Skip to main content
. Author manuscript; available in PMC: 2022 Dec 13.
Published in final edited form as: Proc ACM Int Conf Multimodal Interact. 2021 Oct 18;2021:425–434. doi: 10.1145/3462244.3479888

Table 4:

Machine learning algorithms, hyper-parameters and performance using 13 handcrafted features. We perform a 3-fold cross validation to evaluate the performance of the model. F1 scores are reported.

Algorithm Hyper- parameter Values F1
KNN n_neighbors 5, 6, 7, 8, 9, 10 0.65
Linear SVC gamma 0.001, 0.01, 0.1, 1 0.71
C 0.001, 0.01, 0.1, 1, 10, 100
SVC (RBF kernel) gamma 0.001, 0.01, 0.1, 1 0.68
C 0.001, 0.01, 0.1, 1, 10, 100
Logistic Regression (l2) C np.logspace(−4, 4, 20) 0.73
Random Forest max_depth 3, 5, 7 0.56
n_estimators range(10,101,10)
min_samples_split 3, 5
Gradient Boosting Tree max_depth 3, 4, 5 0.68
subsample 0.5, 0.6, 0.8, 0.85, 0.9, 0.95, 1.0
learning_rate 0.01, 0.03, 0.05, 0.075, 0.1, 0.2
n_estimators range(10,101,10)
Neural Network hidden layers 1, 2, 3 0.71
hidden units 100, 200, 300
dropout rate 0, 0.25, 0.5