Cascade Testing for Hereditary Cancer Syndromes: Should We Move Toward Direct Relative Contact? A Systematic Review and Meta-Analysis

Melissa K. Frey, MD, MS¹; Muhammad Danyal Ahsan¹; Hannah Bergeron, BA¹; Jenny Lin, BA¹; Xuan Li, MD¹; Rana K. Fowlkes, MD¹; Priyanka Narayan, BA¹; Roni Nitecki, MD²; Jose Alejandro Rauh-Hain, MD²; Haley A. Moss, MD, MPH³; Becky Baltich Nelson, MS¹; Charlene Thomas, MS¹; Paul J. Christos, PhD, MS¹; Jada G. Hamilton, PhD, MPH⁴; Eloise Chapman-Davis, MD¹; Evelyn Cantillo, MD¹; Kevin Holcomb, MD¹; Allison W. Kurian, MD, MSc⁵; Steven Lipkin, MD, PhD¹; Kenneth Offit, MD, MPH⁴; and Ravi N. Sharaf, MD, MS¹

abstract

PURPOSE Evidence-based guidelines recommend cascade genetic counseling and testing for hereditary cancer syndromes, providing relatives the opportunity for early detection and prevention of cancer. The current standard is for patients to contact and encourage relatives (patient-mediated contact) to undergo counseling and testing. Direct relative contact by the medical team or testing laboratory has shown promise but is complicated by privacy laws and lack of infrastructure. We sought to compare outcomes associated with patient-mediated and direct relative contact for hereditary cancer cascade genetic counseling and testing in the first meta-analysis on this topic.

MATERIALS AND METHODS We conducted a systematic review and meta-analysis in accordance with Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines (PROSPERO No.: CRD42020134276). We searched key electronic databases to identify studies evaluating hereditary cancer cascade testing. Eligible trials were subjected to meta-analysis.

RESULTS Eighty-seven studies met inclusion criteria. Among relatives included in the meta-analysis, 48% (95% CI, 38 to 58) underwent cascade genetic counseling and 41% (95% CI, 34 to 48) cascade genetic testing. Compared with the patient-mediated approach, direct relative contact resulted in significantly higher uptake of genetic counseling for all relatives (63% [95% CI, 49 to 75] v 35% [95% CI, 24 to 48]) and genetic testing for first-degree relatives (62% [95% CI, 49 to 73] v 40% [95% CI, 32 to 48]). Methods of direct contact included telephone calls, letters, and e-mails; respective rates of genetic testing completion were 61% (95% CI, 51 to 70), 48% (95% CI, 37 to 59), and 48% (95% CI, 45 to 50).

CONCLUSION Most relatives at risk for hereditary cancer do not undergo cascade genetic counseling and testing, forgoing potentially life-saving medical interventions. Compared with patient-mediated contact, direct relative contact increased rates of cascade genetic counseling and testing, arguing for a shift in the care delivery paradigm, to be confirmed by randomized controlled trials.

J Clin Oncol 40:4129-4143. © 2022 by American Society of Clinical Oncology

INTRODUCTION

ASSOCIATED CONTENT Appendix

Author affiliations and support information (if applicable) appear at the end of this article.

Accepted on June 11, 2022 and published at ascopubs.org/journal/ jco on August 12, 2022: DOI https://doi. org/10.1200/JC0.22. 00303

Cascade genetic testing is the process of extending regenetic testing to the at-risk relatives of an individual will found to carry a germline pathogenic variant. In U families with a hereditary cancer syndrome, identifying asymptomatic carriers offers the opportunity so reduce cancer incidence, morbidity, and mortality variand is cost-effective.¹⁻¹⁰ The Centers for Disease are Control and Prevention Office of Public Health Genomics have designated cascade genetic testing as ut a tier one genomic application for hereditary breast et and ovarian cancers and Lynch syndrome.¹¹ Furur thermore, mathematical modeling suggests that the le combination of genetic testing at the time of cancer

diagnosis and cascade testing by 70% of at-risk relatives could identify all four million individuals with a cancer-associated pathogenic variant in the United States in less than a decade.¹² However, fewer than 20% of individuals with a hereditary cancer syndrome are aware of their underlying pathogenic variant.^{2,3,13,14} Furthermore, when pathogenic variants are identified, families face many barriers to completion of cascade testing, likely contributing to under-utilization of this critical service.¹⁵⁻²⁰ Finally, racial and ethnic minorities experience even more pronounced under-recognition of hereditary cancer syndromes,²¹⁻²⁵ leading the American Association for Cancer Research, the American Cancer Society, ASCO, and the National

Journal of Clinical Oncology[®]

CONTEXT

Key Objective

Does direct relative contact for hereditary cancer syndrome cascade testing improve rates of genetic counseling and testing as compared with the current standard of care, patient-mediated family contact?

Knowledge Generated

Currently, the majority of people with a hereditary cancer syndrome are not aware and, therefore, cannot use potentially lifesaving medical interventions. Our study found that, in families with hereditary cancer syndromes, direct relative contact by the medical team or testing laboratory resulted in higher uptake of genetic counseling and genetic testing among atrisk relatives compared with the patient-mediated approach.

Relevance

Currently, patients shoulder the responsibility of disseminating information on hereditary cancer syndromes among relatives, resulting in genetic counseling and testing by only about one third of at-risk relatives. Our findings demonstrate the power of direct relative contact, arguing for a shift in the care delivery paradigm, to be confirmed by randomized controlled trials.

Cancer Institute all to cite a critical need to improve genetic cancer risk assessment and testing for minority populations.²⁶

A growing body of literature suggests that health system-led direct contact of relatives is acceptable to clinicians and patients and more successful than patient-mediated contact.²⁷⁻³⁰ However, current Health Insurance Portability and Accountability Act privacy laws prohibit health care providers from disclosing genetic information to relatives. As a result, the affected patients must shoulder the burden for coordinating cascade testing for their families.³¹ This is often complicated by the difficulty in communicating complex health information, strained family relationships, and competing demands, as patients may also be coping with a new cancer diagnosis that prompted their genetic testing.³² Further complicating matters, health care systems, and health care policies have been largely oriented toward treatment of disease and not prevention. The primary objective of the current study was to conduct a systematic review and meta-analysis of the literature on the success of cascade genetic counseling and testing among all relatives for hereditary cancer syndromes via patientmediated and direct relative contact. Secondary aims were to explore rates of relative disclosure and the influence of sex, degree of relation, race, ethnicity, specific cancer syndrome, and insurance status on completion of cascade genetic counseling and testing. Although similar systematic reviews have been completed,²⁸⁻³⁰ to our knowledge, this study is the first meta-analysis.

MATERIALS AND METHODS

Overview

The current study was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines and was preregistered with PROSPERO (registration No.: CRD42020134276).³³ A comprehensive literature search was conducted on July 23, 2021, using the following bibliographic databases from inception: Ovid MEDLINE (In-Process and Other Non-Indexed Citations and Ovid MEDLINE 1946 to present), Ovid EMBASE (1974 to present), and Cochrane Library (Wiley). No article type, date, or language restrictions were included in the search. Search concepts included cascade screening, genetic counseling, and cancer. The full Ovid MEDLINE search strategy is available in Appendix Table A1 (online only).

Inclusion and Exclusion Criteria

Eligible manuscripts included all primary English language research studies with the objective of evaluating cascade genetic counseling and testing for hereditary cancer syndromes, including a focus on disclosure of results to relatives, completion of genetic counseling, and completion of genetic testing. Commentaries, systematic reviews, metaanalyses, and case reports were not included. Studies were evaluated to determine if cascade testing was patientmediated or via direct relative contact. See the Preferred Reporting Items for Systematic Reviews and Meta-Analyses flow diagram for a comprehensive review of reasons for publication exclusion (Fig 1).

Data Extraction

Manuscripts were independently evaluated by two reviewers, and disagreements were discussed with a third reviewer. Data were extracted by one reviewer and checked by two additional reviewers. Studies were coded according to a priori–specified characteristics, including study type, intervention, participant characteristics, and risk of bias.

Risk of Bias and Analytic Strategy

The Risk of Bias in Non-Randomized Studies of Interventions (ROBINS-I) was applied to assess the risk of bias for studies reporting on direct relative contact for cascade

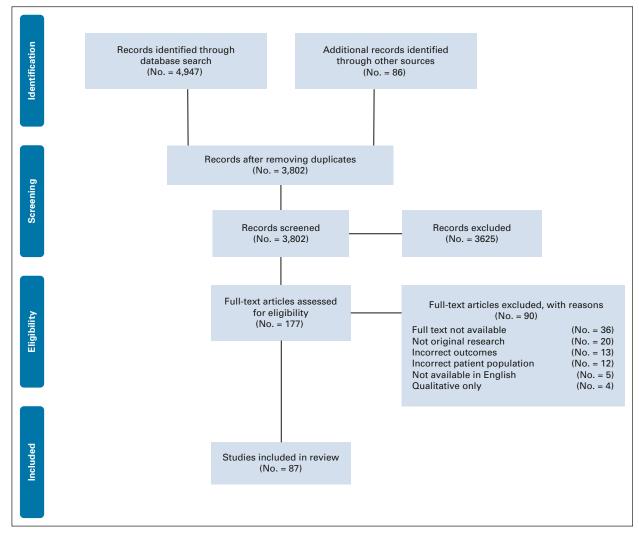


FIG 1. PRISMA flow diagram. PRISMA, Preferred Reporting Items for Systematic Reviews and Meta-Analyses.

testing.³⁴ The Joanna Briggs Institute Critical Appraisal Checklist for cohort studies and the Joanna Briggs Institute Critical Appraisal Checklist for analytical cross-sectional studies, as appropriate, were applied to studies reporting on proband-mediated contact of relatives to determine the extent to which studies addressed risk of bias in their design, conduct, and analysis.³⁵ All risk of bias and ratings assessments were independently assessed by two reviewers, and disagreements were discussed with a third reviewer.

Statistical Analysis

Meta-analyses for the proportion of at-risk relatives that completed genetic counseling and genetic testing were conducted using R software (Version 3.6.1[07/05/19], R Foundation for Statistical Computing, Vienna, Austria). Statistical heterogeneity was tested through the chi-square test (ie, Cochrane Q test), and a *P* value \leq .20 was used to indicate the presence of heterogeneity. Statistical heterogeneity was also assessed by the inconsistency statistic (I²). A random effects analysis was used to calculate pooled proportions and means. The random effects analysis is more conservative and allows for more variability in the individual study proportion estimates when generating the pooled proportion. The pooled proportion was calculated using the Freeman-Tukey Double arcsine transformation, and the 95% CI was calculated using the Clopper-Pearson interval. The DerSimonian-Laird estimator was used to estimate the between-study variance. For the outcome proportions of interest, the results of each study were expressed as binary proportions with exact 95% Cls. For each meta-analysis, a funnel plot was constructed and reviewed, displaying the study proportion against study precision, estimated by the standard error, to assess for publication bias. Sensitivity analyses were performed for the outcomes of interest (rates of cascade genetic counseling and genetic testing) to investigate the impact of date of publication, study country of origin, study design, method of data collection, and study quality on our aggregated results.

RESULTS

Study Characteristics

Eighty-seven publications of original research were included in our systematic review. Seventy-one observational studies provided data that allowed for inclusion in the metaanalysis (29 prospective studies). 27 cross-sectional studies, and 15 retrospective studies). Seventeen studies report on rates of cascade genetic counseling including six studies on direct relative contact, eight studies on probandmediated relative contact, and three on both modes of contact. Fifty studies report on rates of cascade genetic testing including 12 studies on direct relative contact, 34 studies on proband-mediated relative contact, and four on both modes of contact. Thirty studies report on rates of disclosure of genetic information by the probands to their at-risk relatives (Appendix Tables A2 and A3, online only).

Cumulative Patient Characteristics

A total of 14,736 probands and 33,223 at-risk relatives were evaluated for completion of cascade genetic counseling and testing. Study publication dates spanned from 1996 to 2021 and included 21 countries: United States (37), the Netherlands (eight), United Kingdom (five), France (five), Australia (four), Finland (four), Norway (three), Belgium (three), Singapore (two), Canada (four), Israel (two), Trinidad and Tobago, the Bahamas, Germany, Spain, Ireland, Italy, Korea, Malaysia, South Africa, Sweden, and both United States and Canada (one each). Across all studies, the median reported proband age was 51.5 years (range, 18-93 years) and the relative age was 47.4 years (18-85 years). Fifty-nine studies included information on the proband's sex. Among the 13,266 probands in these studies, 10,854 (81.8%) were female and 2,412 (18.2%) were male. Forty-eight studies included information on relatives' sex. Among the 19,590 relatives in these studies, 10,777 (55.0%) were female and 8,813 (45.0%) were male.

Thirty-five studies included information on proband race and ethnicity. Among the 9,686 probands in these studies, 6,777 (70.0%) identified as White, 1,735 (17.9%) as Hispanic/Latino, 604 (6.2%) as Asian, 221 (2.3%) as Black, and 7 (0.1%) as Native American. Among this group, 1,816 (18.7%) probands identified as Ashkenazi Jewish. Ten studies included information on relatives' race and ethnicity.^{15,36-44} Among the 2,543 relatives included in these studies, 1,876 (73.8%) identified as White, 394 (15.5%) as Asian, 195 (7.7%) as Hispanic/Latino, 58 (2.3%) as Black, and 20 (0.8%) as Native American. Among this group, 137 (5.4%) relatives identified as Ashkenazi Jewish. Further proband and relative characteristics for each study included in the systematic review are reported in Appendix Table A2.

Cumulative Rates of Cascade Genetic Counseling and Testing

Among the cohort of all patients included in the metaanalysis, 48% (95% CI, 38 to 58) of relatives underwent Among the cohort of all patients included in the meta-analysis, 41% (95% CI, 34 to 48) of relatives underwent cascade genetic testing. The method of measuring completion of cascade genetic testing differed between studies. Thirty-nine studies included review of genetic testing as a part of the study design, eight studies relied on self-report by the proband, one study relied on self-report by the relatives, one study used both reviews of results as part of study design and proband selfreport, and one study did not describe the method of outcome measurement (Appendix Table A3). First-degree relatives were significantly more likely to complete genetic testing compared with second-degree relatives (43% [95% CI, 36 to 51] v 22% [95% Cl, 17 to 28]). Female relatives were significantly more likely to complete genetic testing than male relatives (50% [95% CI, 40 to 59] v 28% [95% CI, 19 to 39]). Relatives in families with a colorectal cancer syndrome had higher rates of genetic testing compared with families with hereditary breast and ovarian cancers (60% [95% CI, 46 to 72] v 38% [95% Cl, 31 to 46]; Table 1).

Eighteen studies included information on proband disclosure of the pathogenic variant to relatives. Among 3,779 probands with data available on disclosure, 94% (95% Cl, 88 to 97) reported disclosing their genetic test results to at least one atrisk relative. Nineteen studies included information on relatives to whom probands disclosed information about the pathogenic variant identified. Among 12,751 at-risk relatives (determined either via interview with at-risk relatives or review of a proband's pedigree), 72% (95% Cl, 64 to 79) were informed of their genetic risk by the proband.

Other Studies

Other studies explored covariates, but the data were not presented in a manner where they could be quantitatively meta-analyzed. Two studies evaluated the impact of race and ethnicity on cascade testing and found that relatives in White families were more likely to complete cascade genetic testing compared with relatives from Black, Asian, Native American, and Hispanic/Latino families.^{15,37} One study evaluated insurance status and cascade testing and found that being insured versus uninsured was associated with higher uptake of cascade genetic testing (odds ratio, 3.74 [95% CI, 2.06 to 6.80]).³⁹

Thirteen studies reported on the impact of relative age and uptake of cascade genetic testing. Among these studies, ten demonstrated that older relative age was associated with increased likelihood of completing cascade testing^{19,45-52,119} and three suggested the opposite, that younger relatives were more likely to complete cascade testing.^{36,41,53} Ten studies reported on the impact of parenthood and cascade testing, with seven studies reporting that probands with children were more likely to complete cascade testing.^{19,49-51,53-55} and three studies demonstrating no association between

Cascade Genetic Testing

TABLE 1. Completion of Cascade Genetic Counseling and G	Genetic Testing for Direct Relative Contact Versus Patient-Mediated Relative Contact
	Cascade Genetic Counseling

	Direct Rela	tive Contact		iated Relative Itact	Combined Cohort		
Relative Characteristic	% (95% CI)	No. of Studies	% (95% CI)	No. of Studies	% (95% CI)	No. of Studies	
All relatives	63 (49 to 75)	9	35 (24 to 48)	11	48 (38 to 58)	17	
Relation							
First-degree	NA		36 (22 to 54)	8	41 (26 to 59)	10	
Second-degree	NA		NA		NA		
Sex							
Female	84 (78 to 88)	3	49 (32 to 66)	8	60 (43 to 75)	11	
Male	NA		25 (16 to 36)	7	31 (20 to 44)	9	
Hereditary cancer syndrome							
Hereditary breast and ovarian cancer	62 (44 to 78)	5	30 (20 to 42)	9	39 (29 to 51)	10	
Colorectal cancer	NA		NA		NA		

		Cascade Genet	ic Testing				
	Direct Rela	tive Contact		iated Relative Itact	Combined Cohort		
Relative Characteristic	% (95% CI)	No. of Studies	% (95% CI)	No. of Studies	% (95% CI)	No. of Studies	
All relatives	53 (43 to 62)	16	36 (28 to 44)	38	41 (34 to 48)	50	
Relation							
First-degree	62 (49 to 73)	6	40 (32 to 48)	31	43 (36 to 51)	35	
Second-degree	NA		22 (17 to 28)	10	22 (17 to 28)	10	
Sex							
Female	75 (63 to 84)	7	40 (32 to 50)	17	50 (40 to 59)	22	
Male	57 (42 to 72)	6	20 (14 to 27)	15	28 (19 to 39)	20	
Hereditary cancer syndrome							
Hereditary breast and ovarian cancer	53 (41 to 65)	8	30 (24 to 37)	21	38 (31 to 46)	26	
Colorectal cancer	63 (41 to 81)	4	59 (42 to 74)	10	60 (46 to 72)	14	

Abbreviation: NA, not available.

parenthood and cascade testing uptake.^{46,56,57} Three studies evaluated the role of familial support and found that relatives who reported greater family support and those belonging to more cohesive families were more likely to undergo cascade genetic testing^{15,36,58} (Table 2).

Patient-Mediated Cascade Genetic Counseling and Testing

Thirty-eight studies evaluated patient-mediated cascade genetic counseling and testing for hereditary cancer syndromes, whereby the responsibility for communicating with relatives is placed on the affected proband/patient. Among 3,411 relatives with genetic counseling data available, 35% (95% CI, 24 to 48) completed genetic counseling with the patient-mediated approach (Fig 2). Rates of genetic counseling were higher for female versus male relatives (49% [95% CI, 32 to 66] v 25% [95% CI, 16 to 36]).

Among 21,519 relatives with data available on completion of patient-mediated cascade genetic testing, 36% (95% Cl, 28 to 44) completed genetic testing (Fig 3). Rates of genetic testing were significantly higher for first-degree versus second-degree relatives (40% [95% Cl, 32 to 48] v 22% [95% Cl, 17 to 28]) and female versus male relatives (40% [95% Cl, 32 to 50] v 20% [95% Cl, 14 to 27]).

Eleven studies evaluated patient-mediated cascade testing whereby the patient was provided by the medical team with an informational letter to share with at-risk relatives.^{42,47,49,53,55,59-64} Provision of a letter resulted in genetic counseling for 37% (95% Cl, 15 to 67) of relatives and genetic testing for 41% (95% Cl, 31 to 52) of relatives. When a letter was not provided, 34% (95% Cl, 24 to 45) of relatives underwent genetic counseling and 33% (95% Cl, 24 to 44) underwent genetic testing.

Twenty-one studies included information on cascade testing via patient-mediated relative contact for hereditary breast

Frey et al

TABLE 2. Studies of Proband and Re	lative Characteristics That Influence Cascade Genetic	Testing for Hereditary Cancer Syndromes
Relative/Proband Characteristic	Association With Cascade Testing Identified	Association With Cascade Testing Not Identified

Relative/Proband Characteristic	Association with Cascade Testing Identified	Association with cascade resting not identified
	Relative Characteristics	
Relative's age	Biesecker et al, 2000 ³⁶ ; Meijers-Heijboer et al, 2000 (women only) ⁴⁹ ; Bodd et al, 2003 ⁴⁶ ; Ramsoekh et al, 2007 ⁵³ ; Finlay et al, 2008 ⁴⁷ ; Lynch et al, 2009 ⁴⁸ ; Sanz et al, 2010 ⁵¹ ; Barrow et al, 2015 ⁴⁵ ; Seppälä 2017 ⁵² ; Lieberman et al, 2018 ¹¹⁹ ; Courtney et al, 2019 ⁴¹ ; Frey et al, 2020 ¹⁹ ; Menko et al, 2020 ⁵⁰	Aktan-Collan et al, 2000 ⁵⁶ ; Meijers-Heijboer et al, 2000 (men only) ⁴⁹ ; Wagner et al, 2002 ⁵⁵ ; Aktan-Collan et al 2007 ⁵⁷
Relative's sex	Evans et al, 1997 ⁶⁹ ; Julian-Reynier et al, 2000 ¹¹³ ; Meijers- Heijboer et al, 2000 ⁴⁹ ; Wagner et al, 2002 ⁵⁵ ; Blandy et al, 2003 ⁵⁸ ; Bodd et al, 2003 ⁴⁶ ; Brooks et al, 2004 ⁵⁹ ; McGivern et al, 2004 ¹²⁰ ; Ramsoekh et al, 2007 ⁵³ ; Finlay et al, 2008 ⁴⁷ ; Holloway et al, 2008 ⁵⁴ ; Evans et al, 2009 ⁶⁶ ; Lynch et al, 2009 ⁴⁸ ; Sanz et al, 2010 ⁵¹ ; Yoon et al, 2011 ⁴⁴ ; Fehniger et al, 2013 ¹⁵ ; Barrow et al, 2015 ⁴⁵ ; Sermijn et al, 2016 ⁶⁸ ; Levin and Mæhle, 2017 ⁶³ ; Lieberman et al, 2018 ¹¹⁹ ; Caswell-Jin et al, 2019 ³⁸ ; Bednar et al, 2020 ⁹⁰ ; Griffin et al, 2020 ¹⁰⁶ ; Menko et al, 2020 ⁵⁶ ; Jeong et al, 2021 ¹¹²	Aktan-Collan et al, 2000 ⁵⁶ ; Biesecker et al, 2000 ³⁶ ; Julian-Reynier et al, 2000 ¹¹³ ; Meijers-Heijboer et al, 2000 ⁴⁹ ; Suthers et al, 2006 ¹⁷ ; Aktan-Collan et al, 2007 ⁵⁷ ; Seppälä et al, 2017 ⁵² ; Courtney et al, 2019 ⁴¹ Bednar et al, 2020 ⁹⁰ ; Frey et al, 2020 ¹⁹
Relative's race/ethnicity	Fehniger et al, 2013 ¹⁵ ; Braley et al, 2021 ³⁷	
Relative's education	Lerman et al, 1999 ⁴⁰ ; Sanz et al, 2010 ⁵¹	Aktan-Collan et al, 2000 ⁵⁶ ; Ponz de Leon et al, 2004 ¹²⁴ ; Fehniger et al, 2013 ¹⁵ ; Frey et al, 2020 ¹⁹
Relative's socioeconomic status	Holloway et al, 2008 ⁵⁴ ; Cheung et al, 2010 ⁹⁴	Griffin et al, 2020 ¹⁰⁶
Relative's employment status	Aktan-Collan et al, 2000 ⁵⁶	
Relative's insurance status	Lerman et al, 1996 ³⁹	
Relative's personal history of cancer	Hagoel et al, 2000 ¹⁰⁷ ; Holloway et al, 2008 ⁵⁴ ; Sanz et al, 2010 ⁵¹	Biesecker et al, 2000 ³⁶ ; Fehniger et al, 2013 ¹⁵ ; Lieberman et al, 2018 ¹¹⁹ ; Frey et al, 2020 ¹⁹
Relative residing in the United States versus abroad	Fehniger et al, 2013 ¹⁵	
Relative's parenthood	Meijers-Heijboer et al, 2000 ⁴⁹ ; Wagner et al, 2002 ⁵⁵ ; Ramsoekh et al, 2007 ⁵³ ; Holloway et al, 2008 ⁵⁴ ; Sanz et al, 2010 ⁵¹ ; Frey et al, 2020 ¹⁹ ; Menko et al, 2020 ⁵⁰	Aktan-Collan et al, 2000 ⁵⁶ ; Bodd et al, 2003 ⁴⁶ ; Aktan- Collan et al, 2007 ⁵⁷
Relative's marital status	Biesecker et al, 2000 ³⁶	Aktan-Collan et al, 2000 ⁵⁶ ; Aktan-Collan et al, 2007 ⁵⁷
Relative with an adult daughter	Menko et al, 2020 ⁵⁰	
Relative's knowledge about risk for relatives	Blandy et al, 2003 ⁵⁸	
	Proband Characteristics	
Specific hereditary cancer syndrome	Seppälä et al, 2017 ⁵² (by specific gene); Griffin et al, 2020 ¹⁰⁶	Sanz et al, 2010 ⁵¹ ; Caswell-Jin et al, 2019 ³⁸ ; Bednar et al, 2020 ⁹⁰
Proband's history of cancer	Seppälä et al, 2017 ⁵²	Griffin et al, 2020 ¹⁰⁶
Duration of time since proband's genetic testing	Bednar et al, 202090	
	Relationship Between the Relative and the	Proband
Family support	Biesecker et al, 2000 ³⁶ ; Blandy et al, 2003 ⁵⁸	
Relative's degree of relationship to the proband	Hagoel et al, 2000 ¹⁰⁷ ; Julian-Reynier et al, 2000 ¹¹³ ; Wagner et al, 2002 ⁵⁵ ; Sanz et al, 2010 ⁵¹ ; Fehniger et al, 2013 ¹⁵ ; Sermijn et al, 2016 ⁵⁸ ; Lieberman et al, 2018 ¹¹⁹	Blandy et al, 2003 ⁵⁸ ; Brooks et al, 2004 ⁵⁹ ; Holloway et al, 2008 ⁵⁴
Frequency of communication between the proband and the relative	Fehniger et al, 2013 ¹⁵	Griffin et al, 2020 ¹⁰⁶
Proband and relative living in close proximity		Griffin et al, 2020 ¹⁰⁶

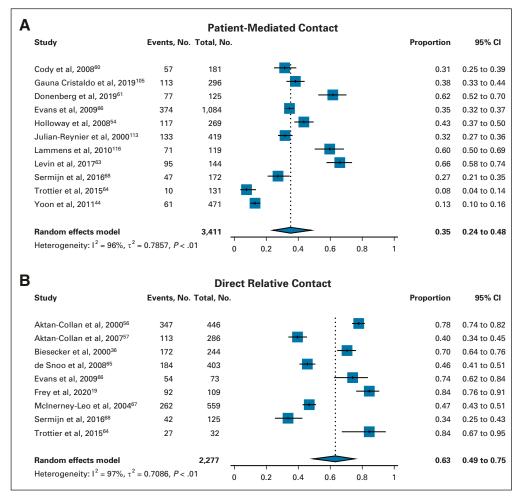


FIG 2. Cascade genetic counseling: pooled proportions with patient-mediated contact (A) and direct relative contact (B).

and ovarian cancer families. In this population, 30% (95% CI, 24 to 37) of relatives completed genetic testing, including 35% (95% CI, 27 to 44) of first-degree relatives, 23% (95% CI, 17 to 31) of second-degree relatives, 37% (95% CI, 28 to 48) of female relatives, and 16% (95% CI, 12 to 22) of male relatives. Ten studies included information on cascade testing via patient-mediated relative contact for colorectal cancer syndrome families. In this population, 59% (95% CI, 42 to 74) of relatives completed genetic testing.

Direct Relative Contact Cascade Genetic Counseling and Testing

Sixteen studies evaluated direct relative contact cascade genetic counseling and/or testing for hereditary cancer syndromes, whereby relatives are contacted by the medical team or testing laboratory. Fifteen studies investigated direct relative contact through outreach by the medical team; one study evaluated an online initiative for direct contact organized by the genetic testing laboratory.³⁸

Among 2,277 relatives with genetic counseling data available, 63% (95% CI, 49 to 75) completed genetic counseling with direct relative contact (Fig 2). Among 7,457 relatives with genetic testing data available, 53%

(95% Cl, 43 to 62) completed cascade genetic testing with direct relative contact (Fig 3). Rates of genetic testing with direct relative contact were higher for female versus male relatives (75% [95% Cl, 63 to 84] v57% [95% Cl, 42 to 72]).

Three methods of direct relative contact were described: (1) letter, (2) e-mail, and (3) telephone call. Direct contact via a letter resulted in genetic counseling for 55% (95% Cl, 42 to 68) of relatives and genetic testing for 48% (95% Cl, 37 to 59) of relatives.^{17,36,39,40,48,56,57,65-69} Direct contact via an e-mail resulted in genetic testing for 48% (95% Cl, 45 to 50) of relatives.³⁸ Direct contact via a telephone call resulted in genetic counseling for 84% (95% Cl, 76 to 91) of relatives and genetic testing for 61% (95% Cl, 51 to 70) of relatives.¹⁹

Eight studies included information on cascade testing via direct relative contact for hereditary breast and ovarian cancer families.^{36,39,48,64,66-68,70} Among this group, 53% (95% CI, 41 to 65) of relatives completed genetic testing including 69% (95% CI, 57 to 79) of first-degree relatives, 71% (95% CI, 60 to 81) of female relatives, and 51% (95% CI, 28 to 73) of male relatives. Four studies included information on cascade testing via direct relative contact for colorectal

		Patient-M	ediated Contact		
Study	Events, No.	Total, No.		Proportion	95% C
Barrow et al, 2015 ⁴⁵	329	591	-	0.56	0.52 to 0.6
Beard et al, 2020 ⁸⁹	268	821		0.33	0.29 to 0.3
Bednar et al, 2020 ⁹⁰	252	825		0.31	0.27 to 0.3
Blandy et al, 2003 ⁵⁸	34	310 🗕		0.11	0.08 to 0.
Bodd et al, 200346	74	172		0.43	0.36 to 0.
Brooks et al, 2004 ⁵⁹	117	384		0.30	0.26 to 0.
Bruwer et al, 2013 ⁹³	486	518	÷	0.94	0.91 to 0.
Cody et al, 2008 ⁶⁰	56	181		0.31	0.24 to 0.
Courtney et al, 2019 ⁴¹	112	826		0.14	0.11 to 0.
Gauna Cristaldo et al, 2019 ¹⁰⁵	102	296	- -	0.34	0.29 to 0.4
Dilzell et al, 201442	76	162		0.47	0.39 to 0.
Donenberg et al, 2019 ⁶¹	76	125	·	0.61	0.52 to 0.
Evans et al, 2009 ⁶⁶	314	1,084		0.29	0.26 to 0.
Fehniger et al, 2013 ¹⁵	92	448	-	0.21	0.17 to 0.
Finlay et al, 200847	334	655		0.51	0.47 to 0.
Fischer et al, 2012 ¹⁰¹	1,143	2,646		0.43	0.41 to 0.
Griffin et al, 2020 ¹⁰⁶	226	1,955 +	: —	0.12	0.10 to 0.
Hadley et al, 200362	56	111		0.50	0.41 to 0.
Holloway et al, 200854	85	269		0.32	0.26 to 0.
Jeong et al, 2021 ¹¹²	129	423	—	0.30	0.26 to 0.
Julian-Reynier et al, 2000 ¹¹³	112	419		0.27	0.23 to 0.
Lammens et al, 2010 ¹¹⁶	65	119		0.55	0.45 to 0.
Levin et al, 201763	94	144		0.65	0.57 to 0.
Li et al, 2017 ¹¹⁸	13	235 🗕		0.06	0.03 to 0.
Lieberman et al, 2018 ¹¹⁹	71	148	÷	0.48	0.40 to 0.
McGivern et al, 2004 ¹²⁰	103	803		0.13	0.11 to 0.
Meijers-Heijboer et al, 200049		682		0.38	0.34 to 0.
Menko et al, 2020 ⁵⁰	102	239		0.43	0.36 to 0.
Petersen et al, 201843	86	95		0.91	0.83 to 0.
Ponz de Leon et al, 2004 ¹²⁴	98	292		0.34	0.28 to 0.
Ramsoekh et al, 2007 ⁵³	635	1,547		0.41	0.39 to 0.
Sanz et al, 2010 ⁵¹	340	765		0.44	0.41 to 0.
Seppälä et al, 2017 ⁵²	952	1,548		0.61	0.59 to 0.
Sermijn et al, 201668	46	172		0.27	0.20 to 0.
Suthers et al, 2006 ¹⁷	62	384	-	0.16	0.13 to 0.
Trottier et al, 2015 ⁶⁴	10	131	-	0.08	0.04 to 0.
Wagner et al, 2002 ⁵⁵	260	523		0.50	0.45 to 0.
Yoon et al, 2011 ⁴⁴	54	471 -	-	0.11	0.09 to 0.
Random effects model		21,519		0.36	0.28 to 0.
Heterogeneity: $I^2 = 98\%$, $\tau^2 =$				0.50	0.20100.

FIG 3. Cascade genetic testing: pooled proportions with patient-mediated contact (A) and direct relative contact (B). (continued on following page)

cancer syndrome families.^{40,56,57,69} Among this group, 63% (95% CI, 41 to 81) of relatives completed genetic testing.

Direct Relative Contact Versus Patient-Mediated Relative Contact

Direct relative contact resulted in genetic counseling for 63% (95% CI, 49 to 75) of relatives versus 35% (95% CI, 24 to 48) with patient-mediated relative contact (Table 1 and Fig 2). None of the included studies evaluating direct

relative contact provided information on genetic counseling rates for first-degree versus second-degree relatives. Direct relative contact resulted in genetic testing for 53% (95% Cl, 43 to 62) of all relatives versus 36% (95% Cl, 28 to 44) with patient-mediated relative contact (Table 1 and Fig 3). For first-degree relatives, direct relative contact resulted in genetic testing of 62% (95% Cl, 49 to 73) of relatives versus 40% (95% Cl, 32 to 48) with patient-mediated relative contact (Fig 4). Four nonrandomized studies included both

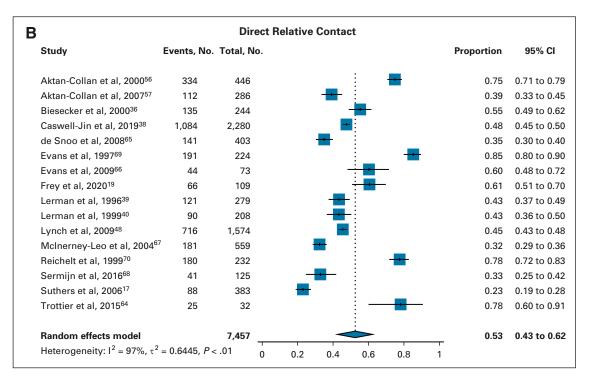


FIG 3. (Continued).

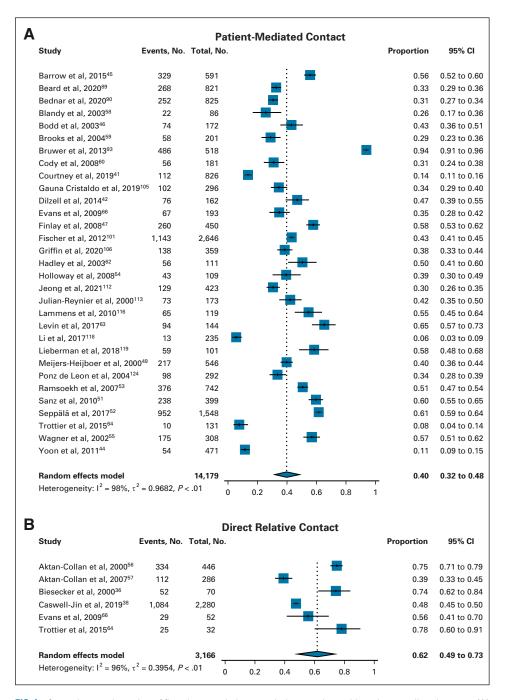
direct relative contact and patient-mediated relative contact.^{17,64,66,68} Among these four studies, direct relative contact resulted in genetic testing for 48% (95% CI, 26 to 70) of relatives versus 20% (95% CI, 10 to 30) with patient-mediated relative contact.

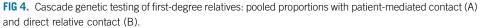
Sensitivity Analyses

Sensitivity analyses were performed for the rates of patientmediated and direct relative contact cascade genetic counseling and genetic testing for all relatives. Grouping studies by date of publication, study country of origin, study design, method of data collection, and study quality did not change the trends of our aggregate results (Appendix Table A3).

Quality of Evidence/Risk of Bias/Publication Bias

Study quality was assessed using as appropriate ROBINS-I,³⁴ the Joanna Briggs Institute Critical Appraisal Checklist for cohort studies, or the Joanna Briggs Institute Critical Appraisal Checklist for analytical cross-sectional studies. The majority of studies assessed via ROBINS-I were found to be at moderate risk of bias. Studies assessed using the Joanna Briggs instruments were deemed appropriate to include in this review. The funnel plots suggest reduced representation of smaller studies with both low and high genetic counseling and genetic testing proportions (Appendix Table A4 and Fig A1, online only).


DISCUSSION


We have reviewed systematically the available literature on cascade genetic counseling and testing for cancer

syndromes. This topic is of critical importance as, for hereditary cancer syndromes, the clinical benefit, sustainability, and cost-effectiveness of genetic counseling and testing are dependent on successful cascade testing for atrisk relatives.^{9,10} Our review, to our knowledge, the first meta-analysis addressing this topic, confirms that the majority of at-risk relatives do not undergo genetic counseling nor testing and that direct relative contact significantly increases completion of cascade genetic counseling for all relatives and genetic testing for first-degree relatives as compared with patient-mediated relative contact.

This review identified factors that may affect a relative's likelihood of completing cascade genetic counseling and genetic testing. Studies included in this analysis suggest that uptake of cascade genetic counseling is higher in female versus male relatives, first-degree versus more distant relatives, and families with a colorectal cancer syndrome versus hereditary breast and ovarian cancer syndrome. Limited data suggest that White race and being insured were associated with higher rates of cascade testing completion. We have also identified other factors that may contribute to success of cascade testing including relatives' age, parenthood status, and familial support although the sample size was extremely limited. A growing literature suggests that genetic testing likely presents a unique set of challenges among medically underserved and vulnerable populations. Many factors can influence a person's decision about genetic testing including race, ethnicity, sex, education level, affordability, insurance, and concerns about discrimination.71-78

Frey et al

Idos et al²⁰ reported on multiplex cancer gene panel testing in a racially, ethnically, and socioeconomically diverse cohort (41% Hispanic, 26% Spanish-speaking only, and 30% achieved a highest level of education of high school or less) and found that 38% of relatives underwent cascade genetic testing. However, among studies included in our review that provided information on relative race, 74% of the population identified as White, emphasizing the critical need for trials that explore genetic medicine in diverse patient populations. Elucidating

barriers to cascade genetic testing is essential so that cascade testing strategies can be designed to target those relatives least likely to use potentially life-saving medical interventions. Furthermore, this aligns with the call put forth by several organizations to improve genetic cancer risk assessment and testing for minority populations.²⁶ We identified three strategies for direct relative contact, letter (by mail), e-mail, and telephone call, with telephone calls demonstrating the highest rates of completion of genetic counseling and genetic testing.

Our results should be viewed in light of several limitations. The majority of studies evaluated for risk of bias using ROBINS-I were found to be at moderate risk of bias. The funnel plots may indicate decreased publication of smaller studies with both low and high genetic counseling and genetic testing proportions. However, this is unlikely to skew the summary estimates in favor of uptake of genetic counseling and genetic testing because only the absence of smaller studies with low testing proportions would be indicative of publication bias. Several studies measured completion of cascade genetic testing on the basis of proband or relative self-report. Ideally, future studies will include a review of the genetic testing results to confirm completion of the recommended appropriate genetic testing. Finally, the primary outcomes for this study were completion of cascade genetic counseling and genetic testing for all relatives via patient-mediated and direct relative contact. We found that direct relative contact significantly improved rates of completion of genetic counseling. The rate of genetic testing was higher for direct relative contact compared with patient-mediated contact, and this result was close to statistical significance; completion was significantly higher on the subgroup analysis of first-degree relatives. These limitations highlight the need for well-designed prospective randomized controlled trials addressing this topic.

Our findings offer a meta-analysis to confirm prior systematic reviews that direct relative contact results in greater uptake of cascade genetic counseling and genetic testing for familial cancer syndromes as compared with patient-mediated relative contact. These findings, combined with the growing body of evidence that direct contact is acceptable to patients, their at-risk relatives, and providers, suggest a change in the paradigm of cascade testing.^{17,19,27,57,79,80}

Favoring direct relative contact are focus groups, suggesting that direct contact programs are viewed as an acceptable complement to existing patient-mediated cascade screening efforts and ethical arguments increasingly supporting the notion that, in the context of

AFFILIATIONS

¹Weill Cornell Medicine, New York, NY ²MD Anderson Cancer Center, Houston, TX ³Duke University Medical Center, Durham, NC ⁴Memorial Sloan Kettering Cancer Center, New York, NY ⁵Stanford University School of Medicine, Palo Alto, CA

CORRESPONDING AUTHOR

Melissa K. Frey, MD, Division of Gynecologic Oncology, Weill Cornell Medicine, 525 East 68th Street, Suite J-130, New York, NY 10065; e-mail: mkf2002@med.cornell.edu.

EQUAL CONTRIBUTION

M.K.F. and M.D.A. are cofirst authors of this work.

shared genetic information, the clinician has responsibility not just to the patient but also to at-risk relatives.^{27,81-84} Furthermore, Health Insurance Portability and Accountability Act privacy rules allow for several avenues of direct clinician contact of at-risk relatives including with the patient's consent.⁸⁵ Other possible avenues include direct relative contact facilitated by the testing laboratory as described by Caswell-Jin et al,³⁸ provider-to-provider contact, and contact permitted via the public health exception. However, the public health exemption has largely been used in the context of communicable diseases with the potential for imminent harm. Although other countries have explored public health approaches to cascade testing, this is yet to be explored in the United States.^{85,86} Of note, providers and patients have voiced concern about privacy protection and control over information flow in the setting of direct contact cascade testing programs.²⁷ Welldesigned studies are needed to clarify the acceptability of direct contact programs for both probands and relatives and to explore the legal, financial, and resource implications of direct contact cascade testing programs in the United States and abroad.

In conclusion, although cascade genetic testing for cancer syndromes is a tier-one application of genomic medicine per the Centers for Disease Control and Prevention,¹¹ we have found that the majority of at-risk relatives do not undergo this potentially life-saving intervention. Our metaanalysis confirms prior literature that direct relative contact significantly increases completion of cascade genetic counseling for all relatives and genetic testing for firstdegree relatives as compared with patient-mediated relative contact. Future randomized comparative effectiveness studies must explore strategies of direct relative contact and facilitate pursuit of genetic counseling and testing in underrepresented patient subgroups to promote equitable identification of the millions of Americans unknowingly harboring cancer-associated pathogenic variants, moving toward the promise of precision medicine.¹²

SUPPORT

M.K.F. was supported by the following grant: NIH/NCATS Grant No. KL2-TR-002385. R.N.S. was supported by the following grants: National Cancer Institute Grant No. K07CA216326 and R01CA211723 and Patient-Centered Outcomes Research Institute Grant No. IHS-2017C3-9211. P.J.C. and C.T. were supported by the following grant: Clinical and Translational Science Center at Weill Cornell Medical College (1-UL1-TR002384-01). S.L. was supported by the following grant: National Cancer Institute Grant No. U01CA233056. J.G.H. and K.O. were supported by the following grant: National Cancer Institute Grant No. P30 CA008748.

AUTHORS' DISCLOSURES OF POTENTIAL CONFLICTS OF INTEREST

Disclosures provided by the authors are available with this article at DOI https://doi.org/10.1200/JC0.22.00303.

Frey et al

AUTHOR CONTRIBUTIONS

Conception and design: Melissa K. Frey, Xuan Li, Jose Alejandro Rauh-Hain, Haley Moss, Becky Baltich Nelson, Kenneth Offit, Ravi N. Sharaf Administrative support: Hannah Bergeron, Kenneth Offit

Provision of study materials or patients: Haley Moss, Steven Lipkin Collection and assembly of data: Melissa K. Frey, Muhammad Danyal Ahsan, Hannah Bergeron, Rana K. Fowlkes, Priyanka Narayan, Evelyn Cantillo, Ravi N. Sharaf

Data analysis and interpretation: Melissa K. Frey, Muhammad Danyal Ahsan, Jenny Lin, Rana K. Fowlkes, Roni Nitecki, Jose Alejandro Rauh-Hain, Charlene Thomas, Paul J. Christos, Jada G. Hamilton, Eloise

Chapman-Davis, Kevin Holcomb, Allison W. Kurian, Steven Lipkin, Ravi N. Sharaf

Manuscript writing: All authors

Final approval of manuscript: All authors

Accountable for all aspects of the work: All authors

ACKNOWLEDGMENT

We extend our sincere gratitude to Ms Meher Jamy for her assistance in preparing this manuscript.

REFERENCES

- 1. Tuffaha HW, Mitchell A, Ward RL, et al: Cost-effectiveness analysis of germ-line BRCA testing in women with breast cancer and cascade testing in family members of mutation carriers. Genet Med 20:985-994, 2018
- 2. Committee on Gynecologic Practice: ACOG Committee Opinion No. 727: Cascade testing: Testing women for known hereditary genetic mutations associated with cancer. Obstet Gynecol 131:e31-e34, 2018
- Randall LM, Pothuri B, Swisher EM, et al: Multi-disciplinary summit on genetics services for women with gynecologic cancers: A Society of Gynecologic Oncology White Paper. Gynecol Oncol 146:217-224, 2017
- 4. Offit K: The future of clinical cancer genomics. Semin Oncol 43:615-622, 2016
- Finch AP, Lubinski J, Møller P, et al: Impact of oophorectomy on cancer incidence and mortality in women with a BRCA1 or BRCA2 mutation. J Clin Oncol 32: 1547-1553, 2014
- Li X, You R, Wang X, et al: Effectiveness of prophylactic surgeries in BRCA1 or BRCA2 mutation carriers: A meta-analysis and systematic review. Clin Cancer Res 22:3971-3981, 2016
- 7. Engel C, Rahner N, Schulmann K, et al: Efficacy of annual colonoscopic surveillance in individuals with hereditary nonpolyposis colorectal cancer. Clin Gastroenterol Hepatol 8:174-182, 2010
- de Jong AE, Hendriks YM, Kleibeuker JH, et al: Decrease in mortality in Lynch syndrome families because of surveillance. Gastroenterology 130:665-671, 2006
- Ladabaum U, Wang G, Terdiman J, et al: Strategies to identify the lynch syndrome among patients with colorectal cancer: A cost-effectiveness analysis. Ann Intern Med 155:69-79, 2011
- 10. Makhnoon S, Tran G, Levin B, et al: Uptake of cancer risk management strategies among women who undergo cascade genetic testing for breast cancer susceptibility genes. Cancer 127:3605-3613, 2021
- 11. Center for Disease Control and Prevention: Tier 1 Genomic Applications Toolkit for Public Health Departments
- 12. Offit K, Tkachuk KA, Stadler ZK, et al: Cascading after peridiagnostic cancer genetic testing: An alternative to population-based screening. J Clin Oncol 38: 1398-1408, 2020
- 13. Manchanda R, Burnell M, Gaba F, et al: Randomised trial of population-based BRCA testing in Ashkenazi Jews: Long-term outcomes. BJOG 127:364-375, 2020
- 14. Drohan B, Roche CA, Cusack JC, et al: Hereditary breast and ovarian cancer and other hereditary syndromes: Using technology to identify carriers. Ann Surg Oncol 19:1732-1737, 2012
- 15. Fehniger J, Lin F, Beattie MS, et al: Family communication of BRCA1/2 results and family uptake of BRCA1/2 testing in a diverse population of BRCA1/2 carriers. J Genet Couns 22:603-612, 2013
- Katapodi MC, Viassolo V, Caiata-Zufferey M, et al: Cancer predisposition cascade screening for hereditary breast/ovarian cancer and lynch syndromes in Switzerland: Study protocol. JMIR Res Protoc 6:e184, 2017
- 17. Suthers GK, Armstrong J, McCormack J, et al: Letting the family know: Balancing ethics and effectiveness when notifying relatives about genetic testing for a familial disorder. J Med Genet 43:665-670, 2006
- 18. Sharaf RN, Myer P, Stave CD, et al: Uptake of genetic testing by relatives of lynch syndrome probands: A systematic review. Clin Gastroenterol Hepatol 11: 1093-1100, 2013
- 19. Frey MK, Kahn RM, Chapman-Davis E, et al: Prospective feasibility trial of a novel strategy of facilitated cascade genetic testing using telephone counseling. J Clin Oncol 38:1389-1397, 2020
- Idos GE, Kurian AW, Ricker C, et al: Multicenter prospective cohort study of the diagnostic yield and patient experience of multiplex gene panel testing for hereditary cancer risk. JCO Precis Oncol 3:1-12, 2019
- Levy DE, Byfield SD, Comstock CB, et al: Underutilization of BRCA1/2 testing to guide breast cancer treatment: Black and Hispanic women particularly at risk. Genet Med 13:349-355, 2011
- 22. Childers KK, Maggard-Gibbons M, Macinko J, et al: National distribution of cancer genetic testing in the United States: Evidence for a gender disparity in hereditary breast and ovarian cancer. JAMA Oncol 4:876-879, 2018
- 23. Nikolaidis C, Duquette D, Mendelsohn-Victor KE, et al: Disparities in genetic services utilization in a random sample of young breast cancer survivors. Genet Med 21:1363-1370, 2019
- 24. Cragun D, Weidner A, Lewis C, et al: Racial disparities in BRCA testing and cancer risk management across a population-based sample of young breast cancer survivors. Cancer 123:2497-2505, 2017
- 25. McGuinness JE, Trivedi MS, Silverman T, et al: Uptake of genetic testing for germline BRCA1/2 pathogenic variants in a predominantly Hispanic population. Cancer Genet 235-236:72-76, 2019
- 26. Polite BN, Adams-Campbell LL, Brawley OW, et al: Charting the future of cancer health disparities research: A position statement from the American Association for Cancer Research, the American Cancer Society, the American Society of Clinical Oncology, and the National Cancer Institute. J Clin Oncol 35:3075-3082, 2017
- 27. Henrikson NB, Blasi P, Figueroa Gray M, et al: Patient and family preferences on health system-led direct contact for cascade screening. J Pers Med 11:538, 2021

- Menko FH, Ter Stege JA, van der Kolk LE, et al: The uptake of presymptomatic genetic testing in hereditary breast-ovarian cancer and lynch syndrome: A systematic review of the literature and implications for clinical practice. Fam Cancer 18:127-135, 2019
- 29. Roberts MC, Dotson WD, DeVore CS, et al: Delivery of cascade screening for hereditary conditions: A scoping review of the literature. Health Aff (Millwood) 37: 801-808, 2018
- Baroutsou V, Underhill-Blazey ML, Appenzeller-Herzog C, et al: Interventions facilitating family communication of genetic testing results and cascade screening in hereditary breast/ovarian cancer or lynch syndrome: A systematic review and meta-analysis. Cancers (Basel) 13:925, 2021
- 31. Health Insurance Portability and Accountability Act of 1996, H.R. 3103, 104th Congress.
- 32. Chivers Seymour K, Addington-Hall J, Lucassen AM, et al: What facilitates or impedes family communication following genetic testing for cancer risk? A systematic review and meta-synthesis of primary qualitative research. J Genet Couns 19:330-342, 2010
- Liberati A, Altman DG, Tetzlaff J, et al: The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: Explanation and elaboration. BMJ 339:b2700, 2009
- 34. Sterne JA, Hernán MA, Reeves BC, et al: ROBINS-I: A tool for assessing risk of bias in non-randomised studies of interventions. BMJ 355:i4919, 2016
- Munn Z, Moola S, Lisy K, et al: Methodological guidance for systematic reviews of observational epidemiological studies reporting prevalence and cumulative incidence data. Int J Evid Based Healthc 13:147-153, 2015
- 36. Biesecker BB, Ishibe N, Hadley DW, et al: Psychosocial factors predicting BRCA1/BRCA2 testing decisions in members of hereditary breast and ovarian cancer families. Am J Med Genet 93:257-263, 2000
- 37. Braley EF, Bedard AC, Nuk J, et al: Patient ethnicity and cascade genetic testing: A descriptive study of a publicly funded hereditary cancer program. Fam Cancer 21:369-374, 2021
- Caswell-Jin JL, Zimmer AD, Stedden W, et al: Cascade genetic testing of relatives for hereditary cancer risk: Results of an online initiative. J Natl Cancer Inst 111:95-98, 2019
- Lerman C, Narod S, Schulman K, et al: BRCA1 testing in families with hereditary breast-ovarian cancer. A prospective study of patient decision making and outcomes. JAMA 275:1885-1892, 1996
- 40. Lerman C, Hughes C, Trock BJ, et al: Genetic testing in families with hereditary nonpolyposis colon cancer. JAMA 281:1618-1622, 1999
- Courtney E, Chok AK, Ting Ang ZL, et al: Impact of free cancer predisposition cascade genetic testing on uptake in Singapore. NPJ Genom Med 4:22, 2019
 Dilzell K, Kingham K, Ormond K, et al: Evaluating the utilization of educational materials in communicating about Lynch syndrome to at-risk relatives. Fam
- Cancer 13:381-389, 2014
- 43. Petersen J, Koptiuch C, Wu YP, et al: Patterns of family communication and preferred resources for sharing information among families with a Lynch syndrome diagnosis. Patient Educ Couns 101:2011-2017, 2018
- 44. Yoon SY, Thong MK, Taib NA, et al: Genetic counseling for patients and families with hereditary breast and ovarian cancer in a developing Asian country: An observational descriptive study. Fam Cancer 10:199-205, 2011
- 45. Barrow P, Green K, Clancy T, et al: Improving the uptake of predictive testing and colorectal screening in lynch syndrome: A regional primary care survey. Clin Genet 87:517-524, 2015
- 46. Bodd TL, Reichelt J, Heimdal K, et al: Uptake of BRCA1 genetic testing in adult sisters and daughters of known mutation carriers in Norway. J Genet Couns 12: 405-417, 2003
- 47. Finlay E, Stopfer JE, Burlingame E, et al: Factors determining dissemination of results and uptake of genetic testing in families with known BRCA1/2 mutations. Genet Test 12:81-91, 2008
- 48. Lynch HT, Snyder CL, Lynch JF, et al: Family information service participation increases the rates of mutation testing among members of families with BRCA1/ 2 mutations. Breast J 15:S20-S24, 2009 (suppl 1)
- 49. Meijers-Heijboer EJ, Verhoog LC, Brekelmans CT, et al: Presymptomatic DNA testing and prophylactic surgery in families with a BRCA1 or BRCA2 mutation. Lancet 355:2015-2020, 2000
- 50. Menko FH, Jeanson KN, Bleiker EMA, et al: The uptake of predictive DNA testing in 40 families with a pathogenic BRCA1/BRCA2 variant. An evaluation of the proband-mediated procedure. Eur J Hum Genet 28:1020-1027, 2020
- 51. Sanz J, RamónCajal yT, Torres A, et al: Uptake of predictive testing among relatives of BRCA1 and BRCA2 families: A multicenter study in northeastern Spain. Fam Cancer 9:297-304, 2010
- 52. Seppälä TT, Pylvänäinen K, Mecklin JP: Uptake of genetic testing by the children of Lynch syndrome variant carriers across three generations. Eur J Hum Genet 25:1237-1245, 2017
- 53. Ramsoekh D, van Leerdam ME, Tops CM, et al: The use of genetic testing in hereditary colorectal cancer syndromes: Genetic testing in HNPCC, (A)FAP and MAP. Clin Genet 72:562-567, 2007
- 54. Holloway SM, Bernhard B, Campbell H, et al: Uptake of testing for BRCA1/2 mutations in South East Scotland. Eur J Hum Genet 16:906-912, 2008
- 55. Wagner A, Tops C, Wijnen JT, et al: Genetic testing in hereditary non-polyposis colorectal cancer families with a MSH2, MLH1, or MSH6 mutation. J Med Genet 39:833-837, 2002
- Aktan-Collan K, Mecklin JP, Järvinen H, et al: Predictive genetic testing for hereditary non-polyposis colorectal cancer: Uptake and long-term satisfaction. Int J Cancer 89:44-50, 2000
- 57. Aktan-Collan K, Haukkala A, Pylvänäinen K, et al: Direct contact in inviting high-risk members of hereditary colon cancer families to genetic counselling and DNA testing. J Med Genet 44:732-738, 2007
- 58. Blandy C, Chabal F, Stoppa-Lyonnet D, et al: Testing participation in BRCA1/2-positive families: Initiator role of index cases. Genet Test 7:225-233, 2003
- 59. Brooks L, Lennard F, Shenton A, et al: BRCA1/2 predictive testing: A study of uptake in two centres. Eur J Hum Genet 12:654-662, 2004
- 60. Cody N, Green A, McDevitt T, et al: Cascade screening in BRCA1/2 mutation carriers. Ir Med J 101:140-142, 2008
- 61. Donenberg T, George S, Ali J, et al: A clinically structured and partnered approach to genetic testing in Trinidadian women with breast cancer and their families. Breast Cancer Res Treat 174:469-477, 2019
- 62. Hadley DW, Jenkins J, Dimond E, et al: Genetic counseling and testing in families with hereditary nonpolyposis colorectal cancer. Arch Intern Med 163: 573-582, 2003
- 63. Levin T, Mæhle L: Uptake of genetic counseling, genetic testing and surveillance in hereditary malignant melanoma (CDKN2A) in Norway. Fam Cancer 16: 257-265, 2017
- 64. Trottier M, Lunn J, Butler R, et al: Strategies for recruitment of relatives of BRCA mutation carriers to a genetic testing program in the Bahamas. Clin Genet 88: 182-186, 2015
- 65. de Snoo FA, Riedijk SR, van Mil AM, et al: Genetic testing in familial melanoma: Uptake and implications. Psychooncology 17:790-796, 2008

- 66. Evans DG, Binchy A, Shenton A, et al: Comparison of proactive and usual approaches to offering predictive testing for BRCA1/2 mutations in unaffected relatives. Clin Genet 75:124-132, 2009
- 67. McInerney-Leo A, Biesecker BB, Hadley DW, et al: BRCA1/2 testing in hereditary breast and ovarian cancer families: Effectiveness of problem-solving training as a counseling intervention. Am J Med Genet A 130A:221-227, 2004
- 68. Sermijn E, Delesie L, Deschepper E, et al: The impact of an interventional counselling procedure in families with a BRCA1/2 gene mutation: Efficacy and safety. Fam Cancer 15:155-162, 2016
- 69. Evans DG, Maher ER, Macleod R, et al: Uptake of genetic testing for cancer predisposition. J Med Genet 34:746-748, 1997
- 70. Reichelt JG, Dahl AA, Heimdal K, et al: Uptake of genetic testing and pre-test levels of mental distress in Norwegian families with known BRCA1 mutations. Dis Markers 15:139-143, 1999
- 71. Hayden S, Mange S, Duquette D, et al: Large, prospective analysis of the reasons patients do not pursue BRCA genetic testing following genetic counseling. J Genet Couns 26:859-865, 2017
- 72. Armstrong K, Calzone K, Stopfer J, et al: Factors associated with decisions about clinical BRCA1/2 testing. Cancer Epidemiol Biomarkers Prev 9:1251-1254, 2000
- 73. Ropka ME, Wenzel J, Phillips EK, et al: Uptake rates for breast cancer genetic testing: A systematic review. Cancer Epidemiol Biomarkers Prev 15:840-855, 2006
- 74. Kieran S, Loescher LJ, Lim KH: The role of financial factors in acceptance of clinical BRCA genetic testing. Genet Test 11:101-110, 2007
- 75. Godard B, Pratte A, Dumont M, et al: Factors associated with an individual's decision to withdraw from genetic testing for breast and ovarian cancer susceptibility: Implications for counseling. Genet Test 11:45-54, 2007
- 76. Thompson HS, Valdimarsdottir HB, Duteau-Buck C, et al: Psychosocial predictors of BRCA counseling and testing decisions among urban African-American women. Cancer Epidemiol Biomarkers Prev 11:1579-1585, 2002
- 77. Olaya W, Esquivel P, Wong JH, et al: Disparities in BRCA testing: When insurance coverage is not a barrier. Am J Surg:562-565, 1982
- 78. Hallowell N, Ardern-Jones A, Eeles R, et al: Men's decision-making about predictive BRCA1/2 testing: The role of family. J Genet Couns 14:207-217, 2005
- 79. Hadfield SG, Horara S, Starr BJ, et al: Family tracing to identify patients with familial hypercholesterolaemia: The second audit of the Department of Health Familial Hypercholesterolaemia Cascade Testing Project. Ann Clin Biochem 46:24-32, 2009
- 80. van den Heuvel LM, Smets EMA, van Tintelen JP, et al: How to inform relatives at risk of hereditary diseases? A mixed-methods systematic review on patient attitudes. J Genet Couns 28:1042-1058, 2019
- 81. Weaver M: The double helix: Applying an ethic of care to the duty to warn genetic relatives of genetic information. Bioethics 30:181-187, 2016
- 82. Doukas DJ, Berg JW: The family covenant and genetic testing. Am J Bioeth 1:3-10, 2001
- 83. Parker M, Lucassen AM: Genetic information: A joint account? BMJ 329:165-167, 2004
- 84. Grill K, Rosén A: Healthcare professionals' responsibility for informing relatives at risk of hereditary disease. J Med Ethics 47:e12, 2020
- Henrikson NB, Wagner JK, Hampel H, et al: What guidance does HIPAA offer to providers considering familial risk notification and cascade genetic testing? J Law Biosci 7:Isaa071, 2020
- 86. van El CG, Baccolini V, Piko P, et al: Stakeholder views on active cascade screening for familial hypercholesterolemia. Healthcare (Basel) 6:108, 2018
- 87. Aktan-Collan KI, Kaariainen HA, Kolttola EM, et al: Sharing genetic risk with next generation: Mutation-positive parents' communication with their offspring in Lynch Syndrome. Fam Cancer 10:43-50, 2011
- Alegre N, Perre PV, Bignon YJ, et al: Psychosocial and clinical factors of probands impacting intrafamilial disclosure and uptake of genetic testing among families with BRCA1/2 or MMR gene mutations. Psychooncology 28:1679-1686, 2019
- Beard VK, Bedard AC, Nuk J, et al: Genetic testing in families with hereditary colorectal cancer in British Columbia and Yukon: A retrospective cross-sectional analysis. CMAJ Open 8:E637-E642, 2020
- 90. Bednar EM, Sun CC, McCurdy S, et al: Assessing relatives' readiness for hereditary cancer cascade genetic testing. Genet Med 22:719-726, 2020
- 91. Bradbury AR, Dignam JJ, Ibe CN, et al: How often do BRCA mutation carriers tell their young children of the family's risk for cancer? A study of parental disclosure of BRCA mutations to minors and young adults. J Clin Oncol 25:3705-3711, 2007
- 92. Bradbury AR, Patrick-Miller L, Egleston BL, et al: When parents disclose BRCA1/2 test results: Their communication and perceptions of offspring response. Cancer 118:3417-3425, 2012
- Bruwer Z, Futter M, Ramesar R: Communicating cancer risk within an African context: Experiences, disclosure patterns and uptake rates following genetic testing for Lynch syndrome. Patient Educ Couns 92:53-60, 2013
- 94. Cheung EL, Olson AD, Yu TM, et al: Communication of BRCA results and family testing in 1,103 high-risk women. Cancer Epidemiol Biomarkers Prev 19: 2211-2219, 2010
- 95. Claes E, Evers-Kiebooms G, Boogaerts A, et al: Communication with close and distant relatives in the context of genetic testing for hereditary breast and ovarian cancer in cancer patients. Am J Med Genet A 116A:11-19, 2003
- 96. Conley CC, Ketcher D, Reblin M, et al: The big reveal: Family disclosure patterns of BRCA genetic test results among young Black women with invasive breast cancer. J Genet Couns 29:410-422, 2020
- 97. Cragun D, Weidner A, Tezak A, et al: Family communication of genetic test results among women with inherited breast cancer genes. J Genet Couns 30: 701-709, 2021
- Eijzenga W, de Geus E, Aalfs CM, et al: How to support cancer genetics counselees in informing at-risk relatives? Lessons from a randomized controlled trial. Patient Educ Couns 101:1611-1619, 2018
- 99. Elrick A, Ashida S, Ivanovich J, et al: Psychosocial and clinical factors associated with family communication of cancer genetic test results among women diagnosed with breast cancer at a young age. J Genet Couns 26:173-181, 2017
- Ersig AL, Hadley DW, Koehly LM: Colon cancer screening practices and disclosure after receipt of positive or inconclusive genetic test results for hereditary nonpolyposis colorectal cancer. Cancer 115:4071-4079, 2009
- 101. Fischer C, Engel C, Sutter C, et al: BRCA1/2 testing: Uptake, phenocopies, and strategies to improve detection rates in initially negative families. Clin Genet 82: 478-483, 2012
- 102. Forrest LE, Burke J, Bacic S, et al: Increased genetic counseling support improves communication of genetic information in families. Genet Med 10:167-172, 2008
- 103. Gaff CL, Collins V, Symes T, et al: Facilitating family communication about predictive genetic testing: Probands' perceptions. J Genet Couns 14:133-140, 2005
- 104. Garcia C, Sullivan MW, Lothamer H, et al: Mechanisms to increase cascade testing in hereditary breast and ovarian cancer: Impact of introducing standardized communication aids into genetic counseling. J Obstet Gynaecol Res 46:1835-1841, 2020

- 105. Gauna Cristaldo FB, Touzani R, Apostolidis T, et al: Uptake of genetic counseling among adult children of BRCA1/2 mutation carriers in France. Psychooncology 28:1894-1900, 2019
- 106. Griffin NE, Buchanan TR, Smith SH, et al: Low rates of cascade genetic testing among families with hereditary gynecologic cancer: An opportunity to improve cancer prevention. Gynecol Oncol 156:140-146, 2020
- 107. Hagoel L, Dishon S, Almog R, et al: Proband family uptake of familial-genetic counselling. Psychooncology 9:522-527, 2000
- 108. Hall ET, Parikh D, Caswell-Jin JL, et al: Pathogenic variants in less familiar cancer susceptibility genes: What happens after genetic testing? JCO Precis Oncol 2: 1-10, 2018
- 109. Hayat Roshanai A, Lampic C, Rosenquist R, et al: Disclosing cancer genetic information within families: Perspectives of counselees and their at-risk relatives. Fam Cancer 9:669-679, 2010
- 110. Healey E, Taylor N, Greening S, et al: Quantifying family dissemination and identifying barriers to communication of risk information in Australian BRCA families. Genet Med 19:1323-1331, 2017
- 111. Hughes C, Lerman C, Schwartz M, et al: All in the family: Evaluation of the process and content of sisters' communication about BRCA1 and BRCA2 genetic test results. Am J Med Genet 107:143-150, 2002
- 112. Jeong GW, Shin W, Lee DO, et al: Uptake of family-specific mutation genetic testing among relatives of patients with ovarian cancer with BRCA1 or BRCA2 mutation. Cancer Res Treat 53:207-211, 2021
- 113. Julian-Reynier C, Sobol H, Sevilla C, et al: Uptake of hereditary breast/ovarian cancer genetic testing in a French national sample of BRCA1 families. The French Cancer Genetic Network. Psychooncology 9:504-510, 2000
- 114. Kardashian A, Fehniger J, Creasman J, et al: A pilot study of the Sharing Risk Information Tool (ShaRIT) for families with hereditary breast and ovarian cancer syndrome. Hered Cancer Clin Pract 10:4, 2012
- 115. Kegelaers D, Merckx W, Odeurs P, et al: Disclosure pattern and follow-up after the molecular diagnosis of BRCA/CHEK2 mutations. J Genet Couns 23: 254-261, 2014
- 116. Lammens CR, Aaronson NK, Wagner A, et al: Genetic testing in Li-Fraumeni syndrome: Uptake and psychosocial consequences. J Clin Oncol 28:3008-3014, 2010
- 117. Landsbergen K, Verhaak C, Kraaimaat F, et al: Genetic uptake in BRCA-mutation families is related to emotional and behavioral communication characteristics of index patients. Fam Cancer 4:115-119, 2005
- 118. Li ST, Yuen J, Zhou K, et al: Impact of subsidies on cancer genetic testing uptake in Singapore. J Med Genet 54:254-259, 2017
- 119. Lieberman S, Lahad A, Tomer A, et al: Familial communication and cascade testing among relatives of BRCA population screening participants. Genet Med 20:1446-1454, 2018
- 120. McGivern B, Everett J, Yager GG, et al: Family communication about positive BRCA1 and BRCA2 genetic test results. Genet Med 6:503-509, 2004
- 121. Montgomery SV, Barsevick AM, Egleston BL, et al: Preparing individuals to communicate genetic test results to their relatives: Report of a randomized control trial. Fam Cancer 12:537-546, 2013
- 122. Patenaude AF, Dorval M, DiGianni LS, et al: Sharing BRCA1/2 test results with first-degree relatives: Factors predicting who women tell. J Clin Oncol 24: 700-706, 2006
- 123. Peters MLB, Stobie L, Dudley B, et al: Family communication and patient distress after germline genetic testing in individuals with pancreatic ductal adenocarcinoma. Cancer 125:2488-2496, 2019
- 124. Ponz de Leon M, Benatti P, Di Gregorio C, et al: Genetic testing among high-risk individuals in families with hereditary nonpolyposis colorectal cancer. Br J Cancer 90:882-887, 2004
- 125. Ricker CN, Koff RB, Qu C, et al: Patient communication of cancer genetic test results in a diverse population. Transl Behav Med 8:85-94, 2018
- 126. Segal J, Esplen MJ, Toner B, et al: An investigation of the disclosure process and support needs of BRCA1 and BRCA2 carriers. Am J Med Genet A 125A: 267-272, 2004
- 127. Smith KR, Zick CD, Mayer RN, et al: Voluntary disclosure of BRCA1 mutation test results. Genet Test 6:89-92, 2002
- 128. Stoffel EM, Ford B, Mercado RC, et al: Sharing genetic test results in Lynch syndrome: Communication with close and distant relatives. Clin Gastroenterol Hepatol 6:333-338, 2008
- 129. Taber JM, Chang CQ, Lam TK, et al: Prevalence and correlates of receiving and sharing high-penetrance cancer genetic test results: Findings from the Health Information National Trends Survey. Public Health Genomics 18:67-77, 2015
- Tercyak KP, Peshkin BN, DeMarco TA, et al: Parent-child factors and their effect on communicating BRCA1/2 test results to children. Patient Educ Couns 47: 145-153, 2002
- 131. Troian J, Apostolidis T, Touzani R, et al: Parental disclosure of positive BRCA1/2 mutation status to children 10 years after genetic testing. Psychol Health Med 25:756-766, 2020
- 132. Vadaparampil ST, Malo T, de la Cruz C, et al: Do breast cancer patients tested in the oncology care setting share BRCA mutation results with family members and health care providers? J Cancer Epidemiol 2012:498062, 2012
- 133. Wagner Costalas J, Itzen M, Malick J, et al: Communication of BRCA1 and BRCA2 results to at-risk relatives: A cancer risk assessment program's experience. Am J Med Genet C Semin Med Genet 119C:11-18, 2003
- 134. Hughes C, Lynch H, Durham C, et al: Communication of BRCA1/2 test results in hereditary breast cancer families. Cancer Res Ther Control 8:51-59, 1999

AUTHORS' DISCLOSURES OF POTENTIAL CONFLICTS OF INTEREST

Cascade Testing for Hereditary Cancer Syndromes: Should We Move toward Direct Relative Contact? A Systematic Review and Meta-Analysis

The following represents disclosure information provided by authors of this manuscript. All relationships are considered compensated unless otherwise noted. Relationships are self-held unless noted. I = Immediate Family Member, Inst = My Institution. Relationships may not relate to the subject matter of this manuscript. For more information about ASCO's conflict of interest policy, please refer to www.asco.org/rwc or ascopubs.org/jco/authors/author-center.

Open Payments is a public database containing information reported by companies about payments made to US-licensed physicians (Open Payments).

Jose Alejandro Rauh-Hain

Consulting or Advisory Role: Schlesinger Associates, Guidepoint Inc

Charlene Thomas

Travel, Accommodations, Expenses: Inovio Pharmaceuticals, Nektar, Pfizer Kevin Holcomb

Research Funding: Fujirebio Diagnostics

Expert Testimony: Johnson and Johnson, Inc.

Allison W. Kurian

Research Funding: Myriad Genetics (Inst) Other Relationship: Ambry Genetics, Color Genomics, GeneDx/BioReference, Invitae, Genentech

Kenneth Offit

Patents, Royalties, Other Intellectual Property: Patent pending on therapeutic applications of targeting ERCC3 mutations in cancer. Diagnosis & treatment of ercc3-mutant cancer US20210137850A1 Other Relationship: AnaNeo Therapeutics, Inc

No other potential conflicts of interest were reported.

APPENDIX

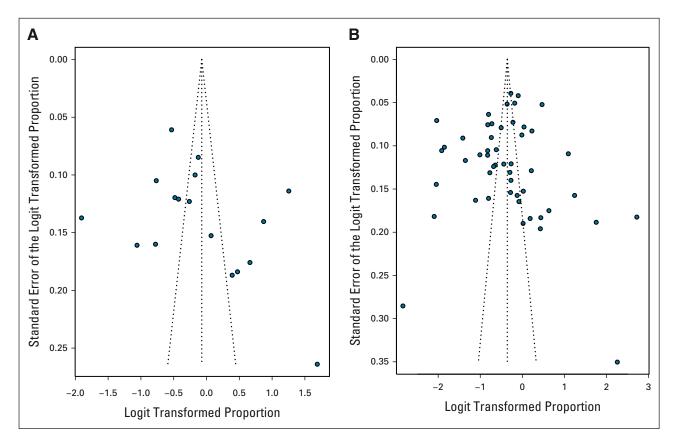


FIG A1. Funnel plots for genetic counseling and genetic testing outcomes. (A) Cascade genetic counseling, and (B) cascade genetic testing.

TABLE A1. Ovid MEDLINE Search Strategy

Ovid Medline

1. genetic counseling/or ((genetic adj3 counseling) or (genetic adj3 counselling) or (preventative adj3 genetic*)).ti.

2. genetic disorder/or ((genetic adj3 defect*) or (genetic adj3 disease*) or (genetic adj3 disorder*) or (genetic adj3 syndrome*) or (hereditary adj3 defect*) or (hereditary adj3 disease*) or (hereditary adj3 disorder*) or (hereditary adj3 syndrome*) or (heredodegenerative adj3 defect*) or (heredodegenerative adj3 disease*) or (heredodegenerative adj3 disorder*) or (heredodegenerative adj3 disease*) or (heredodegenerative adj3 disorder*) or (heredodegenerative adj3 defect*)).ti.

3. exp genetic predisposition/or ((genetic adj3 anticipation) or (genetic adj3 predisposition*) or (genetic adj3 prognos*) or (genetic adj3 resistance) or (genetic adj3 susceptibilit*)).ti.

4. genetic screening/or genetic carrier screening/or ((genetic adj3 test*) or (genetic adj3 screen*)).ti.

5. or/1-4

6. 5 and cascad*.ti.

7. ((cascade adj5 test*) or (cascade adj5 screen*) or (famil* adj5 test*) or (famil* adj5 screen*) or (hereditary adj5 test) or (hereditary adj5 screen*)).ti.

8.6 or 7

9. exp Neoplasm/or (cancer* or carcino* or cyst* or leukemi* or lymphom* or malignan* or melanoma* or myeloma* or neoplas* or oncolog* or sarcoma* or tumor* or tumour*).ti.

10. 8 and 9

Study	No. of Probands/ Relatives	Proband Age, years	Proband Sex, No.	Proband Cancer History, No.	Proband Race/ Ethnicity, No.	Relatives Included (degree of relation)	Relative Age, years	Relative Sex, No.	Relative Cancer History, No.	Relative Race/ Ethnicity, No.
Aktan-Collan et al, 2011 ⁸⁷	248/0	Mean: 56.4	Female: 127 Male: 121	Yes: 133						
Aktan-Collan et al, 2000 ⁵⁶	0/446					First	Mean: 43.0	Female: 229 Male: 217		
Aktan-Collan et al, 2007 ⁵⁷	0/286					First	Mean: 53.6			
Alegre et al, 2019 ⁸⁸	103/0	Mean: 55.2	Female: 92 Male: 11	Yes: 98 No: 5						
Barrow et al, 2015 ⁴⁵	0/591					First				
Beard et al, 2020 ⁸⁹	245/821	Mean: 49.3	Female: 150 Male: 95				Mean: 41.2	Female: 233 Male: 149		
Bednar et al, 2020 ⁹⁰	150/825	Mean: 46.2	Female: 132 Male: 18		White: 140 Black/African American: 2 American Indian/ Alaska Native: 2 Asian Indian: 1 Chinese: 1 Others: 4 Ethnicity: Non-Hispanic: 139 Hispanic: 10 Prefer not to answer: 1	First		Female: 380 Male: 445		
Biesecker et al, 2000 ³⁶	0/172						Median: 40	Female: 110 Male: 62		White: 172
Blandy et al, 2003 ⁵⁸	30/310	Mean: 52.0	Female: 30	Yes: 30 (breast and ovarian)		First, second, third		Female: 162 Male: 148		
Bodd et al, 2003 ⁴⁶	75/172		Female: 58 Male: 17			First		Female: 84 Male: 88		
Bradbury et al, 2007 ⁹¹	42/86	Median: 45.0	Female: 37 Male: 5	Yes: 23 No: 19	White: 39 Black: 1 Hispanic: 2	First (children)	Median: 12	Female: 53 Male: 33		
Bradbury et al, 2012 ⁹²	253/505	Mean: 47.7	Female: 241 Male: 12	Yes: 169 No: 84	White: 232 Black: 13 Others: 8	First (children)	Median: 17	Female: 253 Male: 252		

Study	No. of Probands/ Relatives	Proband Age, years	Proband Sex, No.	Proband Cancer History, No.	Proband Race/ Ethnicity, No.	Relatives Included (degree of relation)	Relative Age, years	Relative Sex, No.	Relative Cancer History, No.	Relative Race/ Ethnicity, No.
Braley et al, 2021 ³⁷	358/447		Female: 291 Male: 42		Asian: 95 European: 233 Latin/Central/ South American: 7 North American Indigenous: 17 Others: 6			Female: 310 Male: 137		Asian: 76 European: 230 Latin/Central/ South American: 2 North American Indigenous: 18 Others: 27 Unknown: 94
Brooks et al, 2004 ⁵⁹	0/384					First, second, distant		Female: 202 Male: 182		
Bruwer et al, 2013 ⁹³	80/158	Mean: 40.8	Female: 55 Male: 25		White: 6 Mixed ancestry: 74	First				
Caswell-Jin et al, 2019 ³⁸	1,101/2, 280				White non- Hispanic: 697 Hispanic: 36 Asian: 35 African: 4 Native American: 1 Multiple: 41 Unknown: 287 Ashkenazi Jewish: 123	First		Female: 1,195 Male: 1,085		(For relatives completing testing) White non- Hispanic: 899 Hispanic: 69 Asian: 34 African: 5 Native American: 0 Multiple: 38 Unknown: 39 Ashkenazi Jewish: 137
Cheung et al, 2010 ⁹⁴	1,103/0		Female: 1,103	Yes: 776 No: 327	White: 948 Asian: 66 Latina: 61 African American: 28					
Claes et al, 200395	63/0	Mean: 52.7	Female: 62 Male: 1			First, second, third				
Cody et al, 2008 ⁶⁰	29/181		Female: 29 Male: 1			First		Female: 97 Male: 84		
Conley et al, 2020 ⁹⁶	149/0	Mean: 44.9	Female: 149		Black: 149					

Study	No. of Probands/ Relatives	elatives for Included S Proband Age, years	Proband Sex, No.	Proband Cancer History, No.	Proband Race/ Ethnicity, No.	Relatives Included (degree of relation)	Relative Age, years	Relative Sex, No.	Relative Cancer History, No.	Relative Race/ Ethnicity, No.
Wagner Costalas et al, 2003 ¹³³	162/444	Median: 50	Female: 162		White: 147 Unknown: 15	First	Median: 50	Female: 204 Male: 240		
Courtney et al, 2019 ⁴¹	183/826	Mean: 45.7	Female: 150 Male: 33		Chinese: 136 Malay: 28 Indian: 11 Others: 8	First		Female: 71 Male: 41		Chinese: 80 Malay: 20 Indian: 6 Others: 6
Cragun et al, 2021 ⁹⁷	235/0	Median: 54	Female: 235		Non-Hispanic White: 208 Others: 27					
Gauna Cristaldo et al, 2019 ¹⁰⁵	135/296	Mean: 58.6	Female: 82 Male: 53			First	Mean: 32.6	Female: 137 Male: 159		
de Snoo et al, 2008 ⁶⁵	0/403									
Dilzell et al, 2014 ⁴²	50/0	Mean: 47.0	Female: 33 Male: 9 Unknown: 8		White: 41 Native American: 2 African American: 1 Asian: 1 Hispanic: 0 Others: 0 Unknown: 5	First, second				White: 20 Native American: 1 Hispanic: 1 Others: 0 Unknown: 2
Donenberg et al, 2019 ⁶¹	24/125					First, second				
Eijzenga et al, 2018 ⁹⁸	305/0	Intervention mean: 53.1 Control mean: 54.4	Female: 228 Male: 77	Yes: 216 No: 86						
Elrick et al, 2017 ⁹⁹	920/0	Mean: 44.6	Female: 920	Yes: 920						
Ersig et al, 2009 ¹⁰⁰	69/0	Mean: 47.8	Female: 28 Male: 41	Yes	White: 63 Unknown: 6					
Evans et al, 1997 ⁶⁹	0/224									
Evans et al, 2009 ⁶⁶	0/1,157						Group 1 Female median: 52 Male median: 55 Group 3 Female median: 44.6 Male median: 50.2	Female: 594 Male: 563		
				(continued c	n following page)					

Study	No. of Probands/ Relatives	elatives for Included S Proband Age, years	Proband Sex, No.	Proband Cancer History, No.	Proband Race/ Ethnicity, No.	Relatives Included (degree of relation)	Relative Age, years	Relative Sex, No.	Relative Cancer History, No.	Relative Race/ Ethnicity, No.
Fehniger et al, 2013 ¹⁵	73/606	Mean: 47.4			African American: 7 Asian/Pacific Islander: 14 Hispanic: 17 White: 32 Mixed: 3	First, second		Female: 241 Male: 202		White: 135 African American: 53 Asian/Pacific Islander: 117 Hispanic: 123 Mixed: 15
Finlay et al, 2008 ⁴⁷	115/655		Female: 83 Male: 32		Ashkenazi Jewish: 28 Non-Ashkenazi/ White: 79 Unknown/White: 7 Others: 1	First, second				
Fischer et al, 2012 ¹⁰¹	0/2,646									
Forrest et al, 2008 ¹⁰²	19/131	Intervention mean: 39.2 Control mean: 38.1	Female: 12 Male: 7				Intervention mean: 49.4 Control mean: 42.0	Female: 66 Male: 65		
Frey et al, 2020 ¹⁹	30/95	Median: 51.5	Female: 29 Male: 1				Median: 51	Female: 47 Male: 48		
Gaff et al, 2005 ¹⁰³	12/0									
Garcia et al, 2020 ¹⁰⁴	40/0	Preintervention cohort median: 63.0 Postintervention cohort: median 49.0	Female: 40	Yes (breast and ovarian)	Preintervention: Non-Hispanic White: 18 Non-Hispanic Black: 2 Postintervention: Non-Hispanic White: 17 Non-Hispanic Black: 1 Hispanic: 1 Unknown: 1					
Griffin et al, 2020 ¹⁰⁶	64/1,955	Mean: 53.0	Female: 60 Male: 4		White: 62 African American: 2					
				(continued c	n following page)					

Study	No. of Probands/ Relatives	elatives for Included Proband Age, years	Proband Sex, No.	Proband Cancer History, No.	Proband Race/ Ethnicity, No.	Relatives Included (degree of relation)	Relative Age, years	Relative Sex, No.	Relative Cancer History, No.	Relative Race/ Ethnicity, No.
Hadley et al, 2003 ⁶²	100/112	Median: 43	Female: 57 Male: 43	Yes: 62 No: 38	White: 87 African American: 7 Hispanic: 3 Asian American: 2 Native American: 1	First	Median: 39	Female: 64 Male: 48		
Hagoel et al, 2000 ¹⁰⁷	67/371	Mean: 48.5	Female: 64 Male: 3	Yes: 24 No: 43			Mean: 52.5	Female: 244 Male: 127	Yes: 68 No: 303	
Hall et al, 2018 ¹⁰⁸	57/0	Median: 52	Female: 47 Male: 10	Yes: 39 No: 18	Non-Hispanic/ White: 38 Hispanic: 11 Asian: 7 Ashkenazi Jewish: 3 Native American: 2 African American: 1 Others: 2					
Hayat Roshanai et al, 2010 ¹⁰⁹	147/81		Female: 133 Male: 14	Yes: 54 No: 93				Female: 57 Male: 24		
Healey et al, 2017 ¹¹⁰	165/0		Female: 138 Male: 27							
Holloway et al, 2008 ⁵⁴	54/269					First, second, third		Female: 161 Male: 108		
Hughes et al, 1999 ¹³⁴	163/0	< 50 years: 113 ≥ 50 years: 50	Female: 124 Male: 39	Yes: 45 No: 118		First	Mean: 49	Female	Yes: 16% (breast and ovarian)	
Hughes et al, 2002 ¹¹¹	43/81	≤ 50 years: 27 > 50 years: 16	Female: 43					Female: 81		
ldos et al, 2019 ²⁰	2,000/0	Median: 51	Female: 1,614 Male: 386	Yes: 1,451 No: 549	Non-Hispanic/ White: 807 Hispanic: 781 Asian: 234 Black: 76 Others: 102					
Jeong et al, 2021 ¹¹²	129/423		Female: 129			First, second, third		Female: 235 Male: 188		
				(continued c	n following page)					

Study	No. of Probands/ Relatives	Proband Age, years	Proband Sex, No.	Proband Cancer History, No.	Proband Race/ Ethnicity, No.	Relatives Included (degree of relation)	Relative Age, years	Relative Sex, No.	Relative Cancer History, No.	Relative Race/ Ethnicity, No.
Julian-Reynier et al, 2000 ¹¹³	0/419					First, second		Female: 244 Male: 175	Yes: 36 (female only) No: 208 (female only)	
Kardashian et al, 2012 ¹¹⁴	19/198	Control mean: 49 Intervention mean: 40	Female: 19		White: 14 Hispanic: 2 African American: 1 South Asian/ Indian: 1 Asian/Pacific Islander: 1 Ashkenazi Jewish (a subset of above): 3					
Kegelaers et al, 2014 ¹¹⁵	99/0	Mean: 49	Female: 74 Male: 25		White or Ashkenazi Jewish: 99					
Lammens et al, 2010 ¹¹⁶	23/119		Female: 16 Male: 7			First		Female: 59 Male: 60		
Landsbergen et al, 2005 ¹¹⁷	50/0	Mean at study: 49 Mean at testing: 44	Female: 50							
Lerman et al, 1996 ³⁹	0/279						Mean: 43	Female: 129 Male: 63		White: 192
Lerman et al, 1999 ⁴⁰	0/208						Mean: 47	Female: 77 Male: 62		White: 138 Native American: 1
Levin and Mæhle, 2017 ⁶³	19/144							Female: 78 Male: 66		
Li et al, 2017 ¹¹⁸	45/235									
Lieberman 2018 ¹¹⁹	1,771/0	Mean: 52.0	Female: 1,406 Male: 365		Ashkenazi Jewish: 1,771	First, second				
Lynch et al, 2009 ⁴⁸	0/1,574							Female: 854 Male: 720		
McGivern et al, 2004 ¹²⁰	38/803	Mean: 48.1	Female: 38		White: 37 Native American: 1	First, second, third				
				(continued o	n following page)					

Study	No. of Probands/ Relatives	Proband Age, years	Proband Sex, No.	Proband Cancer History, No.	Proband Race/ Ethnicity, No.	Relatives Included (degree of relation)	Relative Age, years	Relative Sex, No.	Relative Cancer History, No.	Relative Race/ Ethnicity, No.
McInerney-Leo et al, 2004 ⁶⁷	0/212							Female: 138 Male: 74		
Meijers-Heijboer et al, 2000 ⁴⁹	0/682					First, second		Female: 411 Male: 271		
Menko et al, 2020 ⁵⁰	0/239					First, second		Female: 113 Male: 114		
Montgomery et al, 2013 ¹²¹	345/1,046	Mean: 48.5	Female: 345		White: 328 Others: 17	First				
Patenaude et al, 2006 ¹²²	273/0		Female: 273		White: 273					
Peters et al, 2019 ¹²³	104/466	Median: 67	Female: 49 Male: 55	Yes	Among 99 who completed MICRA White: 82					
Petersen et al, 2018 ⁴³	32/95		Female: 25 Male: 7		Non-Hispanic/ White: 30 Others: 2			Female: 64 Male: 31		Non-Hispanic White: 90 Others: 5
Ponz de Leon et al, 2004 ¹²⁴	0/294					First				
Ramsoekh et al, 2007 ⁵³	0/1,547					First, second, third	HNPCC ≤ 50 years: 455 > 50 years: 185 FAP < 18 years: 22 18-40 years: 36 > 40 years: 44	Female: 383 Male: 359		
Reichelt et al, 1999 ⁷⁰	0/232							Female: 186 Male: 46	Yes: 30 (female only) No: 156 (female only)	
Ricker et al, 2018 ¹²⁵	136/0	Mean: 52.4	Female: 105 Male: 31	Yes: 103 No: 33	Non-Hispanic/ White: 63 Hispanic: 56 Asian: 14 Black: 2 Others: 1					
				(continued o	on following page)					

TABLE A2. Demographics of Study Study	No. of Probands/ Relatives	Proband Age, years	Proband Sex, No.	Proband Cancer History, No.	Proband Race/ Ethnicity, No.	Relatives Included (degree of relation)	Relative Age, years	Relative Sex, No.	Relative Cancer History, No.	Relative Race/ Ethnicity, No.
Sanz et al, 2010 ⁵¹	108/765	Median: 50.0	Female: 105 Male: 3			First, second	Mean: 45.0	Female: 413 Male: 352		
Segal et al, 2004 ¹²⁶	31/60	Mean: 47.7	Female: 31	Yes: 17 No: 13 Unknown: 1		First (children)	Mean: 18.6	Female: 30 Male: 30		
Seppälä et al, 2017 ⁵²	1,184/ 1,548	Mean: 50.7	Female: 603 Male: 581			First, second (children and grandchildren)	Mean: 32.7	Female: 743 Male: 801		
Sermijn et al, 2016 ⁶⁸	0/172						Mean: 46	Female: 87 Male: 85		
Smith et al, 2002 ¹²⁷	305/0	Mean: 44.0	Female: 189 Male: 116		White: 305					
Stoffel et al, 2008 ¹²⁸	174/0	Mean: 46.7	Female: 122 Male: 52	Yes: 106 No: 68	White: 157 Non-White: 16 Unknown/missing: 1					
Suthers et al, 2006 ¹⁷	74/767	Mean: 52.0	Female: 68 Male: 6				Mean: 46.5	Female: 151 Male: 187		
Taber et al, 2015 ¹²⁹	77/0	Median: 54.5	Female: 58 Male: 17	Yes: 33 No: 44 (breast and colon)	Non-Hispanic/ White: 40 Non-Hispanic/ Black: 15 Hispanic/Latino: 13 Others: 3					
Tercyak et al, 2002 ¹³⁰	42/68	Mean: 44.2	Female: 42	Yes: 30 No: 12	White: 37 Unknown: 5	First (children)	Mean: 12.6	Female: 37 Male: 31		
				(continued o	n following page)					

Study	No. of Probands/ Relatives	Proband Age, years	Proband Sex, No.	Proband Cancer History, No.	Proband Race/ Ethnicity, No.	Relatives Included (degree of relation)	Relative Age, years	Relative Sex, No.	Relative Cancer History, No.	Relative Race/ Ethnicity, No.
Troian et al, 2020 ¹³¹	230/465	Female mean: 48.8 Male mean: 60.4	Female: 160 Male: 70	Yes: 44		First (children)		Female: 249 Male: 216		
Trottier et al, 2015 ⁶⁴	53/202		Female: 53					Female: 202		
Vadaparampil et al, 2012 ¹³²	77/0	Mean at diagnosis: 47.6 Mean at testing: 52.0	Female: 77	Yes	White: 63 Black: 5 Others: 6 Unknown: 3					
Wagner et al, 2002 ⁵⁵	0/523					First, second	< 50 years: 191 > 50 years: 117	Female: 156 Male: 152		
Yoon et al, 2011 ⁴⁴	37/471	Median: 45.0	Female: 37		Malaysian: 6 Indian: 8 Chinese: 23	First		Female: 227 Male: 244		Malaysian: 11 Indian: 8 Chinese: 42

Journal of Clinical Oncology Study C Date of Datio

					Cascade Genetic Testing					
No. of Studies	Author Year	Completion % (95% Cl)	No. of Studies	Author Year	Completion % (95% CI)					
5	Julian-Reynier et al, 2000 ¹¹³ ; Cody et al, 2008 ⁶⁰ ; Holloway et al, 2008 ⁵⁴ ; Evans et al, 2009 ⁶⁶ ; Lammens et al, 2010 ¹¹⁶	39 (32 to 47)	17	Meijers-Heijboer et al, 2000 ⁴⁹ ; Julian-Reynier et al, 2000 ¹¹³ ; Wagner et al, 2002 ⁵⁵ ; Bodd et al, 2003 ⁴⁶ ; Blandy et al, 2003 ⁵⁸ ; Hadley et al, 2003 ⁶² ; McGivern et al, 2004 ¹²⁰ ; Brooks et al, 2004 ⁵⁹ ; Ponz de Leon et al, 2004 ¹²⁴ ; Suthers et al, 2006 ¹⁷ ; Ramsoekh et al, 2007 ⁵³ ; Cody et al, 2008 ⁵⁰ ; Holloway et al, 2008 ⁵⁴ ; Finlay et al, 2008 ⁴⁷ ; Evans et al, 2009 ⁶⁶ ; Lammens et al, 2010 ¹¹⁶ ; Sanz et al, 2010 ⁵¹	34 (28 to 41)					
6	Yoon et al, 2011 ⁴⁴ ; Trottier et al, 2015 ⁶⁴ ; Sermijn et al, 2016 ⁶⁸ ; Levin and Mæhle, 2017 ⁶³ ; Gauna Cristaldo et al, 2019 ¹⁰⁵ ; Donenberg et al, 2019 ⁶¹	34 (16 to 54)	21	Yoon et al, 2011 ⁴⁴ ; Fischer et al, 2012 ¹⁰¹ ; Fehniger et al, 2013 ¹⁵ ; Bruwer et al, 2013 ⁹³ ; Dilzell et al, 2014 ⁴² ; Trottier et al, 2015 ⁶⁴ ; Barrow et al, 2015 ⁴⁵ ; Sermijn et al, 2016 ⁶⁸ ; Levin and Mæhle, 2017 ⁶³ ; Seppälä et al, 2017 ⁵² ; Li et al, 2017 ¹¹⁸ ; Lieberman et al, 2018 ¹¹⁹ ; Petersen et al, 2018 ⁴³ ; Courtney et al, 2019 ⁴¹ ; Gauna Cristaldo et al, 2019 ¹⁰⁵ ; Donenberg et al, 2019 ⁶¹ ; Bednar et al, 2020 ⁹⁰ ; Menko et al, 2020 ⁵⁰ ; Griffin et al, 2020 ¹⁰⁶ ; Beard et al, 2020 ⁸⁹ ; Jeong et al, 2021 ¹¹²	39 (28 to 50)					
6	Aktan-Collan et al, 2000 ⁵⁶ ; Biesecker et al, 2000 ³⁶ ; McInerney-Leo et al, 2004 ⁶⁷ ; Aktan-Collan et al, 2007 ⁵⁷ ; de Snoo et al, 2008 ⁶⁵ ; Evans et al, 2009 ⁶⁶	59 (45 to 73)	12	Lerman et al, 1996 ³⁹ ; Evans et al, 1997 ⁶⁹ ; Lerman et al, 1999 ⁴⁰ ; Reichelt et al, 1999 ⁷⁰ ; Aktan-Collan et al, 2000 ⁵⁶ ; Biesecker et al, 2000 ³⁶ ; McInerney-Leo et al, 2004 ⁶⁷ ; Suthers et al, 2006 ¹⁷ ; Aktan-Collan et al, 2007 ⁵⁷ ; de Snoo et al, 2008 ⁶⁵ ; Evans et al, 2009 ⁶⁶ ; Lynch et al, 2009 ⁴⁸	52 (41 to 62)					
3	Trottier et al, 2015 ⁶⁴ ; Sermijn et al, 2016 ⁶⁸ ; Frey et al, 2020 ¹⁹	69 (30 to 97)	4	Trottier et al, 2015 ⁶⁴ ; Sermijn et al, 2016 ⁶⁸ ; Caswell-Jin et al, 2019 ³⁸ ; Frey et al, 2020 ¹⁹	53 (40 to 66)					
0			8	Bednar et al, 2020 ⁹⁰ ; Fehniger et al, 2013 ¹⁵ ; McGivern et al, 2004 ¹²⁰ ; Griffin et al, 2020 ¹⁰⁶ ; Petersen et al, 2018 ⁴³ ; Dilzell et al, 2014 ⁴² ; Finlay et al, 2008 ⁴⁷ ; Hadley et al, 2003 ⁶²	38 (24 to 54)					
	5 6 6 3	 5 Julian-Reynier et al, 2000¹¹³; Cody et al, 2008⁵⁰; Holloway et al, 2008⁵⁴; Evans et al, 2009⁶⁵; Lammens et al, 2010¹¹⁶ 6 Yoon et al, 2011⁴⁴; Trottier et al, 2015⁵⁴; Sermijn et al, 2016⁵⁸; Levin and Mæhle, 2017⁶³; Gauna Cristaldo et al, 2019¹⁰⁵; Donenberg et al, 2019⁶¹ 6 Aktan-Collan et al, 2000⁵⁶; Biesecker et al, 2000³⁶; McInerney-Leo et al, 2004⁶⁷; Aktan-Collan et al, 2007⁵⁷; de Snoo et al, 2008⁶⁵; Evans et al, 2009⁶⁶ 3 Trottier et al, 2015⁶⁴; Sermijn et al, 2016⁵⁸; Frey et al, 2020¹⁹ 	No. of Studies Author Year (95% Cl) 5 Julian-Reynier et al, 2000 ¹¹³ ; Cody et al, 2008 ⁶⁰ ; Holloway et al, 2008 ⁵⁴ ; Evans et al, 2009 ⁶⁶ ; Lammens et al, 2010 ¹¹⁶ 39 (32 to 47) 6 Yoon et al, 2011 ⁴⁴ ; Trottier et al, 2015 ⁶⁴ ; Sermijn et al, 2016 ⁶³ ; Levin and Mæhle, 2017 ⁶³ ; Gauna Cristaldo et al, 2019 ⁶⁵ ; Donenberg et al, 2019 ⁶¹ 34 (16 to 54) 6 Aktan-Collan et al, 2000 ⁵⁶ ; McInerney-Leo et al, 2000 ⁵⁶ ; McInerney-Leo et al, 2004 ⁶⁷ ; Aktan-Collan et al, 2009 ⁶⁶ 59 (45 to 73) 3 Trottier et al, 2015 ⁶⁴ ; Sermijn et al, 2020 ¹⁹ 69 (30 to 97) 2016 ⁶⁸ ; Frey et al, 2020 ¹⁹	No. of Studies Author Year (95% Cl) No. of Studies 5 Julian-Reynier et al, 2000 ¹¹³ ; Cody et al, 2008 ⁶⁰ ; Holloway et al, 2008 ⁵⁴ ; Evans et al, 2009 ⁶⁶ ; Lammens et al, 2010 ¹¹⁶ 39 (32 to 47) 17 6 Yoon et al, 2011 ⁴⁴ ; Trottier et al, 2015 ⁶⁴ ; Sermijn et al, 2016 ⁶⁶ ; Levin and Mæhle, 2017 ⁴³ ; Gauna Cristaldo et al, 2019 ¹⁰⁵ ; Donenberg et al, 2019 ⁶¹ 34 (16 to 54) 21 6 Aktan-Collan et al, 2000 ⁵⁶ ; McInerney-Leo et al, 2000 ⁵⁶ ; McInerney-Leo et al, 2000 ⁵⁶ ; Evans et al, 2009 ⁶⁶ 59 (45 to 73) 12 3 Trottier et al, 2009 ⁶⁶ 59 (30 to 97) 4	No. of StudiesAuthor Year(95% CI)No. of StudiesAuthor Year5Julian-Reynier et al, 2000 ¹¹³ ; Cody et al, 2008 ¹⁷ ; Evans et al, 2009 ¹⁷ ; Logans et al, 2009 ¹⁷ ; Evans et al, 2009 ¹⁷ ; Suthers et al, 2009 ¹⁷ ; Marnoveck et al, 2003 ¹⁷ ; Blandy et al, 2003 ¹⁷ ; Hadray et al, 2003 ¹⁷ ; Hammes et al, 2001 ¹⁶ ; Samrijn et al, 2016 ¹⁷ ; Tortier et al, 2011 ¹⁷ ; Tortier et al, 2013 ¹⁷ ; Brechare et al, 2013 ¹⁷ ; Donenberg et al, 2019 ¹⁷ ; Bodray et al, 2009 ¹⁷ ; Liet al, 2019 ¹⁷ ; Donenberg et al, 2019 ¹⁷ ; Donenberg et al, 2009 ¹⁷ ; Brechare et al, 2000 ¹⁷ ; Liet al, 2019 ¹⁷ ; Donenberg et al, 2009 ¹⁷ ; Autan-Collan et al, 2000 ¹⁷ ; Brechare et al, 2000 ¹⁷ ; Liet al, 2001 ¹⁷ ; Liet al, 2000 ¹⁷ ; Autan-Collan et al, 2000 ¹⁷ ; Autan-Collan et al, 2000 ¹⁷ ; Autan-Collan et al, 2000 ¹⁷ ; Brechare et al, 2000 ¹⁷ ;					

TABLE A3. Sensitivity Analyses for All Relatives Completing Cascade Genetic Counseling and Genetic Testing

	Cascade Genetic Counseling		Cascade Genetic Testing					
No. of Studies	Author Year	Completion % (95% Cl)	No. of Studies	Author Year	Completion % (95% Cl)			
11	Cody et al, 2008 ⁶⁰ ; Levin and Mæhle, 2017 ⁶³ ; Lammens et al, 2010 ¹¹⁶ ; Holloway et al, 2008 ⁵⁴ ; Yoon et al, 2011 ⁴⁴ ; Sermijn et al, 2016 ⁶⁸ ; Julian-Reynier et al, 2000 ¹¹³ ; Trottier et al, 2015 ⁶⁴ ; Gauna Cristaldo et al, 2019 ¹⁰⁵ ; Donenberg et al, 2019 ⁶¹ ; Evans et al, 2009 ⁶⁶	36 (27 to 46)	30	Cody et al, 2008 ⁶⁰ ; Lieberman et al, 2018 ¹¹⁹ ; Menko et al, 2020 ⁵⁰ ; Bodd et al, 2003 ⁴⁶ ; Blandy et al, 2003 ⁵⁸ ; Bruwer et al, 2013 ⁹³ ; Brooks et al, 2004 ⁵⁹ ; Levin and Mæhle, 2017 ⁶³ ; Lammens et al, 2010 ¹¹⁶ ; Sanz et al, 2010 ⁵¹ ; Seppälä et al, 2017 ⁵² ; Holloway et al, 2008 ⁵⁴ ; Wagner et al, 2002 ⁵⁵ ; Yoon et al, 2011 ⁴⁴ ; Meijers-Heijboer et al, 2000 ⁴⁹ ; Courtney et al, 2019 ⁴¹ ; Ponz de Leon et al, 2004 ¹²⁴ ; Ramsoekh et al, 2007 ⁵³ ; Sermijn et al, 2016 ⁶⁸ ; Julian-Reynier et al, 2000 ¹¹³ ; Trottier et al, 2015 ⁶⁴ ; Fischer et al, 2012 ¹⁰¹ ; Barrow et al, 2015 ⁴⁵ ; Suthers et al, 2006 ¹⁷ ; Beard et al, 2020 ⁸⁹ ; Jeong et al, 2021 ¹¹² ; Li et al, 2017 ¹¹⁹ ; Gauna Cristaldo et al, 2019 ¹⁰⁵ ; Donenberg et al, 2019 ⁶¹ ; Evans et al, 2009 ⁶⁶	36 (29 to 43)			
3	Frey et al, 2020 ¹⁹ ; Biesecker et al, 2000 ³⁶ ; McInerney-Leo et al, 2004 ⁶⁷	68 (45 to 87)	7	Caswell-Jin et al, 2019 ³⁸ ; Frey et al, 2020 ¹⁹ ; Biesecker et al, 2000 ³⁶ ; Lerman et al, 1996 ³⁹ ; Lerman et al, 1999 ⁴⁰ ; McInerney-Leo et al, 2004 ⁶⁷ ; Lynch et al, 2009 ⁴⁸	46 (41 to 51)			
6	Aktan-Collan et al, 2000 ⁵⁶ ; Aktan- Collan et al, 2007 ⁵⁷ ; Evans et al, 2009 ⁶⁶ ; Sermijn et al, 2016 ⁶⁸ ; Trottier et al, 2015 ⁶⁴ ; de Snoo et al, 2008 ⁶⁵	59 (42 to 76)	9	Aktan-Collan et al, 2000 ⁵⁶ ; Aktan-Collan et al, 2007 ⁵⁷ ; Evans et al, 2009 ⁶⁶ ; Sermijn et al, 2016 ⁵⁸ ; Evans et al, 1997 ⁶⁹ ; Trottier et al, 2015 ⁶⁴ ; Suthers et al, 2006 ¹⁷ ; Reichelt et al, 1999 ⁷⁰ ; de Snoo et al, 2008 ⁶⁵	57 (39 to 73)			
3	Cody et al, 2008 ⁶⁰ ; Lammens et al, 2010 ¹¹⁶ ; Holloway et al, 2008 ⁵⁴	45 (31 to 59)	13	Cody et al, 2008 ⁶⁰ ; Menko et al, 2020 ⁵⁰ ; Brooks et al, 2004 ⁵⁹ ; Lammens et al, 2010 ¹¹⁶ ; Sanz et al, 2010 ⁵¹ ; Seppälä et al, 2017 ⁵² ; Holloway et al, 2008 ⁵⁴ ; Wagner et al, 2002 ⁵⁵ ; Ramsoekh et al, 2007 ⁵³ ; Fischer et al, 2012 ¹⁰¹ ; Barrow et al, 2015 ⁴⁵ ; Beard et al, 2020 ⁸⁹ ; Jeong et al, 2021 ¹¹²	42 (37 to 48)			
2	Julian-Reynier 2000 ¹¹³ ; Gauna Cristaldo et al, 2019 ¹⁰⁵	35 (29 to 41)	11	Bednar et al, 2020 ⁹⁰ ; Blandy et al, 2003 ⁵⁸ ; Bruwer et al, 2013 ⁹³ ; Griffin et al, 2020 ¹⁰⁶ ; Dilzell et al, 2014 ⁴² ; Finlay et al, 2008 ⁴⁷ ; Julian-Reynier et al, 2000 ¹¹³ ; Gauna Cristaldo et al, 2019 ¹⁰⁵ ; Fehniger et al, 2013 ¹⁵ ; McGivern et al, 2004 ¹²⁰ ; Petersen et al, 2018 ⁴³	39 (22 to 57)			
	11 3 6 3 3	No. of StudiesAuthor Year11Cody et al, 200860; Levin and Mæhle, 201763; Lammens et al, 2010115; Holloway et al, 200854; Yoon et al, 201144; Sermijn et al, 200665; Julian-Reynier et al, 201665; Gauna Cristaldo et al, 201965; Donenberg et al, 201965; Donenberg et al, 201965; Donenberg et al, 2019663Frey et al, 202019; Biesecker et al, 20004676Aktan-Collan et al, 200056; Aktan- Collan et al, 200757; Evans et al, 200965; Sermijn et al, 201668; Trottier et al, 201564; de Snoo et al, 2008653Cody et al, 2008653Cody et al, 2008653Cody et al, 2008655	No. of Studies Author Year Completion % (95% Cl) 11 Cody et al, 2008 ⁶⁰ ; Levin and Mæhle, 2017 ⁶³ ; Lammens et al, 2010 ¹¹⁶ ; Holloway et al, 2008 ⁵⁴ ; Yoon et al, 2011 ⁴⁴ ; Sermijn et al, 2006 ⁶⁵ ; Julian-Reynier et al, 2000 ¹¹³ ; Trottier et al, 2015 ⁶⁴ ; Gauna Cristaldo et al, 2019 ¹⁰⁵ ; Donenberg et al, 2019 ⁶⁵ ; Evans et al, 2009 ⁶⁶ 36 (45 to 87) 3 Frey et al, 2020 ¹⁹ ; Biesecker et al, 2004 ⁶⁷ 68 (45 to 87) 6 Aktan-Collan et al, 2000 ⁵⁶ ; Aktan- Collan et al, 2009 ⁶⁶ ; Sermijn et al, 2015 ⁶⁴ ; de Snoo et al, 2008 ⁶⁵ 59 (42 to 76) 3 Cody et al, 2008 ⁶⁶ ; Lammens et al, 2009 ⁶⁶ ; Sermijn et al, 2015 ⁶⁴ ; de Snoo et al, 2008 ⁶⁵ 45 (31 to 59) 3 Cody et al, 2008 ⁶⁰ ; Lammens et al, 2008 ⁶⁴ 45 (31 to 59) 2010 ¹¹⁶ ; Holloway et al, 2008 ⁶⁴ 35 (29 to 41)	No. of Studies Author Year Completion % (95% CI) No. of Studies 11 Cody et al, 2008*9; Levin and Mæhle, 2017*9; Lammens et al, 2010*1*6; Holloway et al, 2008*4; Yoon et al, 2011*1; Sermijn et al, 2000*1*3; Trottier et al, 2015*6; Gauna Cristaldo et al, 2019*05; Donenberg et al, 2019*0; Donenberg et al, 2019*0; Donenberg et al, 2019*0; Donenberg et al, 2019*0; Sermijn et al, 2009*6 36 (27 to 46) 30 3 Frey et al, 2020*1*3; Trottier et al, 2000*5; McInerney-Leo et al, 2004*7 68 (45 to 87) 7 6 Aktan-Collan et al, 2000*6; Aktan- Collan et al, 2007*7; Evans et al, 2009*5; Sermijn et al, 2015*6; de Snoo et al, 2008*5 59 (42 to 76) 9 3 Cody et al, 2008*6; Lammens et al, 2009*5; Sermijn et al, 2015*6; de Snoo et al, 2008*5 13 3 Cody et al, 2008*9; Lammens et al, 2010*1*5; Holloway et al, 2008*4 45 (31 to 59) 13	No. of Studies Author Year Completion % (95% CI) No. of Studies Author Year 11 Cody et al, 2008°, Levin and Maehle, 2017°; Lammens et al, 2010°F, Holloway et al, 2008°; Yoon et al, 2017°; Lammens et al, 2016°F, Julian-Reynier et al, 2006°F, Trother et al, 2017°; Lammens et al, 2007°F, Stroming et al, 2017°; Sanz et al, 2017°; Lammens et al, 2007°F, Stroming et al, 2018°F, Wagner et al, 2018°F, Holloway et al, 2020°F, Bodd et al, 2018°F, Holloway et al, 2020°F, Sandi et al, 2017°; Holloway et al, 2020°F, Sandi et al, 2018°F, Holloway et al, 2020°F, Sandi et al, 2018°F, Holloway et al, 2020°F, Sandi et al, 2018°F, Studies et al, 2020°F, Beard et al, 2020°F, Sandi et al, 2018°F, Fischer et al, 2011°F, Sanar et al, 2018°F, Fischer et al, 2019°F, Beard et al, 2020°F, Beard et al, 2020°F 3 Frey et al, 2020°F, Matan- Collan et al, 2007°F, Kanas et al, 2008°F, Lerman et al, 1996°F, Lerman et al, 2009°F, Serminj et al, 2016°F, Lerman et al, 2009°F, Serminj et al, 2016°F, Sanas et al, 2009°F, Reichelt et al, 2020°F, Sanas et al, 2009°F, Sanas et al, 2000°F, Sanas et al, 2009°F, Sanas et al, 2008°F 3 Cody et al, 2008°F, Lammens et al, 2008°F, Holloway et al, 2008°F 45 (31 to 59) 13 Cody et al, 2008°F, Matan-Collan et al, 2007°F, Forket et al, 2006°F, Reichelt et al, 2016°F, Sanas et al, 2006°F, Reichelt et al, 2016°F, Sanas et al, 2010°F,			

TABLE A3. Sensitivity Analyses for All Relatives Completing Cascade Genetic Counseling and Genetic Testing (continued)

Frey et al

TABLE A3.	Sensitivity A	Analyses for	All Relatives	Completing	Cascade Genetic	Counseling and Genetic	Testing (continued)
-----------	---------------	--------------	---------------	------------	-----------------	------------------------	---------------------

		Cascade Genetic Counseling		Cascade Genetic Testing					
Study Characteristic	No. of Studies	Author Year	Completion % (95% Cl)	No. of Studies	Author Year	Completion % (95% Cl)			
Prospective	6	Levin and Mæhle, 2017 ⁶³ ; Yoon et al, 2011 ⁴⁴ ; Trottier et al, 2015 ⁶⁴ ; Donenberg et al, 2019; ⁶¹ Evans et al, 2009 ⁶⁶ ; Sermijn et al, 2016 ⁶⁸	33 (18 to 50)	14	Lieberman et al, 2018 ¹¹⁹ ; Bodd et al, 2003 ⁴⁶ ; Levin and Mæhle, 2017 ⁶³ ; Yoon et al, 2011 ⁴⁴ ; Meijers-Heijboer et al, 2000 ⁴⁹ ; Hadley et al, 2003 ⁶² ; Courtney et al, 2019 ⁴¹ ; Ponz de Leon et al, 2004 ¹²⁴ ; Trottier et al, 2015 ⁶⁴ ; Suthers et al, 2006 ¹⁷ ; Li et al, 2017 ¹¹⁸ ; Donenberg et al, 2019 ⁶¹ ; Evans et al, 2009 ⁶⁶ ; Sermijn et al, 2016 ⁶⁸	30 (22 to 39)			
Direct relative contact									
Prospective	9	Aktan-Collan et al, 2000 ⁵⁶ ; Aktan- Collan et al, 2007 ⁵⁷ ; Evans et al, 2009 ⁶⁶ ; Frey et al, 2020 ¹⁹ ; Sermijn et al, 2016 ⁶⁸ ; Trottier et al, 2015 ⁶⁴ ; Biesecker et al, 2000 ³⁶ ; McInerney-Leo et al, 2004 ⁶⁷ ; de Snoo et al, 2008 ⁶⁵	62 (50 to 74)	14	Aktan-Collan et al, 2000 ⁵⁶ ; Aktan-Collan et al, 2007 ⁵⁷ ; Caswell-Jin et al, 2019 ³⁸ ; Evans et al, 2009 ⁶⁶ ; Frey et al, 2020 ¹⁹ ; Sermijn et al, 2016 ⁶⁸ ; Trottier et al, 2015 ⁶⁴ ; Suthers et al, 2006 ¹⁷ ; Biesecker et al, 2000 ³⁶ ; Lerman et al, 1996 ³⁹ ; Lerman et al, 1999 ⁴⁰ ; McInerney-Leo et al, 2004 ⁶⁷ ; Reichelt et al, 1999 ⁷⁰ ; de Snoo et al, 2008 ⁶⁵	50 (41 to 58)			
Cross-sectional	0			0					
Retrospective	0			2	Evans et al, 1997 ⁶⁹ ; Lynch et al, 2009 ⁴⁸	67 (26 to 97)			
Method of data collection									
Patient-mediated contact									
Review of medical record	10	Cody et al, 2008 ⁶⁰ ; Lammens et al, 2010 ¹¹⁶ ; Holloway et al, 2008 ⁵⁴ ; Julian-Reynier et al, 2000 ¹¹³ ; Levin and Mæhle, 2017 ⁶³ ; Yoon et al, 2011 ⁴⁴ ; Sermijn et al, 2016 ⁶⁸ ; Trottier et al, 2015 ⁶⁴ ; Donenberg et al, 2019 ⁶¹ ; Evans et al, 2009 ⁶⁶	36 (26 to 47)	27	Cody et al, 2008 ⁵⁰ ; Menko et al, 2020 ⁵⁰ ; Brooks et al, 2004 ⁵⁹ ; Lammens et al, 2010 ¹¹⁶ ; Sanz et al, 2010 ⁵¹ ; Seppälä et al, 2017 ⁵² ; Holloway et al, 2008 ⁵⁴ ; Wagner et al, 2002 ⁵⁵ ; Ramsoekh et al, 2007 ⁵³ ; Julian-Reynier et al, 2000 ¹¹³ ; Fischer et al, 2012 ¹⁰¹ ; Barrow et al, 2015 ⁴⁵ ; Beard et al, 2020 ⁸⁹ ; Jeong et al, 2021 ¹¹² ; Bodd et al, 2003 ⁴⁶ ; Levin and Mæhle, 2017 ⁶³ ; Yoon et al, 2011 ⁴⁴ ; Meijers-Heijboer et al, 2004 ⁴²⁴ ; Sermijn et al, 2016 ⁶⁸ ; Trottier et al, 2015 ⁶⁴ ; Suthers et al, 2006 ¹⁷ ; Li et al, 2017 ¹¹⁸ ; Donenberg et al, 2019 ⁶¹ ; Evans et al, 2009 ⁶⁶ ; Bruwer et al, 2013 ⁹³	38 (31 to 45)			
Relative/proband self-report	1	Gauna Cristaldo et al, 2019 ¹⁰⁵	38 (33 to 44)	9	Bednar et al, 2020 ⁹⁰ ; Fehniger et al, 2013 ¹⁵ ; Blandy et al, 2003 ⁵⁸ ; McGivern et al, 2004 ¹²⁰ ; Griffin et al, 2020 ¹⁰⁶ ; Dilzell et al, 2014 ⁴² ; Finlay et al, 2008 ⁴⁷ ; Gauna Cristaldo et al, 2019 ¹⁰⁵ ; Petersen et al, 2018 ⁴³	33 (21 to 47)			
Direct relative contact									
		(contir	nued on following	page)					

		Cascade Genetic Counseling		Cascade Genetic Testing				
Study Characteristic	No. of Studies	Author Year	Completion % (95% Cl)	No. of Studies	Author Year	Completion % (95% Cl)		
Review of medical record	9	Aktan-Collan et al, 2000 ⁵⁶ ; Aktan- Collan et al, 2007 ⁵⁷ ; Evans et al, 2009 ⁶⁶ ; Frey et al, 2020 ¹⁹ ; Sermijn et al, 2016 ⁶⁸ ; Trottier et al, 2015 ⁶⁴ ; Biesecker et al, 2000 ³⁶ ; McInerney-Leo et al, 2004 ⁶⁷ ; de Snoo et al, 2008 ⁶⁵	62 (50 to 74)	16	Aktan-Collan et al, 2000 ⁵⁶ ; Aktan-Collan et al, 2007 ⁵⁷ ; Caswell-Jin et al, 2019 ³⁸ ; Evans et al, 2009 ⁶⁶ ; Frey et al, 2020 ¹⁹ ; Sermijn et al, 2016 ⁶⁸ ; Evans et al, 1997 ⁶⁹ ; Trottier et al, 2015 ⁶⁴ ; Suthers et al, 2006 ¹⁷ ; Biesecker et al, 2000 ³⁶ ; Lerman et al, 1996 ³⁹ ; Lerman et al, 1999 ⁴⁰ ; McInerney-Leo et al, 2004 ⁶⁷ ; Reichelt et al, 1999 ⁷⁰ ; Lynch et al, 2009 ⁴⁸ ; de Snoo et al, 2008 ⁶⁵	53 (43 to 62)		
Relative/proband self-report	0			0				
Study quality								
Direct relative contact ^a								
Low/moderate risk of bias	8	Aktan-Collan et al, 2000 ⁵⁶ ; Aktan- Collan et al, 2007 ⁵⁷ ; Evans et al, 2009 ⁶⁶ ; Frey et al, 2020 ¹⁹ ; Sermijn et al, 2016 ⁶⁸ ; Biesecker et al, 2000 ³⁶ ; McInerney-Leo et al, 2004 ⁶⁷ ; de Snoo et al, 2008 ⁶⁵	60 (46 to 72)	13	Aktan-Collan et al, 2000 ⁵⁶ ; Aktan-Collan et al, 2007 ⁵⁷ ; Caswell-Jin et al, 2019 ³⁸ ; Evans et al, 2009 ⁶⁶ ; Frey et al, 2020 ¹⁹ ; Sermijn et al, 2016 ⁶⁸ ; Evans et al, 1997 ⁶⁹ ; Biesecker et al, 2000 ³⁶ ; Lerman et al, 1999 ⁴⁰ ; McInerney-Leo et al, 2004 ⁵⁷ ; Reichelt et al, 1999 ⁷⁰ ; Lynch et al, 2009 ⁴⁸ ; de Snoo et al, 2008 ⁶⁵	53 (45 to 62)		
High risk of bias	1	Trottier et al, 2015 ⁶⁴	84 (69 to 95)	3	Lerman et al, 1996 ³⁹ ; Trottier et al, 2015 ⁶⁴ ; Suthers et al, 2006 ¹⁷	46 (24 to 69)		

^aSensitivity analysis not performed for patient-mediated cascade testing as the Joanna Briggs Institute was used for bias assessment and does not return a score.

Study Name, Year Aktan-Aktan-Collan Collan Biesecker Lynch Reichelt Suthers de Snoo Evans Frey Sermijn Evans Lerman Lerman Domain of et al, et al, Caswell-Jin et al, et al, et al, et al, Trottier et et al, et al, et al, et al, McInerney-Leo et al, et al, et al, Risk Bias 200757 et al, 2019³⁸ al, 201564 200948 et al, 200467 2006¹⁷ 2008⁶⁵ 2000⁵⁶ 2009⁶⁶ 2020¹⁹ 2016⁶⁸ 1997⁶⁹ 2000³⁶ 1996³⁹ 1999⁴⁰ 1999<mark>70</mark> Confounding _ + $^{+}$ +_ _ _ _ _ ____ _ _ _ _ _ _ Participant $^+$ $^+$ $^+$ $^+$ $^+$ $^+$ $^+$ $^+$ $^+$ $^+$ $^+$ $^+$ $^+$ $^+$ _ _ selection Classification $^+$ $^{+}$ $^{+}$ $^{+}$ + $^+$ $^{+}$ $^+$ $^{+}$ $^+$ $^{+}$ $^+$ $^+$ $^+$ _ _ of intervention Deviations from + $^+$ $^+$ $^+$ $^+$ $^+$ $^+$ + $^+$ $^+$ $^+$ $^+$ $^+$ $^+$ _ _ intended intervention Missing data $^{+}$ $^+$ $^+$ $^+$ $^+$ $^+$ _ $^+$ $^+$ $^+$ $^+$ $^+$ $^+$ $^+$ _ _ Measurement + $^{+}$ $^+$ $^+$ + $^{+}$ $^+$ $^{+}$ $^+$ $^{+}$ $^{+}$ $^+$ $^+$ $^{+}$ $^+$ +of outcomes Selection of + + + +++++ +++++++ $^+$ reported results Overall risk of bias $^{+}$ _ _ _ _ _ _ _ _ _ _ _ ____ _ ____ _

TABLE A4. Risk of Bias in Nonrandomized Studies of Interventions (n = 16)

NOTE. Studies had variable inclusion criteria for designating an at-risk relative.

Abbreviations: +, low risk of bias; -, moderate risk of bias; -, serious risk of bias.