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Review article
Impact of SARS-CoV-2 infection and COVID-19
on patients with inborn errors of immunity
Stuart G. Tangye, PhD, for the COVID Human Genetic Effort consortium* Darlinghurst and Randwick, Australia
Since the arrival of severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) in December 2019, its
characterization as a novel human pathogen, and the resulting
coronavirus disease 2019 (COVID-19) pandemic, over 6.5
million people have died worldwide—a stark and sobering
reminder of the fundamental and nonredundant roles of the
innate and adaptive immune systems in host defense against
emerging pathogens. Inborn errors of immunity (IEI) are
caused by germline variants, typically in single genes. IEI are
characterized by defects in development and/or function of cells
involved in immunity and host defense, rendering individuals
highly susceptible to severe, recurrent, and sometimes fatal
infections, as well as immune dysregulatory conditions such as
autoinflammation, autoimmunity, and allergy. The study of IEI
has revealed key insights into the molecular and cellular
requirements for immune-mediated protection against
infectious diseases. Indeed, this has been exemplified by
assessing the impact of SARS-CoV-2 infection in individuals
with previously diagnosed IEI, as well as analyzing rare cases of
severe COVID-19 in otherwise healthy individuals. This
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approach has defined fundamental aspects of mechanisms of
disease pathogenesis, immunopathology in the context of
infection with a novel pathogen, and therapeutic options to
mitigate severe disease. This review summarizes these findings
and illustrates how the study of these rare experiments of nature
can inform key features of human immunology, which can then
be leveraged to improve therapies for treating emerging and
established infectious diseases. (J Allergy Clin Immunol
2023;151:818-31.)

Key words: SARS-CoV-2, COVID-19, inborn errors of immunity,
primary immune deficiencies, immune dysregulation, type I IFN
signaling, cytokine storm

Inborn errors of immunity (IEI) are diseases caused by
germline pathogenic variants, typically in single genes.1-4 IEI
have an incidence of ;1 per 5,000 to 10,000 individuals.1-5

Currently, pathogenic variants in more than 480 genes have
been identified that cause IEI. These variants can lead to loss of
expression, complete (null) or partial (hypomorphic) loss of func-
tion, gain of function (GOF; hypermorphic), haploinsufficiency,
or dominant negative function of the encoded protein. IEI can pre-
sent as autosomal dominant (AD; heterozygous variants), auto-
somal recessive (AR; homozygous/compound heterozygous
variants), or X-linked (XL) recessive (hemizygous in male sub-
jects; homozygous or heterozygous with skewed X inactivation
in female subjects) conditions.4,6 However, some IEI have incom-
plete penetrance, with a significant proportion of individuals car-
rying some pathogenic variants compromising protein function
remaining unaffected.7 The mechanism or mechanisms underly-
ing incomplete penetrance remain unclear but may involve
epistatic effects of modifier genes, epigenetics, and/or variants
in additional genes.7 It is also worth noting that a monogenic
cause for the most common IEI—common variable immunodefi-
ciency (CVID)—has only been determined for ;20-30% of
affected individuals,8 thus suggesting that most cases of CVID
are likely to be oligo- or polygenic.

IEI are characterized by defects in immune cell development,
and/or impaired innate and adaptive immune function of hemato-
poietic and nonhematopoietic cells. Consequently, affected in-
dividuals are highly susceptible to severe, recurrent, and
sometimes fatal infections.4,6 As a result of this immunodeficient
state, vaccine efficacy can also be compromised in IEI, resulting
in affected individuals havingmodest, if any, vaccine-induced im-
munity against infectious diseases. Thus, IEI patients continue to
be susceptible to infection as well as being vulnerable to disease
as a result of live-attenuated vaccines.9

Although historically considered to be immune deficiencies
manifesting as infections, the clinical spectrum of IEI is
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extremely broad, with autoimmunity, autoinflammatory diseases,
allergy, bone marrow failure, and/or malignancy also being
common maladies of patients.1,3,4,6,10,11 Although most are indi-
vidually rare, IEI are collectively common5 and have enabled the
delineation of fundamental roles of individual genes, proteins,
signaling pathways, and cell types in immune cell development;
immune homeostasis and regulation; antitumor immunity; and
host defense against infectious diseases.1-3 Thus, IEI provide in-
sights into the molecular pathogenesis of more common diseases
and have led to the development of targeted therapies for various
immune dyscrasias.1-3,12
SARS-CoV-2 AND THE COVID-19 PANDEMIC
Coronaviruses have caused pandemics in the human population

for decades.13 Certainly we would have a short memory if we
failed to recall the deadly toll of the original SARS coronavirus
outbreak in 2002-3.13 In December 2019, the novel coronavirus
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
emerged from Wuhan, China, and then spread rapidly to cause
a catastrophic global pandemic.14 At the time of writing, more
than 650million people have been infected and at least 6.6million
people have died from SARS-CoV-2 infection (www.covid19.
who.int/, www.worldometers.info/coronavirus/). The clinical
spectrum of coronavirus disease 2019 (COVID-19) due to
SARS-CoV-2 infection ranges from asymptomatic to life-
threatening disease. The global case fatality rate (CFR) due to
SARS-CoV-2 infection is currently;1.1%, but this varies widely
across different countries, ranging from 0.1% to 5%, and even up
to 10% to 15% for some regions (www.ourworldindata.org/
grapher/deaths-covid-19-vs-case-fatality-rate). Importantly,
early during the pandemic, when viral screening was restricted
to symptomatic individuals and vaccines were still 12 to 18
months away, the average global CFR was 5% to 7%, and as
high as 10% to 20% in the United Kingdom and some European
countries15,16 (www.ourworldindata.org/grapher/deaths-covid-
19-vs-case-fatality-rate).

Several risk factors have been identified for developing severe
disease, as defined by the World Health Organization. These
include primarily age, with the frequency of severe cases/death
escalating with each decade of increasing age. For example, the
mortality rate for people aged <50 years was <1.0%; for
individuals aged 60-80 or more years, the mortality rate was
;4% to 25%. Male sex as well as comorbidities such as cardio-
vascular/pulmonary disease, obesity, diabetes, and liver/kidney
dysfunction also have an impact, albeit less than age.16-19 Corre-
lates of severe disease and mortality include lymphopenia,
increased levels of inflammatory mediators, cytokines, chemo-
kines,18,20-26 and complement components,27-29 which indicate
the intense immune activation and inflammation that can lead to
severe and potentially fatal SARS-CoV-2–induced cytokine
storm and consequent tissue pathology.

In healthy individuals, SARS-CoV-2 infection induces func-
tional CD41 and CD81 T cells and memory B cells specific for
viral epitopes, as well as neutralizing antibodies.30-39 These cor-
relates of protective immunity are detectable 1 or 2 weeks after
infection and persist at peak levels for 3 to 4 months. However,
in most cases, levels of neutralizing IgG and of SARS-CoV-2–
specific memory B cells and T cells dramatically wane 8 to 12
months after infection,32-34,36-40 potentially compromising host
defense against subsequent infections. Furthermore, several
SARS-CoV-2 variants that have acquired mutations in the immu-
nodominant spike domain, thus rendering these variants less sus-
ceptible to antibody-mediated neutralization, have emerged.41

Waning of acquired immunity after natural infection, combined
with immune-escape variants, are a significant challenge in con-
trolling SARS-CoV-2 infection, resulting in COVID-19
continuing to represent a significant global health risk.

SARS-CoV-2 INFECTION, COVID-19, AND IEI
Since the beginning of the pandemic, it was recognized that

people diagnosed with an IEI were potentially at risk of
developing severe COVID-19. Over the past 2 years, outcomes
of SARS-CoV-2 infection have been reported for;1330 individ-
uals with IEI. These studies range from reports of single cases or
small numbers of patients42-88 to cohort studies from Iran,89-91

Turkey,92-94 Brazil,95,96 Israel,97 Italy,98-101 Spain,102 the United
Kingdom,15,103,104 Mexico,105 Denmark,106,107 Poland,108 the
Czech Republic,109 France,110 and the United States,111-114 as
well as an international survey of 94 patients followed in 12 coun-
tries.115 These studies have revealed key outcomes of SARS-
CoV-2 infection in IEI and defined fundamental requirements
for host defense against infection.
Patients with IEI infected with SARS-CoV-2
Affected patients have been found to represent most, if not all,

categories of IEI as defined by the International Union of
Immunological Societies Committee (Table I).6 Of the;1330 pa-
tients reported so far, approximately 60% have antibody defi-
ciencies, consistent with antibody deficiency being the most
common IEI.6,8 This includes CVID, hypogammaglobulinemia,
and specific antibody and immunoglobulin subclass deficiencies
due to unknown genetic causes8 (;600 cases), as well as XL
(BTK pathogenic variants) and AR (eg, TCF3 pathogenic vari-
ants) agammaglobulinemia (;110 cases) and a series of patients
with pathogenic variants in single genes known to disrupt B-cell
function and humoral immunity, such as NFKB1, NFKB2,
PIK3CD, or PIK3R1 (Table I). Outcomes of SARS-CoV-2 infec-
tions have also been reported for patients with the following:

d Severe combined (JAK3, RAG, IL7RA, DCLRE1C) or com-
bined (CD40LG, RASGRP1, RELB, STK4, WAS, ICOS,
ATM, IKBKG, STAT3 DN, PGM3) immunodeficiencies.

http://www.covid19.who.int/
http://www.covid19.who.int/
http://www.worldometers.info/coronavirus/
http://www.ourworldindata.org/grapher/deaths-covid-19-vs-case-fatality-rate
http://www.ourworldindata.org/grapher/deaths-covid-19-vs-case-fatality-rate
http://www.ourworldindata.org/grapher/deaths-covid-19-vs-case-fatality-rate
http://www.ourworldindata.org/grapher/deaths-covid-19-vs-case-fatality-rate


TABLE I. SARS-CoV-2 infection in defined IEI

Type of IEI Gene defect/IEI

Approximate

no. of patients Study or studies

Severe combined

immunodeficiency

(n 5 25)

JAK3 1 70

RAG 3 92, 97, 115

IL7RA 1 91, 94

DCLRE1C 1 49

IL2RG 4 77, 95, 115

CD3D 1 105

Not specified 15 95, 99, 108

Combined

immunodeficiency

(n 5 91)

STAT3 DN 7 103, 109, 115, 176

PGM3 1 102, 115

ARPC1B 1 47, 105, 115

WAS 8 47, 48, 95, 99, 100, 103, 105, 108, 109, 115

ZAP70 1 115

CD40L 9 94, 95, 97, 103, 109, 111, 116, 143

RASGRP1 1 92

CARD11 1 92, 103

RELB 3 97, 116

STK4 1 89

DNMT3B/NBS1 4 89, 91, 94

ICOS 1 15, 103

IKBKG (NEMO) 3 72, 78, 94

ATM 11 91, 92, 94, 99, 100, 102, 103, 108

Di George syndrome 16 99, 100, 108

Not specified 23 89, 92, 94, 95, 99, 103, 108

Predominantly antibody

deficient (n 5 714)

CVID* 589 51, 52, 58, 71, 75, 83, 92, 94, 95, 97-100,

102-109, 111-115, 143

BTK 98 15, 46, 51, 53, 55, 60, 61, 66, 73, 85, 86, 91,

92, 94, 95, 97-100, 102-105, 108, 109, 111,

115, 116, 139, 140, 143

AR agammaglobulinemia 9 99, 100, 115

PIK3R1/PIK3CD GOF 7 64, 82, 91, 95, 99, 100, 115

NFKB1 4 15, 91, 103, 111, 115

NFKB2 3 43, 103, 115, 143

IKZF1 1 91

Immune dysregulation

(n 5 64)

AIRE (APS1/APECED) 29 57, 84, 94, 118, 122, 149

CTLA4 7 15, 97, 103, 115, 177

LRBA 3 92, 97, 115

SOCS1 1 76

STAT3 GOF 1 111

RAB27A 1 89

CD70 1 89

ALPS 5 95, 99, 102, 108

XLP (XIAP, SH2D1A) 4 63, 95, 108, 109, 115

PRKCD 1 115

RLTPR/CARMIL2 2 94

CD137 1 94

STXBP2 2 88, 94

Not specified/other 6 92, 99, 105, 108

Phagocytic defects, bone

marrow failure (n 5 36)

Chronic granulomatous disease (CYBB; NCF2) 28 15, 59, 89, 95, 97, 102, 103, 105, 108, 115

GATA2 2 15, 103, 115

DNAJC21 1 115

Not specified/other 5 92, 99

Innate immune defects

(n 5 75)

TLR3/UNC93B/TRIF/IRF3/IRF7/IRF9/TBK1 23 65, 68, 69, 120, 123

IFNAR1/2 7 42, 56, 87, 126

STAT1/TYK2 2 126

(Continued)
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TABLE I. (Continued)

Type of IEI Gene defect/IEI

Approximate

no. of patients Study or studies

TLR7 22 90, 124-126

MYD88/IRAK4 8 45, 81, 95, 99, 102

IFNGR1/IFNGR2/IL12RB1 5 54, 79, 95, 111, 115

STAT1 GOF 6 50, 92, 95, 102, 109, 115

CXCR4 GOF 2 94, 95

Autoinflammatory disorders (n 5 96) MEFV 68 93, 95, 110, 115

IL1RN 1 89

Aicardi-Gouti�eres syndrome

(RNASEH2B, SAMHD1)

5 15, 99, 100, 115

TNFAIP3 1 15

NLRP1, NLRP3, NLRP12 3 91, 95

IL36RN 1 74

ADA2 1 94

Not specified/other 16 95, 108

Complement deficiencies (n 5 55) Hereditary angioedema (pathogenic

SERPING variants), C3 deficiency, other

55 15, 91, 95, 96, 109

Phenocopies of IEI Good syndrome 13 83, 100, 103, 105, 109

Autoantibodies to type I IFNs Many! 128-136

*Including hypogamma, immunoglobulin subclass deficiency, and specific antibody deficiency.
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d Immune dysregulatory disorders (STAT3 GOF, AIRE,
CTLA4, CD70, LRBA, RAB27A, SH2D1A, XIAP, RLTPR/
CARML2, CD137, STXBP2, ALPS).

d Phagocytic defects (chronic granulomatous disease,
GATA2).

d Innate immune defects (IFNGR1, IFNGR2, IFNAR1, IF-
NAR2, IL12RB1, IRAK4, MYD88, STAT1 GOF, CXCR4,
TBK1, TLR3, TLR7, IRF3, IRF7, IRF9).

d Autoinflammatory disorders (MEFV, TNFAIP3, IL36R,
ADA2).

d Complement deficiencies.
d Phenocopies of IEI.

A complete reference listing is provided in Table I.
Clinical features in IEI after SARS-CoV-2 infection
The clinical presentation of SARS-CoV-2 infection in patients

with IEI resembled that of the general population16,19 inasmuch
that symptoms frequently include fever, cough, headache, upper
respiratory symptoms, fatigue, and
dyspnea.15,89,91,92,94,95,97,99,102,103,105,106,108,109,115 Similarly,
risk factors for hospital/intensive care unit (ICU) admission and
developing severe and/or fatal disease were also consistent with
those determined from studies of the general population. Thus,
the most severe disease was observed in older patients with IEI
as well as those with pre-existing comorbidities, such as previous
infection; lung, kidney, heart, or gut disease, diabetes, and
obesity; or after solid organ or hematopoietic stem cell
transplantation.43,58,89,91,92,94,95,98,103,105,106,108,111,112,115 Other
predictors of severe disease in IEI patients included leukopenia
(reduced numbers of B, CD41 T, and natural killer cells) and hy-
pogammaglobulinemia/low IgG trough levels before infection,
and increased levels of markers of systemic inflammation after
infection.43,46,58,66,103,109,111,114 Interestingly, and similar to the
general population, ;10% to 20% of infected IEI patients were
asymptomatic, and up to another ;30% to 50% developed only
mild disease.15,89,90,92-95,97-106,108-115
Despite such similarities in disease presentation and risk
factors for the general population and IEI patients, there were
notable differences. First, the age of affected IEI patients was
markedly younger than the general population (;28 years vs
;50-plus years).16,44,79,81,84,89,91,93-95,100,102-104,108-110,115 There
were also differences in age at infection for different IEI. Thus,
SARS-CoV-2–infected patients with CVID, periodic fevers, or
complement defects were generally older, and patients with de-
fects in innate immune cell signaling due to pathogenic variants
in IRAK4, MYD88, or IFNAR1/IFNAR2 were generally younger,
than the entire cohort of published IEI patients (Fig 1, A). Second,
the proportion of IEI patients admitted to ICU—including
younger individuals—was substantially higher than the general
population (10-30% vs 2-5%).15,16,44,81,91,92,94,102,105,109,111,115

Third, duration of disease—likely a result of prolonged viremia
and virus shedding—was longer (1-6 months vs 1-2 weeks),
and the likelihood of reinfection was greater, than observed for
the general population.46,55,59,77,83,84,92,99,100,104,106,107,116 Thus,
COVID-19 generally manifests clinically at a younger age, runs
a more protracted course, and has a more severe outcome
requiring hospitalization and/or ICU admission in many individ-
uals with IEI compared to the epidemiology of SARS-CoV-2
infection in the general population (Fig 2).16,44 This is reminis-
cent of findings for SARS-CoV-2 infection in patients with cystic
fibrosis. Here, it was found that many cystic fibrosis patients had
mild disease and common risk factors such as diabetes and previ-
ous solid organ transplantation, but subgroups of patients ex-
hibited increased hospitalization rates and younger age at
presentation relative to the general population.117
Mortality due to SARS-CoV-2 infection in IEI
Depending on the country or region where different studies

have been performed, as well as the size of the cohort being
investigated, the CFR after SARS-CoV-2 infection in patients
with IEI is highly variable, being 0,97,102,106,113,114 2% to
5%,99,101,107-109 5% to 10%,92,95,103,104 15% to 20%,105,112 20%
to 30%,94,111,118 and >30%.15,89,91 From all available published
studies, 113 of 1328 patients with IEI died after SARS-CoV-2
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SARS-CoV-2 infection
in Inborn Errors of immunity

Increased Case Fatality Rate
• 8.5% vs 0.1-5% overall

• much higher (20 to >100x)
in younger age groups

• role of type 1 IFN in innate 
immune response

Younger age of infection; 
•  ~20 years less than 

general population

Increased admission 
rate to ICU

• 10-20% vs ~2%

Longer disease duration
• 1-6 mo vs 1-2 weeks

Prolonged viremia/
viral shedding

• ~6 weeks vs 2-3 weeks
• due to poor humoral immunity

Age at death also lower
•  ~25-30 years < general population

FIG 2. Consequences and outcomes of SARS-CoV-2 infection in patients with IEI.
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infection, resulting in an overall CFR of 8.5% (Fig 1, B). Remark-
ably, this is highly similar to the CFR reported by Meyts et al115

for an international survey of 94 patients with a broad range of IEI
recruited from 12 countries (9.4%). The significant variability in
CFR reported for many studies likely reflects the type of cohort
being analyzed (eg, children vs adults; predominantly CVID
due to unknown genetic defects vs severe combined immunodefi-
ciency/combined immunodeficiency),108 the predominant SARS-
CoV-2 variant at the time of study,41 the burden of SARS-CoV-2
infection in different countries and the relative impact this had on
the respective health care systems, and the differences in
screening for SARS-CoV-2 infection across the population. It is
also important to note that the ;500 IEI described exhibit enor-
mous diversity6—so much so that it is challenging to draw con-
clusions when assessing these patient cohorts with limited
granularity. It is also likely that some IEI will result in greater pre-
disposition to severe COVID-19, while others may even be pro-
tective,119 thereby obscuring the overall severity of some IEI.

While it is difficult to make a direct comparison between CFR
for IEI and the general population, this has been addressed for
some countries. In Brazil,95 Italy,95,99-101 and the United
Kingdom,103 the CFR in IEI was ;2- to 4-fold greater than the

https://www.covid19.who.int/
https://www.worldometers.info/coronavirus/
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general population. More strikingly, though, were findings from
Iran, Italy, the United Kingdom, and an international study that
the CFR for IEI patients aged 20-60 years or 60-75 years was
20-50 times or 2.5-5 times greater, respectively, than the general
population.91,99,103,115 Furthermore, while the absolute number of
patients analyzed is relatively small, the CFR for IEI patients aged
0-19 years is also much greater—possibly up to 100 times—than
this age group in the general population.91,99,103,115 Consequently,
the overall average age at death due to SARS-CoV-2 infection in
IEI patients is much younger than the general population (Fig 2;
;50 years vs ;80 years).16,44,79,81,84,89,91,93-95,100,102-104,109,110,115

Thus, in addition to IEI patients’ generally presenting with
COVID-19 at a younger age and a greater proportion requiring
admission to ICU than the general population, the mortality rate
of SARS-CoV-2 infection is greater in IEI, especially at ages where
SARS-CoV-2 has a very low—even negligible—CFR in the general
population (Fig 2).16,91,99,103,115
INNATE IMMUNE DEFECTS PREDISPOSE TO

SEVERE AND FATAL SARS-CoV-2 INFECTION
When comparing different IEI, there was often no correlation

between the type of IEI and severity of disease/death after
SARS-CoV-2 infection. For instance, the CFR for CVID,
agammaglobulinemia, or chronic granulomatous disease were
7.2%, 6.2%, and 7.7%, respectively, compared to 8.5% for all
IEI patients reported to date (Fig 1, B). However, there were
several striking exceptions. First, although only few individuals
have been identified, AR-pathogenic variants in IFNAR1 or IF-
NAR2, encoding individual receptor subunits for type I IFNs, re-
sulted in lethal COVID-19 in 4 (57%) of 7 patients (Fig 1, B)
and an average age at death of 11.8 years.42,56,87,120 Second,
SARS-CoV-2 infection was severe in most patients with autoim-
mune polyendocrinopathy candidiasis ectodermal dystrophy
(APECED) as a result of biallelic pathogenic AIRE variants.
These individuals develop neutralizing autoantibodies against
a range of cytokines, including type I IFN.121 In the setting of
SARS-CoV-2 infection of APECED patients, rates of hospitali-
zation (72%, 21/29), ICU admission (59%, 17/29), and death
(13.8%, 4/29)57,84,115,118,122 were higher than all IEI patients
as well as the general population (Fig 1, B).16,19 Third, patients
with biallelic pathogenic variants in MYD88, IRAK, or IRF7—
which function downstream of virus-sensing Toll-like receptors
to induce production of type I IFNs by dendritic cells—
experience severe COVID-19, with 5 of 8 MYD88/IRAK-defi-
cient and all 5 IRF7-deficient SARS-CoV-2–infected individuals
developing COVID-19 pneumonia, requiring hospitalization
and/or admission to ICU; 1 of 5 IRF7-deficient patient died
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(Fig 1, B).45,81,95,99,102,120,123 Thus, genetic lesions or autoanti-
bodies that compromise innate immunity by disrupting produc-
tion or function of type I IFNs underpin severe, life-threatening,
and often fatal SARS-CoV-2 infection (Fig 3).

These findings have been validated by a forward genetics
approach. Whole-exome and -genome sequencing of adults and
children who developed severe and/or life-threatening SARS-
CoV-2 infection/COVID-19 identified pathogenic variants in
genes involved in type I IFN signaling. These include genes
required for the production of (TLR3, TLR7, UNC93B1, TICAM1,
TBK1, IRF3, IRF7) or responses to (IFNAR1, IFNAR2, TYK2,
STAT2, IRF7) type I IFN produced by plasmacytoid dendritic
cells or respiratory epithelial cells after viral infec-
tion.65,90,120,123-126 Overall, genetic variants in the type I IFN
signaling pathway were the cause of severe COVID-19 in ;3%
of adults and ;10% of children (Fig 3).120,126,127

Parallel to these genetic studies was the discovery that
neutralizing autoantibodies specific for type I IFNs cause
severe COVID-19 in 10% to 20% of otherwise healthy
individuals infected with SARS-CoV-2.128-137 Interestingly,
these autoantibodies were: (1) predominantly directed against
IFN-a and IFN-v but not IFN-b; (2) found in increasing pro-
portions of affected patients with each decade of life; (3) asso-
ciated with disease severity, prolonged virus clearance, and
admission to ICU; (4) inversely related to serum levels of
type I IFNs and interferon-stimulated gene signatures in
myeloid cells;78,128-137 and (5) enriched in affected male sub-
jects compared to female subjects across different age intervals.
This, together with XL TLR7 deficiency, may contribute to the
increased incidence of hospitalization and severe COVID-19 in
male versus female subjects. These genetic and serologic
studies unequivocally identified a fundamental nonredundant
role for type I IFN–dependent immunity against SARS-CoV-
2 infection, with 20% to 25% of cases of severe and
life-threatening COVID-19 resulting from defective type I
IFN production or function (Fig 3).

Additional anecdotal data have also linked impaired type I
IFN–dependent immunity with susceptibility to SARS-CoV-2
infection. First, the CFR for autoinflammatory conditions such as
Aicardi-Gouti�eres syndrome or familial Mediterranean fever was
lower than that for all reported cases of IEI (4.4% vs 8.5%; Fig 1,
B).15,93,95,99,110,115 Thus, increased basal type I IFN signaling in
these conditions may enable prompt host defense against
SARS-CoV-2. Second, a recent study of patients with systemic
lupus erythematosus, which is characterized by overproduction
of type I IFNs, found that a subset of these patients also produced
autoantibodies against type I IFNs. Remarkably, while these
autoantibody-positive patients were less likely to develop active
lupus disease, members of this same group were at increased
risk of severe viral infections and sequelae including COVID-
19 pneumonia.138
B CELLS AND PROTECTIVE IgG IN HOST DEFENSE

AGAINST SARS-CoV-2
The study of COVID-19 in IEI provides an elegant opportunity

to define redundant and nonredundant requirements for host
defense against SARS-CoV-2. Initial studies found that patients
with congenital B-cell deficiency and agammaglobulinemia had
relatively mild disease and prompt recovery after SARS-CoV-2
infection.51,73,92,97,98 This led to a suggestion that B cells and
neutralizing IgG may not be necessary for controlling SARS-
CoV-2 infection and preventing severe COVID-19.98 Consistent
with this, the CFR for XL/AR agammaglobulinemia patients is
lower than all IEI patients (6.2%, 6/97, vs 8.5%, Fig 1, B). How-
ever, COVID-19 and SARS-CoV-2 viremia/virus shedding are
prolonged in many B-cell–deficient/agammaglobulinemia pa-
tients, resulting in pneumonia requiring extended or multiple hos-
pital stays, as well as numerous treatments to control viral
infection.46,55,60,61,85,86,99,100,104,116,139 There have also been re-
ports of chronic and/or repeated infections with
worse outcomes than primary infection before vaccination, as
well as breakthrough infections after vaccination in some XL
agammaglobulinemia (XLA) patients.100,104,109,116,140 Similar
observations in terms of relapsing COVID-19, as well as reinfec-
tion and/or sustained infection with SARS-CoV-2, have been
made for patients with primary antibody deficiencies,82,104,116

further underscoring an important role for secreted immunoglob-
ulin in controlling and clearing viral infection and attenuating
disease. These findings from analysis of SARS-CoV-2 infection
in individuals with congenital B-cell deficiency are also supported
by studies of patients with rheumatic/musculoskeletal autoim-
mune diseases (rheumatoid arthritis, vasculitis, Sj€ogren syn-
drome, systemic lupus erythematosus) who are treated with
B-cell–depleting therapies such as rituximab. In these cases, ther-
apeutic B-cell depletion can result in high rates of hospital admis-
sions, severe COVID-19 including protracted pneumonia and
acute respiratory distress syndrome, and death after SARS-
CoV-2 infection.141,142 Thus, the inability to generate specific
IgG responses to novel antigens as a result of a lack of naive B
cells can have dire consequences in the setting of SARS-CoV-2
infection (Fig 3).

This apparent paradox of prolonged illness and viremia but
often-milder disease and lower CFR in XLA patients who
completely lack B cells may be explained by the nature of the
genetic defect. On the one hand, agammaglobulinemia in these
patients highlights a key role for specific immunoglobulins in
controlling and clearing viral infection, even when responses of
innate immune cells and CD41 and CD81 T cells are intact.46,83

Indeed, administration of convalescent plasma isolated from pre-
viously infected healthy donors or anti–SARS-CoV-2–specific
monoclonal antibodies (mAbs) led to rapid reductions in virus
load and recovery in XLA—more so than observed with antiviral
treatments alone (Fig 3).46,53,55,61,85,86,104,139,143 Although conva-
lescent plasma or anti–SARS-CoV-2mAbs are a logical treatment
for XLA patients, similar results have also been reported for other
IEI patients who have near-normal B cells and serum immuno-
globulin levels but defects in generating functional and protective
IgG-dependent humoral immunity. For instance, passive IgG
therapy led to dramatic improvements in the clinical course of
SARS-CoV-2 infection in patients with pathogenic variants in
NFKB2,43 IL2RG,77 IKBKG (NEMO),72 and PIK3CD GOF,82

as well as many cases of CVID.83,103,104,109,143 In fact, anti–
SARS-CoV-2 mAb or convalescent plasma greatly improved
virus clearance and disease outcomes when combined with
antivirals (eg, remdesivir).43,104,143 Thus, while type I IFN–
mediated innate immunity is indispensable for containing acute
SARS-CoV-2 infection, antibodies are necessary to mitigate pro-
longed viral infection, minimize disease, and prevent reinfections
(Fig 3).

On the other hand, Bruton tyrosine kinase (BTK) deficiency
—the genetic cause of XLA—compromises production of
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inflammatory cytokines by myeloid cells.144 Thus, relatively
mild pulmonary disease in XLA may result from a lessened cyto-
kine storm after SARS-CoV-2–induced activation of BTK-
deficient myeloid cells. This is consistent with findings that
some SARS-CoV-2–infected XLA patients have lower serum
IL-6 levels than infected individuals in the general population,111

observations of mild COVID-19 in patients with B-cell malig-
nancies who were treated with BTK inhibitors,145 and rapid clin-
ical improvement in COVID-19 patients treated with a BTK
inhibitor as a therapeutic intervention.146 These findings reveal
dual roles for BTK in host defense and tissue pathology after
SARS-CoV-2 infection. First, B cells and virus-specific anti-
bodies are important for controlling prolonged infection. Second,
BTK in myeloid cells may drive the SARS-CoV-2–induced cyto-
kine storm characteristic of severe COVID-19. These findings
provide a rationale for the use of passive immunoglobulin sero-
therapy (intravenous immunoglobulin, mAbs) to expedite virus
clearance in IEI characterized by impaired humoral immunity,
as well as of BTK inhibitors, Janus kinase (JAK) inhibitors, and
tocilizumab (anti–IL-6R)146-148 to quell SARS-CoV-2–induced
production of inflammatory cytokines bymyeloid cells. However,
it needs to be emphasized that timing of the delivery of these treat-
ments can also influence outcome and efficacy. For instance, if
administered too early, JAK inhibits may attenuate the protective
effect of type I IFNs, while delayed treatment with tocilizumab
may be ineffectual. Similarly, these interventions may be better
suited for some specific types of IEI, particularly as results
from clinical trials of these inhibitors in the general population
have been variable.
GENE-DIRECTED THERAPIES FOR COVID-19 IN

SOME IEI
Delineation of the genetic and serologic causes of severe

COVID-19 has led to the implementation of specific therapies in
some IEI. For instance, the discovery that inborn errors in type I
IFN signaling are a risk factor for severe COVID-19 inspired the
use of IFN-a2a or IFN-b, anti–SARS-CoV-2 mAbs, or convales-
cent plasma to treat SARS-CoV-2 infection in individuals with
pathogenic variants in TLR3, IRF3, IRF7, or IRF9,68,69,123 which
genetically disrupt type I IFN function, or patients with patho-
genic AIRE variants or incontinentia pigmenti due to pathogenic
IKBKG variants that result in production of neutralizing anti–type
I IFN autoantibodies.78,84,149 However, convalescent plasma has
also been found to contain neutralizing anti–type I IFN autoanti-
bodies,137 which obviously could impact the efficacy of this
treatment.

Similarly, plasma exchange was effective at reducing serum
levels of neutralizing anti–type I IFN autoantibodies in an
APECED patient.57 While it is difficult to draw specific conclu-
sions regarding possible therapies for SARS-CoV-2 infection in
IEI from these anecdotal investigations, most treated patients ex-
hibited mild disease, experienced rapid resolution of symptoms,
and made a full recovery.57,68,69,78,84,149 This contrasts with those
IEI patients who did not receive specific treatments and experi-
enced severe and even fatal COVID-19.120,126,127 Thus, early pro-
vision of type I IFN or antibody against SARS-CoV-2 may
represent an immunotherapeutic approach to prevent critical
pneumonia in patients who are most vulnerable to severe
SARS-CoV-2 infection due to disrupted type I IFN–mediated im-
munity. Furthermore, because anti–type I IFN autoantibodies are
mostly directed against IFN-a and IFN-v, IFN-b can still be used
therapeutically for severe COVID-19 in individuals who develop
these neutralizing autoantibodies.
VACCINES AGAINST SARS-CoV-2
The global rollout of several different SARS-CoV-2 vaccines

(mRNA, adenoviral based, inactivated virus, viral proteins) has
dramatically attenuated COVID-19–associated mortality.150

These vaccines induce SARS-CoV-2–specific CD41 and CD81

T cells, memory B cells, and neutralizing serum IgG in >95%
of healthy donors. Readouts of vaccine-induced immunity gener-
ally peaked 2 or 3 weeks after receipt of the second vaccine dose
and then either significantly declined (specific IgG titers, CD81 T
cells), plateaued (CD41 T cells), or even increased (memory B
cells).150-152 Regardless of these trajectories, SARS-CoV-2–spe-
cific adaptive cellular and humoral immunity remained detectable
;6 months after vaccination.150-152 The magnitude of these
vaccine-induced correlates of immunity in healthy individuals
was generally comparable to or greater than those observed in
convalescent individuals recovering from natural SARS-CoV-2
infection.150-152

While these findings are encouraging, several challenges
remain in controlling SARS-CoV-2. First, vaccine efficacy
declines from 85-95% at 2 to 4 weeks after full vaccination to
20-50% 6 months later, thus revealing an inability to completely
resist future infection and highlighting the need for vaccine
boosters.150,153,154 Second, while successfully reducing disease
severity, hospital admissions, and mortality, current vaccines do
not effectively prevent SARS-CoV-2 transmission.150,155 Third,
the emergence of variants of concern—which can arise in immu-
nocompromised individuals156—compromise vaccine efficacy,
with vaccine-induced immunity being significantly reduced
against several SARS-CoV-2 variants.41,154,157 Thus, COVID-
19 continues to represent a significant health risk despite the
availability of several SARS-CoV-2 vaccines. Furthermore, find-
ings from studies of IEI have established the importance of
SARS-CoV-2–specific neutralizing IgG in preventing severe
and prolonged disease as well as reinfection, so it is critical to
continue encouraging vaccine and booster uptake in the general
population.
EFFICACY OF SARS-CoV-2 VACCINES IN IEI

PATIENTS
Many studies have initially assessed the immunogenicity and

effectiveness of SARS-CoV-2 vaccines in IEI. The general
findings from these studies were that (1) fewer patients mounted
SARS-CoV-2–specific IgG (30-75%) and T-cell responses (;50-
70%) compared to healthy donors (;95-100%), (2) titers of
SARS-CoV-2–specific IgG, efficacy of virus neutralization, and
magnitude of T-cell responses were reduced in patients compared
to healthy donors, and (3) poor vaccine-induced immunity in pa-
tients correlated with reduced numbers of CD41 T cells or mem-
ory B cells, low serum IgG and IgA, and older age.80,158-173

Importantly, IEI that disrupt type I IFN–mediated immunity or
autoantibodies against type I IFN do not impair humoral immune
responses to RNA vaccines.174 Furthermore, despite normal
levels of neutralizing IgG, some patients with anti–type I IFN au-
toantibodies develop breakthrough COVID-19 pneumonia.175
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Overall, these studies established that SARS-CoV-2 vaccines
are safe and well tolerated in people with IEI, and that they can
induce specific adaptive immune responses, albeit at reduced
levels compared to the general population. However, several
significant unknowns remain. First, most studies assessed immune
responses 2 to 8 weeks after the second vaccine dose. Thus,
sustained durability of vaccine-induced immunity in IEI patients
against SARS-CoV-2 has not been determined. Second, while
almost all vaccine studies measured SARS-CoV-2–specific IgG,
only a few determined virus neutralization. Thus, it is unknown
whether vaccine-induced immunoglobulin in IEI patients can
neutralize the original SARS-CoV-2 strain and emerging variants.
Third, specificCD41 andCD81T-cell responses invaccinated IEI
patients were not assessed in most studies. The paucity of data
relating to responses of T-cell subsets impacts our ability to predict
vulnerability of individuals with intrinsic T-cell defects to SARS-
CoV-2 infection. Fourth, howwaning immunity and SARS-CoV-2
variants impact host defense, as well as the capacity of vaccine
booster doses to amplify immunity, in IEI patients is unexplored.
Fifth, ;80% of all IEI patients assessed in these studies did not
have a molecular diagnosis; most had CVID. Thus, it is difficult
to (1) delineate cellular and molecular mechanisms underlying
impaired immunity in IEI patients, (2) extrapolate these findings
from predominantly CVID and antibody-deficient patients to
IEI in general, (3) identify which pathways are necessary to elicit
robust and long-lived immune responses, and (4) leverage these
findings to developmethods to target specific keymolecules/path-
ways to improve host defense against infectious diseases induced
by next-generation vaccines. These are issues that need to be ad-
dressed in ongoing and future studies.
CONCLUSION
Analysis of individuals with single-gene defects that result in

immune dysregulation have defined the fundamental requirements
for immune homeostasis and host defense against a broad range of
infectious agents. It was upon this foundation that the fields of
genetics/genomics, basic and clinical immunology, and infectious
diseases combined to make profound advances in unraveling the
complexity of SARS-CoV-2 infection and severe COVID-19.
Indeed, some of the key discoveries over the past 2 or 3 years
have arisen from studying severe COVID-19 in otherwise healthy
individuals, as well as in individuals with IEI. These studies
established the framework to further define host factors necessary
for early innate and sustained adaptive immune-mediated protec-
tion against SARS-CoV-2 infection and the establishment of
immunologic memory, as well as mechanisms of severe disease
and identifying opportunities for therapeutic intervention to
manage COVID-19. Despite these breakthrough findings, there
remains significant uncertainty regarding SARS-CoV-2 and IEI
patients. These include the impact of standard treatments for IEI on
immunity against SARS-CoV-2 infection and vaccination (eg, JAK
inhibitors, TNF inhibitors, abatacept, rapamycin), long-term
effects of SARS-CoV-2 infection/reinfection on IEI patients with
autoimmunity and/or malignancy, whether long COVID and
neurologic impacts are more prevalent in IEI compared to the
general population, and the protective effect of neutralizing
antibodies that are accumulating in donor blood products used
for immunoglobulin replacement therapy. However, with the rapid
pace of the advances already made since we first became aware of
SARS-CoV-2, there is no doubt that answers to these questions
—andmore—will be delivered aswemove into the third year (and,
I hope, the last frontier) of this pandemic.
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