologi-
cal manifolds is to consider equivalence classes of
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loops, in which winding numbers play a vital role.
Non-Hermitian topology can be characterized by
the eigenvalue winding number, sometimes called
the eigenvalue vorticity or discriminant number
[28,30,31], which is often considered to be suffi-
cient to reveal the topological structure of the com-
plex Riemann surfaces. However, our results show
that eigenvalues are not directly associatedwith state
permutations. Even the eigenvector winding num-
bers underlain by the Berry phase 
 do not con-
tain explicit information on state permutations. The
state permutations and their non-Abelian character-
istics aredisclosedeitherby tracing theparallel trans-
port of all three states or by computing the NABP
matrix. Hence, the EAs and their interactions con-
stitute the non-Hermitian counterparts of the knot
and link structures of nodal lines in Hermitian band
structures [19,20,32].

A question naturally arises as to how the winding
numbers relate to the non-Abelian permutations
demonstrated in this work. To illustrate this, we
recall that the two processes defined by ρ1 and
ρ2 yield identical Berry phases 
ρ1 = 
ρ2 = 0
[mod(2π)], which can be regarded as the same
eigenvector winding number. We have numerically
confirmed that the eigenvalue winding numbers for
ρ1 and ρ2 are also identical in these two cases and
are consistent with their Berry phases. As discussed
above, the evolutions ρ1 and ρ2 are equivalent to
performing both μ1 and μ3 in opposite orders.
However, the two concatenated loopsμ1 andμ3 are
equivalent to the larger loop encircling both EA-α
and EA-β (see Section VIII of the supplementary
information). When this loop is followed, three
complete cycles are needed to restore all three
states, which gives rise to a fractional winding
number of 2/3 [23,33]. In other words, one com-
plete parametric cycle following ρ1 and ρ2 does
not recover all the states. It follows that the states
after one cycle are dependent on the states at the
starting point.This is the reason for the non-Abelian
outcomes demonstrated in our work.

In summary, we have successfully demonstrated
that all the non-trivial operations comprising the
D3 group can be realized by encircling EAs in a
three-state non-Hermitian system. Our work builds
on recent developments in non-Hermitian physics
that have introduced a kaleidoscope of EP structures
with distinct topological characteristics. Experimen-
tally, our studies are based on the stroboscopic ap-
proach so that the non-adiabatic transitions typically
encountered in dynamic evolutions can be avoided
[16,34–36]. Our work and the methodology can be
extended to study knot and link structures formed
by different EAs [37–40]. The combined strength
of these theoretical developments and experimental

techniques in non-Hermitian physics, in conjunc-
tion with the rich arsenal of non-Abelian theories,
will opennewavenues to the discovery of exotic phe-
nomena and the development of rich applications in
a diversity of fields. For example, non-Abelian per-
mutations around multiple EAs provide additional
degrees of freedom to manipulate wave propaga-
tion [16] and on-chip energy transfer [11]. Relating
to our work are several recent studies proposing a
new class of anyonic-parity-time symmetric systems
[41,42] that can benefit applications such as lasers
[43]. On the other hand, the existence and evolu-
tions of multiple EPs in a multi-parameter phase
space give rise to rich opportunities of more sophis-
ticated usage of EPs, which may benefit applications
such as sensors [44,45], absorbers [46,47], scatter-
ing control [48], etc.
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26. Dembowski C, Gräf H-D and Harney HL et al. Experimental observation of the
topological structure of exceptional points. Phys Rev Lett 2001; 86: 787–90.
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