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STUDY QUESTION: Can human umbilical cord platelet-rich plasma (hUC-PRP) efficiently treat endometrial damage and restore fertility
in a preclinical murine model?

SUMMARY ANSWER: Local application of hUC-PRP promotes tissue regeneration and fertility restoration in a murine model of
Asherman syndrome and endometrial atrophy (AS/EA).

WHAT IS KNOWN ALREADY: AS/EA are well-described endometrial pathologies that cause infertility; however, there are currently
no gold-standard treatments available. Recent reports have described the successful use of human platelet-rich plasma in reproductive
medicine, and its regenerative potential is further enhanced using hUC-PRP, due to the ample growth factors and reduced
pro-inflammatory cytokines in the latter.

STUDY DESIGN, SIZE, DURATION: hUC-PRP (n¼ 3) was processed, characterized and delivered locally to endometrial damage in a
murine model (n¼ 50). The hUC-PRP was either used alone or loaded into a decellularized porcine endometrium-derived extracellular
matrix (EndoECM) hydrogel; endometrial regeneration, fertility outcomes and immunocompatibility were evaluated 2 weeks following
treatment administration.

PARTICIPANTS/MATERIALS, SETTING, METHODS: Umbilical cord blood was obtained from women in childbirth. Endometrial
damage (mimicking AS/EA) was induced using ethanol in 8-week-old C57BL/6 mice, and treated with the most concentrated hUC-PRP
sample 4 days later. Characterization of hUC-PRP and immunotolerance was carried out with multiplex technology, while uterine samples
were analyzed by immunohistochemistry and quantitative PCR. The number of embryos and their morphology was determined visually.

MAIN RESULTS AND THE ROLE OF CHANCE: Platelet density was enhanced 3-fold in hUC-PRP compared to that in hUC blood
(P< 0.05). hUC-PRP was enriched with growth factors related to tissue regeneration (i.e. hepatocyte growth factor, platelet-derived
growth factor-BB and epidermal growth factor), which were released constantly (in vitro) when hUC-PRP was loaded into EndoECM. Both
treatments (hUC-PRP alone and hUC-PRP with EndoECM) were immunotolerated and caused significantly regeneration of the damaged
endometrium, evidenced by increased endometrial area, neoangiogenesis, cell proliferation and gland density and lower collagen deposition
with respect to non-treated uterine horns (P< 0.05). Additionally, we detected augmented gene expression of Akt1, VEGF and Ang, which
are involved in regenerative and proliferation pathways. Finally, hUC-PRP treatment restored pregnancy rates in the mouse model.

LARGE SCALE DATA: N/A.

LIMITATIONS, REASONS FOR CAUTION: This proof-of-concept pilot study was based on a murine model of endometrial damage
and the use of EndoECM requires further validation prior to clinical implementation for women affected by AS/EA.
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WIDER IMPLICATIONS OF THE FINDINGS: The local administration of hUC-PRP has high impact and is immunotolerated in a mu-
rine model of AS/EA, as has been reported in other tissues, making it a promising candidate for heterologous treatment of these endome-
trial pathologies.

STUDY FUNDING/COMPETING INTEREST(S): This study was supported by the Ministerio de Ciencia, Innovación y Universidades;
Conselleria de Innovación, Universidades, Ciencia y Sociedad Digital, Generalitat Valenciana; and Instituto de Salud Carlos III. The authors
do not have any conflicts of interest to declare.
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Introduction
The uterus, the largest organ within the female reproductive system, is
composed of an external serous membrane (termed the perimetrium),
a thick middle muscular (termed the myometrium) and an inner mu-
cous layer (termed the endometrium) (Simón et al., 2009). The human
endometrium is a highly dynamic tissue, which repeatedly undergoes a
cycle of proliferation, differentiation and renewal, approximately every
28 days, in preparation for a potential blastocyst implantation and sub-
sequent pregnancy. Key components of these processes include the
endogenous epithelial and stromal stem cells, endometrial microvessels
and other exogenous factors (including hormones, bone marrow cells
and paracrine factors) (de Miguel-Gómez et al., 2021b). While endo-
metrial renewal is usually efficient, pathologies or disorders, such as
Asherman’s syndrome or endometrial atrophy (EA), may result in re-
current pregnancy loss or infertility (Galliano et al., 2015). Asherman
syndrome (AS) is a rare disease characterized by the presence of intra-
uterine adhesions and fibrosis inside the uterine cavity and/or endo-
cervix (Yu et al., 2008) caused by iatrogenic trauma to the
endometrium, Müllerian duct malformation, uterine artery emboliza-
tion or even the insertion of intrauterine devices (Conforti et al.,
2013). EA, also known as thin/refractory endometrium, is character-
ized by an inadequate endometrial growth and poor vascularity
(Mahajan and Sharma, 2016) resulting from iatrogenic causes (i.e. re-
peated or vigorous curettages or myomectomies, or indiscriminate use
of drugs such as clomiphene citrate) or intrinsic factors (e.g. inflamma-
tion elicited by acute or chronic infections).

There currently exists a discord regarding the gold-standard treat-
ment of these endometrial pathologies. Cell therapies based on human
bone marrow-derived stem cells (Singh et al., 2014; Santamaria et al.,
2016), umbilical cord-derived mesenchymal stem cells (Cao et al.,
2018) or menstrual-derived mesenchymal stem cells (Tan et al., 2016;
Hu et al., 2019; Ma et al., 2020) have been proposed as promising
treatments for AS/EA management. However, the current clinical
strategies involving these biological products may be invasive or have a
low engraftment (Terrovitis et al., 2010; Von Bahr et al., 2012;

Gharibeh et al., 2022) and have thus encouraged the search for alter-
native non-invasive treatments.

Based on the premise that the biomolecules secreted by stem cells
are sufficient to activate tissue regeneration, especially in the endome-
trium (de Miguel-Gómez et al., 2020), human platelet-rich plasma
(hPRP) has gained substantial importance in regenerative medicine
within the fields of in dentistry (Sachdeva et al., 2015; Fan et al., 2020;
Xu et al., 2020), dermatology (Giordano et al., 2017; Elghblawi, 2018;
Moneib et al., 2018), orthopedics (Memeo et al., 2014; Le et al., 2019;
Berney et al., 2020), neurology (Malahias et al., 2018) and gynecology,
which includes the management of vaginal (Kim et al., 2017), ovarian
(Cakiroglu et al., 2022) and uterine disorders (Chrysanthopoulou
et al., 2017; Turan et al., 2018; Sfakianoudis et al., 2019; Kim et al.,
2019a). Applications in the endometrium (Chang et al., 2015;
Zadehmodarres et al., 2017; Kim et al., 2019a) have mostly been posi-
tive; however, recent controversial results have been reported in
terms of fertility restoration (Javaheri et al., 2020; Lin et al., 2021).

Notably, hPRP is a fraction of blood, easily obtained via gradient
density centrifugation, and distinguished for clinically providing supra-
physiologic platelet concentrations. Although precise concentrations
have not yet been established, some authors consider PRP to simply
have more platelets than normal (Saiz et al., 2020), while others claim
a minimum of 800 000 (Mazzotta et al., 2022) or 1 000 000 platelets/
ml (Rebulla et al., 2016) are sufficient to provide a regenerative effect,
and another group argued that excessive platelet concentrations may
decrease the effectiveness of the treatment (Gentile and Garcovich,
2020). Nevertheless, there is consensus that hPRP can be considered
a safe and effective treatment that promotes tissue repair. Once acti-
vated, the integrity of the plasma membrane of platelets is compro-
mised, releasing the various growth factors (e.g. platelet-derived
growth factor-BB (PDGF-BB), epidermal growth factor (EGF), hepato-
cyte growth factor (HGF) and vascular endothelial growth factor
(VEGF)) contained within their a-granules into the surroundings
(Cecerska-Hery�c et al., 2022). Although the main advantage of autolo-
gous hPRP therapy is the immunotolerant nature of its components,
its quality can vary due to patient age and/or comorbidities, and

WHAT DOES THIS MEAN FOR PATIENTS?
This study evaluated whether the platelet-rich plasma derived from the human umbilical cord blood (hUC-PRP) can be used to treat two
disorders of the uterus (Asherman’s syndrome and endometrial atrophy) that cause infertility. Mouse models of these disorders confirmed
the beneficial effects of hUC-PRP treatment, which produces enhanced regenerative factors. Specifically, we observed no apparent harm in
treated animals and an improvement in their endometrial health and their achievement of pregnancy. Finally, hUC-PRP can be easily pre-
served, is independent of the patient’s comorbidities, and is microbiologically safe. Overall, we have confirmed that hUC-PRP can heal the
uterus and propose this treatment as a potential alternative for infertile patients affected by these endometrial disorders.
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different processing protocols (Le et al., 2019). Further, the large vol-
umes of blood required to prepare sufficient hPRP may be detrimental
to a patient’s hemodynamic stability (Tadini et al., 2015a). On the
other hand, since human umbilical cord platelet-rich plasma (hUC-
PRP) is derived from women of reproductive age, it becomes a reli-
able, microbiologically safe and consistent therapeutic option, avoiding
extra health burdens to patients (Caiaffa et al., 2021). In this regard,
the optimal impact of hPRP therapy is achievable when the plasma is
obtained from younger women, and blood sample processing is com-
mercially standardized (Castellano et al., 2017). Indeed, human umbili-
cal cord (hUC) plasma releases more growth factors and less pro-
inflammatory cytokines, compared to adult plasma in vitro (Parazzi
et al., 2010; Ehrhart et al., 2018), and can restore ovarian function in
mice (Buigues et al., 2021). Moreover, our group previously reported
the efficacy of commercial hUC plasma in a murine model of endome-
trial damage (de Miguel-Gómez et al., 2021a). Although hUC-PRP was
proposed as a supplement for cell culture (Subiran et al., 2021) and
has recently been applied in clinical trials for diabetic foot ulcer (Volpe
et al., 2017), dystrophic recessive epidermolysis bullosa (Tadini et al.,
2015b), corneal lesions (Samarkanova et al., 2021) and knee osteoar-
thritis (Caiaffa et al., 2021), certain parameters remain to be investi-
gated for its use in endometrial regeneration, and ultimately, fertility
restoration.

In this study, we analyzed hUC-PRP to elucidate its composition (in
comparison with adult hPRP) and kinetics of growth factors release, as
well as its immunocompatibility in vivo, impact on endometrial tissue
regeneration, and ultimately, fertility restoration in a mouse model.
Further, since we previously described the local application of an
immunotolerated decellularized porcine endometrium-derived extra-
cellular matrix (EndoECM) hydrogel loaded with growth factors, to en-
hance endometrial regeneration (López-Mart�ınez et al., 2021b), we
additionally studied the application of hUC-PRP alone, or loaded into
EndoECM, in an established preclinical murine model of AS/EA to an-
alyze the combined effect.

Materials and methods

Study design
All patients signed an institutionally accepted general research waiver
to express their written consent prior to donating their biological sam-
ples. All of the animal procedures described in this study were per-
formed in accordance with Directive 2010/63/EU and the Ethics
Committee for Animal Welfare of University of Valencia (A-
20210203145327). An overview of the study is depicted in Fig. 1.

Collection of hUC blood, processing and
selection of hUC-PRP
hUC blood was donated from women (aged 20–32) in childbirth, who
were healthy and delivered a healthy newborn, following Hospital
Politécnico y Universitario La Fe standard operating procedures for
hUC blood donation. Briefly, hUC blood was collected after delayed
hUC clamping using a blood collection bag containing anticoagulant
(731712, Grifols, Barcelona, Spain). Then, hUC blood was immediately
stored at 4�C until its processing.

The hUC-PRP was first prepared using a commercialized ‘closed’
system (HyTissueVR PRP20, P7-4020, Fidia, Madrid, Spain), where each
20 ml hUC blood sample was transferred into specialized tubes, and
centrifuged as described by the manufacturer, then used to isolate and
extract �6 ml of platelet-poor plasma (hUC-PPP, upper fraction) and
4 ml of hUC-PRP (lower fraction). To evaluate if the quality of resulting
platelet concentration was maintained with respect to traditional PRP
methodology, all samples were dually processed using the traditional
‘open’ system involving double centrifugation, following protocols pre-
viously established by our group (de Miguel-Gómez et al., 2021a). In
this case, the hUC blood samples were centrifuged at 280�g for
8 min to separate plasma, followed by centrifugation at 400�g for
15 min to collect the concentrated hUC-PRP from the lower third
fraction.

The number of platelets in the whole hUC blood, hUC-PRP and
hUC-PPP samples was quantified using a platelet counting fluid
(1700090, SPINREACT, Girona, Spain) on a Neubauer chamber. The
most enriched hUC-PRP sample was selected for subsequent analyses,
and aliquots were stored at �80�C until further use. After thawing
samples, plasma was systematically activated with 5% CaCl2 (at
0.1 mol/l of hUC-PRP).

Multiplex analyses for hUC-PRP and
hUC-PPP characterization
A panel of 45 protein biomarkers was analyzed in the hUC-PRP
(extracted using both methods) and hUC-PPP, using the Cytokine/
Chemokine/Growth Factor 45-Plex 387 Human ProcartaPlexTM Panel
1 (EPX450-12171-901, Thermo Fisher Scientific, Vienna, Austria) with
Luminex xMAPVR Technology. The results were compared to our pre-
viously published analyses of PRP obtained from adult peripheral blood
(de Miguel-Gómez et al., 2021a).

Preparation of EndoECM supplemented
with hUC-PRP
Uteri from healthy sows were processed as we previously described
(López-Mart�ınez et al., 2021a), to produce the EndoECM, in accordance
with ISO 9001 quality management, in relation to the safe and legal pro-
curement of animal organs from the slaughterhouse. Then, as estab-
lished in other studies using extracellular matrix hydrogels (Zhang et al.,
2020a), 15% (v/v) of thawed hUC-PRP was supplemented in 6 mg/ml
of EndoECM to prepare the EndoECM þ hUC-PRP treatment.

In vitro kinetics of growth factors release
The releasing kinetics of the hUC-PRP with/without EndoECM was
analyzed in vitro, according to a protocol adapted from Yang et al.
(2011). Briefly, 150ml drops of the EndoECM, EndoECM þ hUC-PRP
or hUC-PRP were introduced into individual wells (n¼ 2 wells per
group) of a 24-well plate and incubated at 37�C (with continuous gen-
tle agitation) for 30 min to promote hydrogel gelation. Then, 500ml of
Dulbecco’s phosphate-buffered saline (dPBS, P5493, Sigma-Aldrich,
MI, USA) was added to the well. The dPBS was entirely recovered
and replaced, without disturbing the gelled drop, six hours later, and
then every second day, over a 14-day period. The cumulative releasing
kinetics were analyzed using the Growth Factor 11-Plex Human
ProcartaPlexTM Panel (EPX110-12170-901, Thermo Fisher Scientific)

hUC-PRP to treat endometrial pathologies 3



Figure 1. Study design. (A) The hUC-PRP was generated by collecting hUC blood from women in childbirth, isolating the PRP fraction via com-
mercial (closed) and manual (open) systems, and selecting the most concentrated sample. (B) In vitro hUC-PRP assays included the characterization
of plasma components, the loading of the hUC-PRP into the EndoECM, and a comparison of the releasing kinetics of hUC-PRP with or without
EndoECM. (C) To analyze the efficacy of hUC-PRP as a preclinical treatment, we studied the immunocompatibility of EndoECM and hUC-PRP, endo-
metrial regeneration (n¼ 20) and fertility outcomes of a murine model (following natural mating; n¼ 30) of endometrial damage. a-sma, actin alpha
2, smooth muscle; Akt1, AKT serine/threonine kinase 1; Ang, angiogenin; EndoECM, decellularized porcine endometrium-derived extracellular-matrix
hydrogel; hUC, human umbilical cord; hUC-PRP, platelet-rich plasma from the hUC; hUC-PPP, platelet-poor plasma from the hUC; VEGF, vascular
endothelial growth factor.
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with Luminex xMAPVR Technology, as the cumulative growth factor
concentration released at each point with respect to the total concen-
tration released at the end of the assay.

The murine model for uterine damage
Eight-week-old immunocompetent inbred mice (n¼ 50, C57BL/
6NCrl, Charles River Laboratories, Saint-Germain-Nuelles, France)
were housed in the animal facilities of the Central Research Unit of
the Medicine Faculty at University of Valencia. Uterine damage was in-
duced using ethanol as we recently described (López-Mart�ınez et al.,
2021b). Mice were designated for endometrial regeneration (n¼ 5 per
group) or fertility-related (n¼ 10 per group) analyses, and the follow-
ing groups were randomly assigned using an online tool (https://www.
random.org; Haahr, 2021): (i) saline (treated with dPBS), (ii) hUC-PRP
or (iii) EndoECM þ hUC-PRP. For the regeneration experiments, a
fourth group with no uterine damage, (iv) sham group, was included
as a positive control. Supplementary Table SI includes details of all
interventions and husbandry.

Multiplex analyses for hUC-PRP
immunocompatibility
A terminal blood sample was collected from the mice designated to
analyze endometrial regeneration, placed in tubes with EDTA (1.8mg/
ml) to prevent coagulation and kept on ice until centrifuged at 1600�g
for 10 min at 4�C to isolate the plasma fraction, and finally stored at
�80�C until further analysis. To assess the immunotolerance of the
mice to the hUC-PRP with/without EndoECM, the plasma was evalu-
ated using the Cytokine & Chemokine 26plex-Mouse ProcartaPlexTM

Panel 1 (EPX260-26088-901, Thermo Fisher Scientific) with Luminex
xMAPVR Technology.

Histological analysis of endometrial tissue
regeneration
Left uterine horns were fixed with 4% paraformaldehyde overnight,
dehydrated, embedded in paraffin and serially sectioned in a vertical
position (4mm). Alternatively, the right horns were collected, and
dried-stored at �80�C until further processing.

Following Masson’s Trichrome staining (MT, HT-15, Sigma-Aldrich),
we assessed whole endometrial area/thickness in sections at 25�
magnification in QuPath (Bankhead et al., 2017), excluding myome-
trium and uterine lumen visually. Gland density was established as the
number of glands per mm2, within four fields of views (at 200� magni-
fication) from two MT-stained cross-sections. Collagen deposition was
quantified using Image J software (selecting the MT option from the
vector drop-down menu of the Color Deconvolution plugin) to assess
the proportion of fibrotic tissue (i.e. collagen area, stained in blue)
within the endometrium.

Endometrial cell proliferation was assessed by immunohistochemistry
with Ki67 (1:300 dilution, ab15580, Abcam, MA, USA). The proliferation
index was calculated as percentage of endometrial Ki67þ by total num-
ber of endometrial cells, using QuPath software in 200� fields.
Angiogenesis was evaluated by double immunofluorescence with Image-
Pro Plus (Media Cybernetics, CA, USA), using fluorescein-labeled
Griffonia (Bandeiraea) Simplicifolia Lectin I (GSL I, 1:200 dilution, FL-
1101, Vector Laboratories, CA, USA) and alpha-smooth muscle actin

(a-SMA, 1:300 dilution, C6198, Sigma-Aldrich). Notably, new blood ves-
sels were exclusively stained by GSL I, while mature vessels were
detected by the co-expression of both antibodies. Neoangiogenesis was
quantified as the lectin-positive area minus the a-SMA-positive area, di-
vided by the total analyzed area (López-Mart�ınez et al., 2021b).

Molecular analysis of endometrial tissue
regeneration
The endometrial tissue was isolated from the myometrium by applying
gentle pressure on the uterine horns, with the back of curved forceps,
to expel the endometrial tissue (Cheng et al., 2011; Ferrero et al.,
2017). Total RNA from the endometria (n¼ 20) and myometria (from
the sham group; n¼ 5) was extracted using the RNeasyVR Mini Kit
(74014, Qiagen, Hilden, Germany), and reverse transcribed using the
PrimeScriptTM RT Reagent Kit (RR037A, Takara Bio, Japan). Both RNA
and DNA concentrations were quantified with a NanoDropTM 2000c
Spectrophotometer (Thermo Fisher Scientific). Gene expression of a-
Sma (only in the sham group, to verify the exactitude of the
endometrial-myometrium dissection), and VEGF, Akt1 and Ang1 (in all
endometria) was evaluated by real-time quantitative PCR (RT-qPCR) us-
ing Power-Up SYBR Green (A25742, Applied Biosystems, USA) and the
StepOnePlusTM Real-Time PCR System (Applied Biosystems). Specific
primer sequences (IDT, Leuven, Belgium) and details about the RT-
qPCR protocol are presented in Supplementary Table SII. Expression
data were normalized to glyceraldehyde-3-phosphate dehydrogenase
(Gapdh) housekeeping gene expression, and the DDCt method (Livak
and Schmittgen, 2001) was used to calculate the relative gene expres-
sion level or fold change (FC) with respect to the sham group.

Fertility outcomes
Natural mating was considered successful by the presence of a vaginal
plug (which was monitored daily), and the achievement of pregnancy
was evaluated 14.5 days later (E14.5). Mice were sacrificed to collect
uteri, and to record the number of embryos present, in addition to
their weight and morphology.

Statistical analysis
GraphPad Prism software v 8.3 (www.graphpad.com; La Jolla, CA,
USA) was used for statistical analysis and graphical representation.
Normally distributed data were analyzed by one-way ANOVA, while
non-normally distributed data were analyzed by the Kruskal–Wallis
test. Both were followed by a t-test or Mann–Whitney U tests for 2-
by-2 comparisons, respectively. In all cases, P< 0.05 was considered
statistically significant.

Results

hUC-PRP: quantity and quality analysis
The commercialized system for hUC-PRP obtention proved to have
similar efficacy to the traditional manual methodology. We found no dif-
ferences in platelet enrichment between both strategies, which respec-
tively had FCs of 3.10§ 1.77 and 2.63§ 1.67 compared to the whole
hUC platelets number (Fig. 2A). Specifically, the most enriched hUC-

hUC-PRP to treat endometrial pathologies 5
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..PRP sample contained 2-fold more platelets per milliliter than hUC-PPP
and a significant 5-fold enrichment with respect to whole hUC blood
(1 018 000§ 101 482 platelets/ml in hUC-PRP vs 508 500§ 67 060 pla-
telets/ml in hUC-PPP vs 207 000§ 18 938 platelets/ml in whole hUC
blood, P< 0.05, Fig. 2B) and it was selected for further characterization.

Of the 45 biomarkers analyzed in hUC-PRP, eight growth factors
were distinguished for having a concentration >50 pg/ml, including in-
terferon gamma-induced protein 10 (IP-10), macrophage inflammatory
protein 1 beta (MIP-1b), stromal-derived factor 1 alpha (SDF-1a),
EGF, HGF, PDGF-BB, stem cell factor (SCF) and VEGF alpha (VEGF-
A) (Fig. 2C). Although hUC-PRP was enriched with PDGF-BB and
EGF, it had less VEGF-A than hUC-PPP (Fig. 2D). Further, considering
both PRP and PPP fractions together, the hUC plasma was ample in
HGF, Eotaxin and SCF, but more scarce in brain-derived neurotrophic
factor (BDNF), SD-1a, interleukin-1 receptor antagonist (IL1RA), and
especially PDGF-BB, compared to the adult peripheral blood PRP.
Finally, hUC-PRP obtained by the commercialized system concentrated

HGF, PDGF-BB and EGF more efficiently than that obtained by the
manual system. The complete panel characterization is included in
Supplementary Table SIII.

In vitro kinetics of growth factor release
The drops of EndoECM hydrogel with/and without hUC-PRP gelled
adequately, enabling the addition of dPBS to the wells without disrupt-
ing the drops, and maintained their shape for up to two weeks. The
kinetics of the principal growth factors (i.e. HGF, PDGF-BB and EGF)
released by hUC-PRP was analyzed in vitro. Alone, hUC-PRP released
50% of its HGF during an initial burst within the first 6 h of culture
(Fig. 2E). Meanwhile, the initial release from EndoECM þ hUC-PRP
was increased and followed by a more linear pattern until Day 14.
Further, hUC-PRP initially released PDGF-BB slowly, only amplifying
production during the last 4 days, whereas hUC-PRP with the hydro-
gels provided constant release (Fig. 2F). As for EGF, different
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Figure 2. hUC-PRP characterization, composition and in vitro releasing kinetics. (A) Comparison of platelet enrichment using
commercial and manual methods for PRP extraction. Platelet enrichment was defined as the number of platelets in the hUC-PRP, divided by the num-
ber of platelets in whole hUC blood. The most enriched sample (indicated with an arrow) was selected for subsequent analyses. (B) Comparison of
platelet density in hUC-PRP, hUC-PPP and whole hUC blood. (C) Predominant results from the multiplex protein assay for cytokines, chemokines
and growth factors in hUC-PRP. (D) Comparative heat-map of protein differences found among hUC-PRP and hUC-PPP extracted with a commer-
cialized system, PRP from adult peripheral blood and hUC-PRP extracted with double centrifugation. (E–G) Releasing kinetics of (E) HGF, (F) PDGF-
BB and (G) EGF in EndoECM þ hUC-PRP, EndoECM and hUC-PRP conditions. The cumulative release was defined as the cumulative concentration
released at each point, with respect to the total concentration released on day 14. Data in A–D are presented as a mean of three replicates § SD.
*P< 0.05. EGF, epidermal growth factor; EndoECM, decellularized porcine endometrium-derived extracellular-matrix hydrogel; HGF, hepatic growth
factor; hUC, human umbilical cord; hUC-PRP, platelet-rich plasma from hUC; hUC-PPP, platelet-poor plasma from hUC; IP10, C-X-C motif chemo-
kine 10; MIP-1b, C-C motif chemokine 4; PDGF-BB, platelet-derived growth factor-BB; SCF, stem cell factor; SDF1a, stromal cell-derived factor 1 A;
VEGF A, vascular endothelial growth factor.
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treatments behaved more similarly exposing a constant liberation of
the growth factor within the first 2 days, but EndoECM þ hUC-PRP
again produced again a more constant release in the following days
(Fig. 2G). Supplementary Table SIV describes the kinetics of the eleven
growth factors over 14 days.

Immunotolerance of hUC-PRP in mice
Following centrifugation of terminal blood samples from recipient
mice, <100ml of plasma was recovered. Multiplex analyses revealed
immunocompatibility and immunotolerance to both hUC-PRP and the
EndoECM hydrogel, as no statistical differences were found in the ex-
pression of 26 immune biomarkers between these treatments and the
saline treatment or sham groups. Expressions of interleukin-5, interleu-
kin-6, tumor necrosis factor alpha and interferon gamma were the
most prominent (Fig. 3). The complete immune characterization is
presented in Supplementary Table SV.

In vivo endometrial regeneration of uterine
horns following hUC-PRP treatment
All mice presented synchronized estrous cycles, as verified by vaginal
cytology (Supplementary Fig. S1A and B).

Although ethanol-induced damage statistically reduced the endome-
trial surface area, treating horns with hUC-PRP with/without
EndoECM hydrogel did not show any visible reaction of discomfort or
pain in the treated mice, and restored the endometrium such that its
area was comparable to the untreated horns of mice that underwent
sham surgery causing no damage (0.33§ 0.1 mm2, 0.88§ 0.17 mm2,
0.83§ 0.47 mm2 and 1.08§ 0.383 mm2 in uterine horns treated with
uteri treated with saline, hUC-PRP, EndoECM þ hUC-PRP or sham,
respectively, P< 0.05, Fig. 4A and E). In mice that underwent sham
surgery, the stromal layer of the endometrial tissue presented an orga-
nized structure, including epithelium and secretory glands.
Comparably, both treatments involving hUC-PRP increased gland den-
sity, with respect to saline. This difference was statistically significant
for the hUC-PRP-treated and non-damaged sham samples with re-
spect to the saline-treated group; however, only a trend was found for
mice treated with EndoECM þ hUC-PRP (14.78§ 11.97,
45.39§ 13.58, 34.26§ 12.74 and 44.59§ 17.21 glands/mm2 in uteri
treated with saline, hUC-PRP, EndoECM þ hUC-PRP or sham, re-
spectively, P< 0.05, Fig. 4B and F).

Finally, collagen deposition was evaluated to study fibrosis. Compared
to saline-treated uterine horns, the hUC-PRP-treated horns had statisti-
cally smaller collagen deposits. This difference was more pronounced
for EndoECM þ hUC-PRP, which in turn, was comparable with undam-
aged uteri (86.88§ 2.27%, 70.34§ 7.39%, 57.45§ 10.80% and
58.34§ 14.52% in the uteri treated with saline, hUC-PRP, EndoECM þ
hUC-PRP or sham, respectively, P< 0.05, Fig. 4B and G).

Restoring the endometrial function with
cell proliferation and neovascularization
Endometrial function was significantly recovered with both treat-
ments, as evidenced by the significantly augmented proliferation in-
dex with respect to the saline-treated group (11.34§ 2.25%,
27.23§ 6.30%, 26.61§ 1.42% and 27.71% § 4.00% in uteri treated
with saline, hUC-PRP, EndoECM þ hUC-PRP or sham, respec-
tively; P< 0.05; Fig. 4C and H) and a well-distributed neovasculari-
zation. Angiogenesis promoted by hUC-PRP was similar to that in
the sham group, and further amplified following treatment with
EndoECM þ hUC-PRP. In both cases, angiogenesis was statistically
improved with respect to saline-treated uteri (7.70§ 3.99%,
19.69§ 2.64%, 21.77§ 2.67% and 19.14§ 3.55% in uteri treated
with saline, hUC-PRP, EndoECM þ hUC-PRP or sham, respec-
tively, P< 0.05, Fig. 4D and I).

Key molecular mechanisms involved in the
endometrial recovery
Murine endometrial tissue was isolated from the rest of the uterine
horn to carry out molecular analyses. A significant 6.83§ 9.47 FC in
aSMA gene expression was found between endometrial and myome-
trial samples, confirming adequate endometrial isolation (P< 0.05;
Fig. 5A). Then, when endometrial samples from both treatments in-
volving hUC-PRP were analyzed, we found Akt1 was significantly
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Figure 3. hUC-PRP immunocompatibility. Concentration
of (A) IL-5, (B) IL-6, (C) TNFa and (D) IFNg in murine plasma col-
lected 14 days following administration of saline, hUC-PRP or
EndoECM þ hUC-PRP, or a sham intervention, n¼ 5 per group.
Data are presented as a mean of three replicates § SD. P< 0.05.
EndoECM, decellularized porcine endometrium-derived extracellu-
lar-matrix hydrogel; hUC-PRP, platelet-rich plasma from hUC; IFNg,
interferon gamma; IL-5, interleukin 5; IL-6, interleukin 6; TNFa, tu-
mor necrosis factor alpha.
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..overexpressed compared to saline treatment (FCs of 1.19§ 0.85,
1.62§ 0.68 and 2.22§ 1.98 for treatments with saline, hUC-PRP and
EndoECM þ hUC-PRP, respectively; P< 0.05; Fig. 5B). However, in
comparison to the saline-treated uteri, only EndoECM þ hUC-PRP

induced significant overexpression of VEGF (FCs of 0.98§ 1.89,
0.87§ 0.63 and 3.00§ 3.03 respectively, P< 0.05; Fig. 5C) and Ang
(FCs of 5.83§ 7.18, 10.68§ 9.53 and 31.06§ 20.22, respectively;
P< 0.05; Fig. 5D).

✱✱
✱✱

✱✱      
E

A

B

C

D

Saline hUC-PRP EndoECM+hUC-PRP Sham

Endometrial area Gland density Prolifera�on Neoangiogenesis

✱✱
✱✱ 

✱✱
N

eo
va

sc
ul

ar
iz

a�
on

 (%
)

30

20

10

0

Ki
67

+ 
ce

lls
 (%

) 30

20

10

0

40

Fibrosis

Co
lla

ge
n 

de
po

si
�o

n 
(%

)

20

0

40

60

80

100

G
la

nd
s/

m
m

2 60

40

20

0

80

✱✱      

✱✱      

Ar
ea

 (m
m

2 )

1.0

0

2.0
✱

✱✱      

✱✱      

1.5

0.5

✱✱      ✱✱
✱✱

F G H I

Figure 4. Histological analysis of the damaged murine endometrium 14 days post-treatment. Representative cross-sections
of murine uterine horns that were either damaged with ethanol and treated with saline, hUC-PRP or EndoECM þ hUC-PRP, or manipulated without
causing any damage (sham). Tissue regeneration was evaluated using Masson’s Trichrome staining for (A) endometrial area, (B) gland density and
collagen deposition, (C) Ki-67 immunostaining and (D) GSL I (green) and a-sma (red) double immunostaining of new (green) and mature (red and
green) blood vessels in the endometrium. Scale bars are set to 500 mm (A) or 100 mm (B to D). Histological quantification of (E) endometrial area,
(F) gland density, (G) fibrosis, (H) proliferation and (I) neoangiogenesis. *, P< 0.05; **, P< 0.01; EndoECM, decellularized porcine endometrium-de-
rived extracellular-matrix hydrogel; hUC-PRP, platelet-rich plasma from human umbilical cord blood.
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.hUC-PRP treatment restores fertility in mice
Profound unilateral uterine damage was induced in our model using
ethanol, as demonstrated by a significantly reduced pregnancy rate of
33.33% in the saline-treated horns with respect to the contralateral
non-damaged horns. The basic hUC-PRP treatment restored fertility,
by producing pregnancy rates of 66.67% in the damaged horns, which
were not statistically different from the pregnancy rates in the sham
group. However, the EndoECM þ hUC-PRP produced similar rates to
the saline-treated horns, indicating that when administered in this vehi-
cle, it was not enough to reverse the damage (Fig. 6A). We also noted
a similar trend across the treatments for the number of embryos per
horn (Fig. 6B). Notably, embryo weight at E14.5 was comparable be-
tween the damaged horns in the hUC-PRP-based treatment groups
and the sham horns (Fig. 6C), and they presented normal morphology
and size (Fig. 6D).

Discussion
The adequacy of instilling human adult peripheral blood PRP to clini-
cally treat endometrial pathologies is widely accepted, due to the

ample growth factors and cytokines it releases (Chang et al., 2015;
Zadehmodarres et al., 2017; Kim et al., 2019a). Since hUC-PRP con-
tains even more growth factors and less pro-inflammatory cytokines
(Parazzi et al., 2010), it has recently emerged as an effective therapeu-
tic alternative in diverse medical fields (Tadini et al., 2015b; Volpe
et al., 2017; Caiaffa et al., 2021; Samarkanova et al., 2021), but its use
has not yet been reported for endometrial pathologies. Interestingly,
two independent studies recently compared the efficacy of hUC-PRP
versus adult PRP for bone regeneration and hip osteoarthritis and
showed similar results. Although their findings were influenced by ill-
ness severity, both groups still agreed that there were more biological
advantages when using hUC-PRP, as it comes from younger sources,
can easily be cryopreserved, is independent of the patient’s comorbid-
ities and is microbiologically safe (Mazzotta et al., 2022; Rani et al.,
2022).

The state-of-the-art treatments used for patients with AS/EA em-
ploy bioengineering-based techniques, organoids and PRP that act in
the target tissue by enhancing cytokine induction, growth factor pro-
duction or regulation of the Th1/Th2 response, producing an im-
provement, thickening and regeneration of the endometrium, by
activating tissue remodeling processes, and cell proliferation
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Figure 5. Molecular analysis of the damaged murine endometrium 14 days post-treatment. Murine uterine horns were dam-
aged with ethanol and treated with saline, hUC-PRP or EndoECM þ hUC-PRP, and mRNA was extracted. Relative gene expression of aSMA (A),
Akt1 (B), VEGF (C) and Ang (D). Data were normalized with respect to the gene expression from the sham group and presented as a mean § SD.
For all the experiments, n¼ 5 per group. P< 0.05 was considered statistically significant. *, P< 0.05. Akt1, thymoma viral proto-oncogene 1; Ang,
angiogenin; aSMA, actin alpha 2, smooth muscle, aorta; EndoECM, decellularized porcine endometrium-derived extracellular-matrix hydrogel; hUC-
PRP, platelet-rich plasma from human umbilical cord blood; VEGF, vascular endothelial growth factor.
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(de Miguel-Gómez et al., 2021a; Gharibeh et al., 2022). In this study,
we obtained and characterized hUC-PRP, in addition to demonstrating
the regenerative effect it has (either alone or loaded into an EndoECM
hydrogel) on a damaged murine endometrium, and how it can restore
fertility.

The two protocols we used for hUC-PRP processing seem ade-
quate for clinical use, as both the traditional ‘open’ and commercial-
ized ‘closed’ systems similarly concentrated platelets. However, for the
clinical setting, the elevated cost of closed system kits for isolating
hUC-PRP may be justified by their added safety and sterility, which
cannot be guaranteed with open systems, because they are not manu-
factured to protect from external contaminants (WHO Guidelines on
Drawing Blood: Best Practices in Phlebotomy, 2010; Karakas et al.,
2020). Prior to administering heterologous PRP (processed in the labo-
ratory setting) into the recipient organism, it is crucial to ensure the
product’s sterility. In this regard, our methodology provides a

reproducible, safe, practical yet affordable PRP bio-product that will fa-
cilitate applications in regenerative medicine and alternative therapeutic
approaches. Although costlier, it seems more appropriate to use
closed-system kits in clinics to ensure patients’ safety. Further, using
the commercial system, we demonstrated that hUC-PRP is enriched
with several factors that play important roles in the endometrium.
Identified factors included: HGF, which has been related with prolifera-
tion (Yoshida et al., 2004) and decidualization (Zhang, 2010); PDGF-
BB, which is largely involved in tissue contraction and migration of
stromal cells (Gargett and Masuda, 2010); EGF, which promotes endo-
metrial growth (Ejskjaer et al., 2005) and early pregnancy (Large et al.,
2014); and SDF-1a, which enhances endometrial receptivity (Koo
et al., 2021). Altogether, these factors show substantial potential for
endometrial-specific regeneration and support the translation of hUC-
PRP for clinical treatment of endometrial disorders, such as AS and
EA. Additionally, this study highlighted the xenogeneic and immunoto-
lerant nature of the hUC-PRP, 2 weeks after treatment, with the
analysis of more than 25 cytokines/chemokines in the mice’s blood,
setting the preclinical foundation for its heterologous use in patients.
The use of hUC-PRP has also been widely supported by its application
in diabetic foot ulcers (Volpe et al., 2017), epidermolysis bullosa
(Tadini et al., 2015b), corneal lesions (Samarkanova et al., 2021) or os-
teoarthritis (Caiaffa et al., 2021), which altogether demonstrate there
are no complications or severe adverse events occurring with hUC-
PRP treatment.

Hydrogels are by far the most prominently used bioengineering
strategy for female reproductive medicine (Francés-Herrero et al.,
2022a) and are composed of hydrophilic polymeric networks, which
can deliver controlled drug-release into target wounds
(Narayanaswamy and Torchilin, 2019). Since ECM-based hydrogels are
proven to mimic the physicochemical properties of the tissue of origin,
we hypothesized they could provide the perfect environment for tissue
regeneration (Francés-Herrero et al., 2022b). Due to their spatiotem-
poral control over the mobilization of therapeutic agents into the tis-
sue of interest, hydrogels loaded with peripheral blood PRP have
previously been demonstrated to be highly effective therapeutic strate-
gies, promoting tissue regeneration, wound healing efficiency, vasculari-
zation and suitable biocompatibility (Xu et al., 2017; Zhang et al.,
2020a,b, 2021). In corroboration, our in vitro analysis of the kinetics of
the EndoECM and/or hUC-PRP demonstrated a sustained release of
factors present in hUC-PRP (including HGF, PDGF-BB and EGF) over
a 14-day period. With EndoECM þ hUC-PRP, we observed relatively
linear cumulative deliveries of HGF and PDGF-BB, while hUC-PRP on
its own displayed a more irregular release of these growth factors.
Since the latter are mitogenic and play critical roles in wound-healing
and immunomodulation (Evrova and Buschmann, 2017), we postulated
that a sustained release of these factors could be highly advantageous
and could be enhanced by using the EndoECM as carrier for hUC-
PRP. Finally, we demonstrated how the biological activity of these fac-
tors promoted endometrial regeneration in a mouse model with uter-
ine damage.

A few studies have described the beneficial effect of adult PRP (Kim
et al., 2020, 2022; Zhou et al., 2020) and commercialized hUC plasma
(de Miguel-Gómez et al., 2021a) in preclinical murine models of AS/
EA, and have they reported findings similar to the ones presented
herein, in terms of endometrial regeneration, augmented angiogenesis,
cell proliferation and ability to achieve pregnancy. Interestingly, aging
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Figure 6. Achievement of pregnancy 14 days following
unilateral treatment to the uterine horns of mice with
ethanol-damaged endometrium. Fertility restoration was
assessed by (A) pregnancy rate (number of embryos per horn by to-
tal number of embryos), (B) number of embryos per horn, (C) em-
bryo weight and (D) representative images of gestational uterine
horns and embryo morphology, 14 days after confirmed mating by
vaginal plug (stage E14.5 of embryo development). Right uterine
horns were treated with saline, hUC-PRP or EndoECM þ hUC-PRP,
while contralateral left horns only underwent sham surgery. (A–C)
Data are presented as mean § SD, n¼ 10 per group. A statistical
significance of P< 0.05 is indicated by the asterisk. hUC-PRP, plate-
let-rich plasma from human umbilical cord; EndoECM, decellularized
porcine endometrium-derived extracellular-matrix hydrogel.
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has a detrimental effect on plasma composition (Castellano et al.,
2017), and our group previously observed that uterine horns treated
with hUC plasma had endometrial function partly mediated by an in-
crease in HOXA10 overexpression, with respect to adult PRP (de
Miguel-Gómez et al., 2021a). Regardless, the use of donated hUC-PRP
is an innovative approach, since hUC-PRP contains a higher concentra-
tion of growth factors and anti-inflammatory molecules than adult pe-
ripheral PRP (Mazzotta et al., 2022), and more platelets than
commercial hUC plasma (Everts et al., 2020). One of the distinguishing
features of AS and EA is the presence of a functional fibrotic and thin
endometrial tissue, which can have negative repercussions on the re-
productive outcomes of affected women. The uteri of our preclinical
model were damaged with ethanol, to mimic the severe endometrial
injury in these conditions (i.e. loss of luminal epithelium and stroma in-
tegrity, few proliferative cells, decreased angiogenesis and acute fibro-
sis), as previously described (Kim et al., 2019b; de Miguel-Gómez
et al., 2021b). In this study, endometrial tissue regeneration was dually
achieved by the treatment with hUC-PRP or EndoECM þ hUC-PRP.
Specifically, hUC-PRP reduced endometrial fibrosis, increased endome-
trial area and gland density, and restored the functionality of the tissue
by enhancing neovascularization, cell proliferation and activating regen-
erative molecular pathways (i.e. PI3K/Akt), which are involved in cell
survival and decidualization (Fabi et al., 2017) or re-epithelialization (by
increasing VEGF gene expression) (Abraham et al., 2021). As such, fer-
tility outcomes in mice treated with hUC-PRP were comparable to the
undamaged mice (i.e. those who underwent a sham surgery), suggest-
ing that they were able to completely overcome the endometrial dam-
age. Alternatively, when the hUC-PRP was loaded into the EndoECM
hydrogel, molecular alterations led to improved tissue regeneration,
but the injured endometrium was not completely restored, preventing
the mice from achieving similar pregnancy rates to the sham group.
We suspect these findings are related to the low concentration of
hUC-PRP mixed with the EndoECM hydrogel (15% v/v; which had
previously been described as sufficient in the pancreas (Zhang et al.,
2020a) and other tissues (Francés-Herrero et al., 2022b), but might
not be adequate in the endometrium) and suggest testing higher con-
centrations of hUC-PRP in future investigations. Interestingly, we found
embryo weight at 2 weeks of gestation (E14.5) was similar with re-
spect to control embryos, indicating the treatments did not alter early
embryo development.

Despite the innovation this study offers regarding the application of
hUC-PRP in preclinical models of endometrial damage, it presents
some limitations. First, the kinetics of the main growth factors released
from the hUC-PRP were analyzed under controlled conditions, and
these may differ slightly in vivo. Second, we only superficially evaluated
murine embryo development at E14.5, and thus a more in-depth study
of the pups’ weight and morphology at birth, along with their genetics,
and epigenetics, can be investigated in the future, to fully understand
the impact of hUC-PRP treatment long-term. Lastly, we used a single
hUC-PRP sample to treat all the damaged endometria of our preclini-
cal model, to standardize treatment between recipient mice, similar
other groups reported in clinical trials (Tadini et al., 2015b; Volpe
et al., 2017; Everts et al., 2020; Caiaffa et al., 2021; Samarkanova et al.,
2021). Our hUC-PRP showed standard platelet content, cytokines
concentration and composition with respect to adult hPRP, and there-
fore the slight variability among samples should not significantly affect
the treatment’s efficacy (Murphy et al., 2012; Buzzi et al., 2018).

Finally, our results, along with previous experimental and clinical
findings of hUC-PRP treatment in different tissues, support the hypoth-
esis that hUC-PRP has the ability to restore the injured endometrium,
and is thus a suitable candidate for therapeutic management of patients
with endometrial pathologies. While the use of ECM hydrogels with
higher concentrations of hUC-PRP is currently underway, the potential
of this delivery system offers promising results.

Conclusions
This study aimed to prospectively characterize the hUC-PRP of healthy
women, obtained using a commercially available system and demon-
strate the promising potential of this easily obtainable blood derivative
for xenogenic and heterologous applications. There are many advan-
tages to using hUC-PRP rather than other PRP sources, including the
standardization of isolation protocols, a youthful composition and the
independence from patient’s comorbidities and viral infection, which
altogether enhance the regenerative properties of the treatment. The
hUC-PRP and EndoECM-hUC-PRP are immunotolerated by mice and
were shown to improve endometrial regeneration in an AS/EA murine
model. In addition, the hUC-PRP restored fertility in this model, as evi-
denced by normal gestations. Once translated to clinical practice,
these novel therapies may provide alternatives for the clinical manage-
ment of endometrial pathologies.
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FPU20/00251 (M.G.-Á.)); Conselleria de Innovación, Universidades,
Ciencia y Sociedad Digital, Generalitat Valenciana (APOTIP/2021/042
(L.d.M.-G.)); and Instituto de Salud Carlos III co-funded by the
European Union (ISCIII, Fondo Social Europeo El FSE invierte en tu fu-
turo, CP19/00149, PI17/01039 and PI21/00305 (I.C.)).

Conflict of interest
None declared.

References
Abraham S, Sanjay G, Majiyd NA, Chinnaiah A. Encapsulated

VEGF121-PLA microparticles promote angiogenesis in human en-
dometrium stromal cells. J Genet Eng Biotechnol 2021;19:8.

Bankhead P, Loughrey MB, Fernández JA, Dombrowski Y, McArt
DG, Dunne PD, McQuaid S, Gray RT, Murray LJ, Coleman HG et
al. QuPath: open source software for digital pathology image analy-
sis. Sci Rep 2017;7:16878.

Berney M, McCarroll P, Glynn L, Lenehan B. Platelet-rich plasma
injections for hip osteoarthritis: a review of the evidence. Ir J Med
Sci 2020;190:1021–1025.

Buigues A, Marchante M, de Miguel-Gómez L, Martinez J, Cervelló I,
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Miguel-Gómez L, Romeu M, Pellicer A, Cervelló I. Strategies for
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