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The emerging high-throughput technologies have led to the shift in the design of translational medicine
projects towards collecting multi-omics patient samples and, consequently, their integrated analysis.
However, the complexity of integrating these datasets has triggered new questions regarding the appro-
priateness of the available computational methods. Currently, there is no clear consensus on the best com-
bination of omics to include and the data integrationmethodologies required for their analysis. This article
aims to guide the design of multi-omics studies in the field of translational medicine regarding the types of
omics and the integration method to choose. We review articles that perform the integration of multiple
omics measurements from patient samples. We identify five objectives in translational medicine applica-
tions: (i) detect disease-associatedmolecular patterns, (ii) subtype identification, (iii) diagnosis/prognosis,
(iv) drug response prediction, and (v) understand regulatory processes.We describe common trends in the
selection of omic types combined for different objectives and diseases. To guide the choice of data integra-
tion tools, we group them into the scientific objectives they aim to address. We describe the main compu-
tational methods adopted to achieve these objectives and present examples of tools. We compare tools
based on how they deal with the computational challenges of data integration and comment on how they
perform against predefined objective-specific evaluation criteria. Finally, we discuss examples of tools for
downstream analysis and further extraction of novel insights from multi-omics datasets.
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1. Introduction

The data generation storm that the biomedical community
experiences over the last two decades have led to new require-
ments for data analysis. Specialised analytics per data layer, multi-
source data integration and disease/group/patient profiling are
needed to capture the systemic properties of the investigated con-
dition. Biology can be viewed as data science, and Medicine is mov-
ing towards a precision and personalised mode. Computer science
has set its own vision to achieve connectivity in the road map from
data to information and from knowledge to wisdom. Biology meets
Medicine in a virtual space called Translational Research, where
the findings from Biology are directly investigated for their appli-
cation in clinical practice (translation of the findings to clinical
applications). The needs of Medicine are directly guiding specific
biological experiments (translation of the medical needs to biolog-
ical research). In this virtual space of translational research, other
disciplines also contribute to the interconnection from bench to
bedside. A significant player among them is the discipline of bioin-
formatics and especially a relatively new approach, named Sys-
tems Bioinformatics, which focuses on integrating information
across different levels using a bottom-up approach as in systems
biology with a data-driven top-down approach as in
bioinformatics.

Focusing on the molecular part of the story, the advent of high-
throughput technologies has given rise to omics from various
levels, to name a few: genomics, transcriptomics, proteomics,
metabolomics, metagenomics, epigenomics, epitranscriptomics,
etc. The complexity increases if we realise that most of these omics
may have a spatial and/or temporal character. It is anticipated that
the combination of several of these omics will generate a more
comprehensive molecular profile either of the disease or of each
specific patient. This molecular profile is expected to act as a step-
ping stone in several highly ambitious objectives, such as the
computer-aided diagnosis/prognosis, the identification of disease
subtypes, the detection of complex molecular patterns associated
with disease, the understanding of regulatory processes involved
in disease pathogenesis and the prediction of the response to drug
treatment.

Nevertheless, there are still several questions discussed within
labs when designing new experiments or within research consortia
that are preparing to submit a comprehensive grant proposal for a
research project: What is the best combination of omics to include
in a new study under the restrictions of the budget? What are the
recommended computational methods and tools for multi-omics
data integration? Are there any existing real data repositories that
are publicly available, and perhaps they could be used to generate
preliminary results? Finally, there is a crucial point to mention: to
make this new direction of multi-omics data integration adoptable
by the users, it needs to be explainable, which is seen already as a
trend in another related field, namely the explainable Artificial
Intelligence [1].

There are two potential approaches for multi-omics data analy-
sis [2]. The first approach looks at various analytes across the dif-
ferent omics layers in the context of pathways and mechanisms.
In practice, this approach might use knowledge from different
databases to put the different components of the disease pathology
together. The objectives are mainly to gain disease insights, and
identify key molecular players involved in the disease pathogene-
sis, gene prioritisation and drug repurposing. For example, in a
recent work, we presented a method to integrate multi-source data
in a single network [3]. This synthetic gene-to-gene network has
both nodal information and edge resolution representing the inte-
gration of any available a priori information for a disease, from dif-
ferent databases. A second and more demanding approach is the
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integration of multi-omics datasets collected from the same set
of patient samples (multi-view datasets). This type of analysis
looks for correlations across multiple datasets, to discover patterns
of co-varying features, and thus to help understand the implicated
dysregulated mechanisms in the disease sample set.

We underline that the integrative analysis of multi-omics data
collected from the same samples can significantly facilitate
patient-specific question answering and contribute to the person-
alised and precision medicine vision. This review focuses on stud-
ies where multi-omics data integration (DI) refers to datasets
collected from the same patients and not from multiple omics
sources. This work aims to provide guidance on the design of
multi-omics experiments depending on the objectives of each
study. The paper summarises multi-omics studies, the types of
omics used, and available analysis methodologies and tools based
on the objectives.

The specific questions we aim to answer through this review are
the following:

� What are the scientific objectives that benefit from multi-omics
studies?

� What types of omics do multi-omics studies combine for their sci-
entific objectives?

� What computational methods are used to achieve the specified sci-
entific objectives?

� What are the general and objective-specific DI challenges and cri-
teria that DI tools need to meet?

� What are the pros and cons of different methods against the pre-
defined DI challenges and criteria?

Based on the initial evaluation of recent multi-omics studies, we
select to focus on three objectives to describe and evaluate compu-
tational tools: subtype identification, the detection of disease-
associated molecular patterns and the understanding of regulatory
processes. These key objectives have been approached by interme-
diate integration approaches more frequently. In intermediate
integration specialised methods aim to learn joint representations
of the separate datasets that can be used for subsequent tasks [4].
We thus discuss methods used to approach these key objectives
and we highlight the related state-of-the-art tools implementing
these methods. We also explain how the different tools approach
the data integration challenges identified for each objective. A
qualitative evaluation of the DI methods found in the various stud-
ies took place under the prism of the identified computational
challenges and objective-specific criteria.
2. Methods

We collected multi-omics studies from PubMed published in
2018–2021 (inclusive) that include the term ‘multi-omics’ in the
title/abstract and the term ‘integration’ and ‘disease’ in the text
focusing on human and animal diseases and related experiments.

We excluded studies:

� That combined findings from omics data analysis collected from
different groups of individuals

� That did not combine different types of omics (for example
studies combining only Single Nucleotide Variations (SNV)
and Copy Number Variations (CNV) were not included)

� That did not actually perform multi-omics analysis or computa-
tional data integration

The studies that fulfilled the inclusion criteria were selected and
the following information was collected:
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� the investigated disease
� the combination of omics data included in the study (Genomics,
Epigenomics, Metabolomics, Metagenomics, Proteomics,
Transcriptomics)

� the objective(s) of the study
� the applied computational method(s) for each objective

The collected scientific objectives were then organised by us into a
group of main scientific objective categories, namely: (i) detect
disease-associated molecular patterns, (ii) subtype identification,
(iii) diagnosis/prognosis, (iv) drug response prediction, and (v)
understand regulatory processes.

In practice, these scientific objectives are simultaneously pre-
sent or they act in a synergistic complementarity: subtype identi-
fication might be used as an unsupervised method to identify
patient subtypes that might correlate with different prognosis,
understanding molecular mechanisms might be used as a down-
stream analysis of subtype identification to further identify mech-
anisms that differentiate patient groups. We choose to separate
them, however, since they pose different computational problems
and it is thus expected that they can be approached with different
methods.

We obtained 673 records from our initial search in PubMed as
described in the previous section. Following the inclusion criteria,
we excluded 285 studies and the remaining 388 studies were
included in the quantitative and qualitative analysis.

In the second part of the review, we focus on the main method-
ologies and tools adopted for the three main scientific objectives
selected: (i) subtype identification, (ii) detection of disease-
associated molecular patterns and (iii) understanding of regulatory
processes. In order to be more inclusive in the collection of state-
of-the-art tools to approach the selected scientific objectives, we
made three additional PubMed queries. The queries included
‘multi-omics’ in the title/abstract and the term ‘integration’ and
then: ‘subtype’ for the objective of ‘subtype identification’, ‘regula-
tory’ for the objective of understanding regulatory processes and
‘pattern’ for the objective of detecting disease-associated patterns.
Table 1
Multi-omics data resources.

Name Type Omics content

Answer ALS [7] Repository whole-genome sequencing, RNA transcripto
deep clinical data, including fine motor act
cognition

Fibromine [8] Database transcriptomics and proteomics

DevOmics [9] Database normalized gene expression, DNA methylat
H3K9me3, H3K27me3, H3K27ac), chromati
profiles of human and mouse early embryo

The Cancer
Genome Atlas
(TCGA) [10]

Repository genomics, epigenomics, transcriptomics, pr

jMorp [11] Database/
Repository

genomics, methylomics, transcriptomics, an

DriverDBv3 [12] Database somatic mutation, RNA expression, miRNA
variation and clinical data in addition to an

The Personal
Genome Project-
UK [83]

Repository DNA methylation (bisulfite sequencing), wh

STATegra [13] Repository RNA-seq, microRNA-seq, ChIP-seq, RRBS, D
proteomics, metabolomics

ColPortal [14] Repository Mehylation 450 k arrays, 16 S sequencing,

The Omics
Discovery Index
[15]

Knowledge
discovery
framework

genomics, proteomics, transcriptomics and
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From these queries, we pick studies that developed new tools to
approach the problem of data integration for each objective.

Finally in order to obtain a set of multi-omics data resources to
suggest, we queried PubMed in the following way: Multiomics[ti]
AND (resource*[ti] OR repositor*[ti] OR database*[ti]). We
retrieved 42 results which were further post-filtered to keep only
real multi-omics resources for Human/Animals. Also, some extra
repositories were found through [5]. The results are shown in
Table 1.
3. Highlighted objectives from multi-omics data integration
studies

Subtype identification. Currently, diseases are being sub-
classified by common histopathology features or patient clinical
profiles and symptoms. Recently, several research studies have
investigated new disease subtype classifications by finding associ-
ations through their similarities at the molecular level. Grouping
by molecular features started at first by finding common genes
with perturbed expression, but more recently multi-omic signa-
tures are used to discover subtypes. Subtype identification can
identify heterogeneous groups within cancer cohorts with differ-
ences in disease progression or response to treatment. The discov-
ery of these subtypes can facilitate targeted and more effective
treatments including biological drugs, hormonal therapy and
immunotherapy.

Detect disease-associated molecular patterns. A common objec-
tive of multi-omics studies is to associate molecular markers with
clinical markers or measurable traits established in clinical prac-
tice. Multi-omics datasets enable the coordinated discovery of
disease-associated molecules leading to the output of the analysis
being ‘patterns’ or ‘modules’ or ‘relationships’ between molecules
as markers of disease. The patterns discovered, represent co-
varying/correlated molecules or coordinated modules that can be
used as disease/stage indicators and can be insightful in revealing
disease-specific pathways and mechanisms.
Link Species

mics, ATAC-sequencing, proteomics. Also:
ivity, speech, breathing and linguistics/

https://dataportal.
answerals.org/

Human

http://
www.fibromine.com/
Fibromine/

Human/
Mouse

ion, histone modifications (H3K4me3,
n accessibility and 3D chromatin architecture
s spanning six developmental stages

http://devomics.cn Human/
Mouse

oteomics https://portal.
gdc.cancer.gov/

Human

d metabolomics https://jmorp.
megabank.tohoku.ac.
jp/

Human

expression, methylation, copy number
notation bases

http://driverdb.tms.
cmu.edu.tw/

Human

ole genome sequencing, transcriptomics https://www.
personalgenomes.
org.uk/

Human

nase-seq, ATAC-seq, scRNA-seq, scATAC-seq, https://opendata.
lifebit.ai/table/
stategra

Mouse

expression arrays, microRNA arrays https://colportal.
imib.es/

Human

metabolomics https://www.
omicsdi.org/

Multi
species
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Diagnosis/Prognosis. Multifactorial diseases are difficult to diag-
nose due to their complex genotype and phenotype. The classifica-
tion into the different types is challenging for pathologists and the
diagnostic procedures can be tedious and interventional. The main
aim is to predict disease activity, severity and course of the disease
using integrated molecular data. Instead of single molecule
biomarkers, multi-omics studies adopt complex molecular signa-
tures and patterns as indicators in the prediction task. This envi-
sions giving more accurate predictions but comes with new
challenges in including the new composite features in the predic-
tion task.

Drug response prediction. The course of drug treatment and the
related response to the delivered drug can vary among patients.
Analysis of multi-omics datasets is used to increase the resolution
in identifying the drug effects on specific cell lines or patient cells.
Predicting whether a drug will work on a group of patients with a
similar molecular profile is central to achieving personalised
medicine.

Understand regulatory processes. Multi-omics data analysis
enables the inference of disease-specific gene regulatory networks
(GRNs) by combining measurements from gene expression and
potential regulators. GRNs can enable the identification of key
deregulated sub-networks and aid drug target discovery [6].

We consider that all the above-mentioned objectives have a
great overlap with a common general objective, namely the objec-
tive of Biomarker Discovery. Thus, we understand that all the pre-
sented tools and methods also contribute to this objective. All
the analysis to achieve the scientific objectives mentioned above
has as a secondary objective to uncover explainable biomarkers
for better prediction.

4. Predominant single and combined omics per objective and
disease

In the first part of the analysis, we set out to identify the most
frequently used omic layers of multi-omics studies. In (Fig. 1), we
visualise the frequency of each omics type across the examined
studies from 2018–2021. We separate the studies into two groups
focusing on cancer and non-cancer diseases. Transcriptomics is the
most common omic type in both cancer and non-cancer diseases.
In cancer, epigenomics and genomics are significant omic types
of choice whereas, in non-cancer diseases, this is not the case. In
diseases other than cancer, proteomics, metabolomics and metage-
nomics are significant types of choice.
Fig. 1. Frequency of each omics type across the examined multi-omics studies from
2018–2021.
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We then examine the pairwise combinations of the omic types
in the selected studies. Fig. 2a shows the number of occurrences of
each omics pair across the studies. Transcriptomics and proteomics
are most frequently used in combination, followed by the combi-
nation of transcriptomics with epigenomics, and proteomics with
metabolomics. In cancer, transcriptomics with epigenomics is the
top pair, followed by transcriptomics with genomics. Looking at
the distribution of all combinations, we detect short-range combi-
nations and long-range combinations of omics with the latter pre-
senting a few hits, as expected. For example, the long-range
combinations of metagenomics with epigenomics or genomics
with metabolomics are less frequent.

In Fig. 2b, 2c we highlight significant patterns of connectivity (in
terms of co-existence in the same study) between the various omics
for the categories of cancer and other diseases. In this figure, we
present the network of the most frequently used omics combina-
tions adopted by multi-omics studies from 2018–2021. The nodes
represent omics layers. Edges are connected if the two types of
omics datasets were combined in more than 10 studies, and their
weight represents the number of studies that combined the two
types. The node size represents the closeness centrality of the node
to emphasise nodes that are frequently combinedwithmost others.
In cancer, the study of the influence of genomics and epigenomics
on transcriptomics is the basic strategy. For the other diseases,
apart from measuring the influence of genomics and epigenomics
on transcriptomics, there is also a focus on downstream analysis
by combining firstly, proteomics and metabolomics with transcrip-
tomics and secondly, metabolomics with metagenomics. For both
cancer and non-cancer diseases, it appears that transcriptomics is
a key selection in various combinations of omics.

Objective-specific choices. We observed different trends in the
scientific objectives and the selection of omic types between can-
cer studies and other diseases. In Fig. 3 we are presenting the par-
ticipation of each single omic in each scientific objective. The
presented Sankey plots show the number of studies (as the width
of the flow) that utilize each omic type for each specific objective.
In cancer, the most common objective was subtype identification,
whereas, in other diseases, the detection of disease-associated
molecular patterns and diagnosis was more common. In cancer,
transcriptomics and epigenomics are the most frequent omics
mainly contributing to subtype identification. In other diseases,
transcriptomics, metabolomics and proteomics are the most fre-
quent omics, mainly contributing to detecting disease-associated
molecular patterns.

Fig. 4, shows the distribution of omics pairs used for each scien-
tific objective. The width of the bars shows the proportion of each
omic pair, from the total pairs that have been adopted for each
objective. For the objective of diagnosis of non-cancer diseases,
the most common combinations of omics used were metabolomics
and proteomics. Metabolomics and proteomics are also prominent
in identifying disease subtypes. This is in contrast to the objective
of understanding regulatory processes where metabolomics data-
sets are less frequently used and transcriptomics with epigenomics
or proteomics are more prominent combinations. In detecting
disease-associated molecular patterns, most pairs are used in sim-
ilar proportions. For the objective of drug response prediction, we
observe genomics, transcriptomics and epigenomics (specifically
DNA methylation). In cancer, the most common omics used for
all objectives were the triad of transcriptomics, epigenomics and
genomics data.

Disease-specific choices. We notice that nervous system diseases
are most frequently studied, more specifically the Alzheimer’s Dis-
ease (AD), Parkinson’s Disease (PD) and Amytrophophic Lateral
Scleorosis (ALS). Other diseases frequently studied with multi-
omics datasets are Inflammatory Bowel Disease (IBD), Liver disease
(gastrointestinal), Chronic Obstructive Pulmonary Disease (COPD)



Fig. 2. (a) Number of occurrences of each omics pair (i,j), for cancer (right) and other diseases (left). (b,c) Networks of the most frequently used omics pairs adopted by multi-
omics studies from 2018–2021 for cancer (c) and other diseases (b). Edges are connected if the two types of omics were combined in more than 10 studies. Edge weights show
the number of studies that combined the two types. Node size represents the closeness centrality of the node.

E. Athieniti and G.M. Spyrou Computational and Structural Biotechnology Journal 21 (2023) 134–149
(pulmonary) and Arthritis (musculoskeletal). In Fig. 4b we observe
trends in the selection of omics combinations by disease group
(groups are defined by anatomical entity). Metabolomics and
metagenomics are commonly used to study gastrointestinal and
immune system diseases. Epigenomics is usedwith transcriptomics
to study nervous and musculoskeletal diseases. Looking at specific
examples, we find that the pair is used mainly in aging-related dis-
ease like AD, PD and Osteoporosis. Proteomics and transcriptomics
is a common pair in endocrine, pulmonary and nervous related dis-
eases. For rare, inherited diseases like mitochondrial diseases,
where the first omic type is genomics, it has been established that
to find causal variants, transcriptomics is the next type to combine.
This allows for the functional assessment of variants detected.
5. Multi-omics data integration approaches and computational
challenges

Three types of multi-omics data integration approaches have
been identified in the literature: early, late and intermediate inte-
138
gration [16]. In early integration, the different omics datasets are
combined into one table or graph-based representation which is
then used as input to a Machine Learning (ML) model. In late inte-
gration, models are applied to each dataset independently. Then, a
second model combines their predictions. Finally, in intermediate
integration, a model learns a joint representation of the datasets.
We found that most newly developed tools from 2018–2021
specifically adopt the intermediate integration approach. In the
next sections of the paper we will present tools that mainly adopt
the intermediate integration approach. We identified that the tools
adopt different variations and combinations of the following meth-
ods: joint Dimensionality Reduction (jDR), Correlation and
Covariance-based jDR (COR), Factor analysis (FA), Probabilistic/
Bayesian Models (PR), Similarity (Kernel) based (KB), Network-
based integration (NB), Regression-based (RB) and Deep Learning
(DL). We thus group and present tools under these methodological
categories. The decision on the tool of choice for data integration
should be guided by the specific scientific objective of the project
and the computational challenges that arise from this. In the sec-
tion below we refer to a set of computational challenges in data



Fig. 3. Sankey plots of omics datasets selected for each scientific objective. The width of the flow represents the number of studies that used the specific types of omics for the
scientific objective. Only the omic types used more frequently are shown in each plot.

Fig. 4. Percent frequency of omics datasets combinations out of the total combinations used in multi-omics studies of 2018–2021 (a) for each scientific objective and (b) for
each disease group (grouped by anatomical entity). The plots show only the top eight most frequently used combinations. Abbreviations. E: Epigenomics, G: Genomics, M:
Metabolomics, Mg: Metagenomics, P: Proteomics, T: Transcriptomics.
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integration that will help qualitatively compare the tools in the
next sections:

� Complex non-linear interactions between features. The ability
of the selected method to capture higher-order or non-linear
interaction effects between molecular features is a crucial
requirement in objectives related to the understanding of
139
molecular mechanisms. Network science analytics facilitate this
systemic capture for example, on gene regulatory network
inference, where a gene is influenced by other distant genes
and biological factors.

� Uneven datasets and missing data. Datasets can differ vastly in
size containing also missing values, either in the form of ran-
dom features missing or of whole omics measurements missing



Fig. 5. Data integration tools by the method adopted. The colours of the bars represent the scientific objective the tool is employed for.
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for some samples. This can hinder the learning process [4]. For
example, proteomics and metabolomics technologies produce
more sparse and smaller datasets than RNAseq. In the case of
subtype identification, the grouping obtained might be driven
predominantly by variation in transcriptomics.

� Data heterogeneity. This refers to the disparate nature of omics
variables and the different distributions that they follow. For
example, mutations are fundamentally different to other data
types like RNAseq that take continuous values. Instead, somatic
mutation profiles are extremely sparse, and take binary values
[17]. It is unsuitable to interpret the variation of a binary vari-
able in the same way as the variation of the continuous vari-
ables would be interpreted. In addition, there is omics-specific
noise, sources of variation and confounding effects in each
omics measurement.
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� Curse of dimensionality. This is a generic data science challenge
referring to problems that arise when the number of variables
exceeds the number of samples (large p, small n), which is typ-
ical for omic datasets. This leads to lack of generalisation and
overfitting, and subsequently, to spurious associations between
molecules or phenotypes, that do not generalise to other
datasets.

� Computational Performance. Some computational performance
criteria include whether the algorithm can scale to large num-
ber of samples, if it is easy and efficient to run, if it is robust
and whether it can converge to an optimal solution in a set
number of runs. These could be assessed quantitatively on real
or simulated datasets.Other than dealing with the computa-
tional challenges described above, many DI tools are optimised
for specific objectives. Therefore, it is crucial to define criteria
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that should be objective-specific, to help assess their strengths.
These criteria will be elaborated on in the next section for each
objective.

6. Predominant multi-omics computational methods for the
selected objectives

In this section we select the three most prominent scientific
objectives, subtype identification, detection of disease-associated
molecular patterns and understanding of regulatory processes, to
present commonly used DI methodologies and examples of related
tools for each objective. A list of example tools we describe is in
Table 2. The table includes the computational method category
for each tool, the objectives it was used for and the datasets it
was applied to. The right side of the table is separated into compu-
tational challenges described earlier, and a check symbol indicates
whether the tool was designed to approach the specific challenge.
Fig. 5 is a diagram showing the data integration tools grouped by
the methods adopted and the scientific objective the tool is
employed for.
6.1. Subtype Identification

In subtype identification, groups of samples with similar molec-
ular features are identified through an unsupervised analysis
approach. The performance of the methods is evaluated against
different criteria that aim to assess the coherence and usefulness
of newly defined molecular subtypes. Subtypes should be biologi-
cally meaningful and clinically relevant. This can be assessed by
checking whether they show significant differences in enriched
biological processes and distinct patient outcome differences. Fur-
thermore, the clinical and biological relevance of the subtypes
should be easily interpreted. This can be measured with different
parameters, like whether molecular features and known pathways
Table 2
Example tools for data integration, identified in multi-omics studies published in 2018–20
used for. The right side of the table is separated into the data integration computational cha
challenge. Abbreviations. jDR: joint Dimensionality Reduction, FA: Factor analysis, COR: Correla
Probabilistic/Bayesian, REG: Regression-based E: Epigenomics, G: Genomics, M: Metabolomics, P
associated molecular patterns SI: Subtype Identification.

Tool Method category Datasets Objectives Ref Non-

MOFA FA, PR, JDR E, G, P, T SI, MP [43]
iNMF FA, JDR E, T SI [29]
JIVE FA, JDR E, P, T SI [44]
intNMF FA, JDR E, G, P, T SI [45]
jNMF FA, JDR E, T SI, MP [46]
iClusterPlus PR, JDR E, G, T SI [47]
iClusterBayes PR, JDR E, G, T SI [31]
LRAcluster PR, JDR G, P, T SI [33]
NEMO KB E, T SI [20]
SNF NB, KB E, M, P, T SI [18]
CIMLR KB E, G, T, SI [26] U

rMKL-LPP KB, JDR E, T SI [22]
MKpLMM KB E, G, T SI [48] U

MixKernel KB E, T SI [27]
SubtypeGAN JDR E, G, T, SI [42] U

Mogonet NB, JDR E, T SI [41] U

iBag NB, PR G, T UR [49]
FuseNet NB, PR G, T UR [50]
DCGRN NB, REG E, G, T UR [50]
iGRN NB E, G, T UR [51]
sPLS JDR, COR, REG E, M, P, T MP [52]
sPLS-DA JDR, COR, REG E, P, T MP [52–54]
DIABLO JDR, COR, REG E, P, T NA [54]
rCCA JDR, COR P, T SI, MP [52]
rGCCA JDR, COR P, T SI, MP [36]
MCIA JDR, COR P, T SI, MP [35]
sMBPLS COR, REG E, G, T MP [55]
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from knowledge databases can be associated with subtypes and be
readily extracted after clustering.

Validation schemes can be implemented by testing the outcome
on new data. For example, the omic features that differed signifi-
cantly between clusters can be extracted as important markers
for subtyping and for classification of new unseen datasets to sub-
types. Finally, ground truth-based evaluations can be used to clas-
sify samples from already characterised or simulated datasets with
known subtypes.

Below we present the main methodological categories of DI
methods in subtype identification and several examples of related
tools.

Similarity- (Kernel-) based. Similarity-based approaches calcu-
late a similarity score between each pair of patients based on the
combination of omics measurements. In Similarity Network Fusion
(SNF) [18] the multi-omic driven patient similarities are produced
using a network approach. The samples are connected to form
sample similarity networks, first for each omic dataset separately.
Then these omic networks are combined through a novel network
fusion method to produce a multi-omics sample similarity net-
work. The network fusion algorithm works iteratively and is based
on message passing theory. At each iteration each of the omics net-
works is updated with the information from the other networks,
becoming more similar, until they converge to a common network.
The final fused network is analysed further using a spectral cluster-
ing algorithm to identify homogeneous cluster subtypes. SNF has
been applied to a broad range of diseases to uncover clinically rel-
evant molecular subgroups. In the study of [19] the molecular clas-
sification of Chronic Obstructive Pulmonary Disorder (COPD)
patients from nine omics data blocks mRNA, miRNA, proteomics,
metabolomics coming from several anatomical locations was per-
formed with SNF. Smoking is a confounding variable that compli-
cates the separation of mild-to-moderate COPD patients from
current smokers. The SNF-produced networks improved the sepa-
ration of patients to COPD patients, smokers with normal lung
21. Computational method category, datasets it was applied to, and objectives it was
llenges. A checkmark indicates whether the tool was designed to approach the specific
tion/Covariance-based jDR, NB: Network-based, DL: Deep Learning, KB: Kernel-based, PR:
: Proteomics, T: Transcriptomics UR: Understand regulatory processes, MP: Detect disease-

linear Unequal sizes Missing Data large p small n Heter. Datasets

U U

U U

U

U

U

U

U

U U

U U U U

U

U

U U U

U U U

U U

U U

U U

U

U

U U

U

U

U

U

U

U



E. Athieniti and G.M. Spyrou Computational and Structural Biotechnology Journal 21 (2023) 134–149
function and never smokers. SNF is scalable to a large number of
features. In addition the network representation of the multi-
omic clusters offers an intuitive way to understand the complex
interconnections of patient subgroups.

NEMO [20] is another similarity-based method optimised to
work well on partial datasets. The similarity index is calculated
as the profile closeness of each pair of samples for each omics sep-
arately. Then the index is converted to a relative similarity, by
measuring the similarity between sample i, j relative to i’s nearest
neighbours and j’s nearest neighbours. The joint profile is calcu-
lated as the average relative similarity across all omic layers. Spec-
tral clustering again is used to reveal subtypes based on the
average relative similarities. By using the average relative similar-
ity rather than absolute measurements, the algorithm can combine
omics that have different data distributions. Compared to nine
other state-of-the-art algorithms on subtypes with significantly
different survival, it performs as good as the correlation-based
method MCCA [21] and the kernel-based tool rMKL-LPP [22] on full
datasets, and better on partial datasets.

One of the major advantages of similarity-based methods is that
they can handle missing data since the similarity index can be
computed when there are missing features, or missing omic data-
sets. Their runtime mainly depends on the number of samples
rather than on the omics features and thus they scale well to high
throughput datasets. They are also less reliant on feature selection
as a pre-processing step, compared to joint dimensionality reduc-
tion methods.

Multiple Kernel Learning. The integration of patient similarities
from multiple omics datasets can also be computed using Kernel
Learning [23,24]. The data is mapped to a higher dimensional fea-
ture space, which is constructed using a kernel function. Kernel
functions compute the inner product of pairs of data in the feature
space producing a kernel matrix. In multi-view datasets the pro-
cess can be done in two steps: Kernel functions are first computed
for each data view separately. Then, multiple kernel learning is the
process where the functions are combined to produce the inte-
grated higher dimensional space, by minimising an objective func-
tion. The resulting feature space is then used for pattern analysis
and clustering. rMKL-LPP [22] uses a linear combination of kernels
to integrate the different omic types. The combined kernel is con-
structed using an objective function based on the Locality Preserv-
ing criterion, LPP. LPP aims to preserve the similarities of the
patients in each omics data, making this Kernel-based integration
method particularly suited to the clustering of samples. In the
benchmarking study of [25], rMKL-LPP was shown to score highly
in finding clusters that have significantly different clinical
parameters.

Kernel matrices can offer flexibility in terms of the input data
type, because the first step maps each of the datasets to a higher
dimensional space where they can be combined. The more recently
developed CIMLR [26] also included point mutations and copy
number alterations (CNA) in addition to DNAmethylation and gene
expression (GE) datasets to reveal cancer subtypes of 36 different
cancers from TCGA. CIMLR combines a higher number of kernels,
per data type, and allows one to learn higher-order kernel func-
tions. This is done by combining multiple gaussian kernels per data
type corresponding to different representations of the data. The
presented evaluation of the method shows a higher cluster separa-
tion and stability and more biologically and clinically relevant sub-
types discovered for the 36 cancers, compared to two probabilistic
methods, iClusterPlus and Bayesian consensus clustering (BCC),
and the similarity-based tool SNF.

MixKernel [27] integrates the datasets by computing kernels for
each of the datasets independently, and then calculating a mixed
kernel that aims to maximise similarity with all the others at the
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same time. In addition, it tries to keep the geometrical structure
of the separate datasets in the mixed kernel.

Factor analysis. Factor analysis methods perform dimensionality
reduction by decomposing the datasets into a smaller number of
factors. This can be done using matrix factorization, where the data
is decomposed into a weight matrix H and a matrix of factors W.
Several tools like jNMF [28] and intNMF [29] represent various
extensions of the method to apply to multi-view datasets. jNMF
and intNMF decompose the dataset into a common factor matrix
W and multiple weight matrices Hk that correspond to each omics
dataset to perform the multi-omics matrix factorisation. The factor
matrix W which has dimensionality n� c (number of samples �
factors) is common across the omic datasets, and it is thus used
for pattern analysis and clustering of the samples. Non-negative
matrix factorisation (NMF) methods impose the constraint that
the matrices should be non-negative. In order to obtain the cluster
membership of each sample, the largest element in the sample row
of matrix W is selected. iNMF [29] decomposes the datasets using
an extra omics specific term. This helps to separate omics-specific
noise and confounding effects from the biological signal. The pro-
posed method showed improvement in the level of common signal
detected relative to noise.

MOFA is a multi-omics matrix factorisation method which uses
variational inference to efficiently construct the low-dimensional
representation of the data. The problem of finding the factors Z
and weight matrices W is solved using a probabilistic Bayesian
framework. Regularisation is used to enforce sparsity in the weight
matrix. MOFA + is an extension of the model to make it scalable to
larger datasets. MOFA is one of the few methods that deal with
missing data in a probabilistic manner rather than using imputa-
tion. For datasets with missing data, it was shown to perform bet-
ter than other state-of-the-art imputation strategies including
imputation by feature-wise mean, SoftImpute and KNN. The MOFA
package includes tutorials that demonstrate how to use the factors
for further analysis like sample clustering.

In the study of [30] MOFA was used to identify therapeutically
relevant molecular groups across 116 pulmonary carcinoids using
methylation and GE data. The analysis produced five latent factors,
and the first two captured 45% and 34% of the variance in the data-
sets. To identify subtypes, the first two factors that were found to
also associate with survival status, were used to perform consensus
clustering. The 116 carcinoids, were grouped into three main clus-
ters that have distinct survival outcome and therapeutic targets.

Probabilistic Factor analysis models. iClusterPlus [31] makes dis-
tributional assumptions about the datasets to accommodate the
different distributions of omics variables. The distribution of each
genomic variable is defined in terms of latent variable models.
For example, the inferred latent variables can be thought to cap-
ture the distinct oncogenic mechanisms in different patient groups,
and thus help to cluster the patients. They are estimated from the
omics variables using a parametric joint model using linear regres-
sion. The joint log-likelihood is approximated using a modified
Newton–Raphson algorithm to estimate the model parameters.
However, it has been criticised about being computationally inten-
sive, and not robust as it requires a large number of runs to find a
stable solution [32]. iClusterBayes [31] extends iClusterPlus to
model binary genomic variables and count data from RNA
sequencing. A Bayesian model is used to include Bernoulli and
Poisson priors, and uses the Metropolis–Hastings algorithm for
parameter estimation. It significantly improves the computation
time compared to iClusterPlus. The algorithm was applied to TCGA
datasets of glioblastoma and kidney cancer. The integrated sub-
types revealed distinct genomic patterns from mutation, copy
number alteration (CNA) and GE data, and had more significant dif-
ferences in survival probability than GE subtypes.
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LRAcluster [33] also finds the low-dimension subspace in terms
of latent variables. It differs from iClusterPlus by using a fast low-
rank approximation method to improve the efficiency of parameter
estimation. moCluster [34] also calculates a joint latent variable
using modified consensus PCA. moCluster focuses on the issue of
non-deterministic solutions given by iterative expectation maxi-
mization algorithms like iClusterPlus. Compared to iClusterPlus,
it finds a stable solution in one run.

Correlation/Covariance-based jDR. While they were not specifi-
cally designed to perform subtype identification, they are widely
used for integrating multi-omics datasets using joint dimensional-
ity reduction. These methods transform the multi-view datasets
using an objective function to maximise their correlation or covari-
ance in the transformed space. This space is then used for pattern
analysis and, thus, clustering of the samples. Example tools are
MCIA [35], RGCCA [36] and MCCA [21]. More details on how these
tools can be applied to subtype identification can be found in the
benchmarking studies of [37,38]. jDR methods have been widely
used for highlighting data issues such as batch effects and outliers
both in single omics and multi-omics datasets. Therefore, they
could be also used in combination with other subtype identifica-
tion tools as a pre-processing step or in an exploratory manner.
These methods will be presented in more detail in Section 6.2.

Deep Learning. Most applications of DL methods use as input a
concatenated matrix of omics features using an early integration
approach. A set of new tools, however, exploit the multiple inner
layers of DL methods to learn a joint representation of the input.
These layers could capture the correlations and complex biological
relationships within the datasets [39]. This representation is envi-
sioned to be able to combine heterogeneous datasets more
efficiently [40,41]. SubtypeGAN [42] is based on a generative
adversarial network consisting of multi-input and multi-output
layers and a shared layer representing the multi-omics input. The
three modules, encoder, decoder and discriminator, are used in
the training process so that the shared layer learns a non-linear
low-dimensional representation of the complex input. The shared
layer representation is then used to perform clustering. Sub-
typeGAN is evaluated using 10 different cancer datasets with
mRNA, miRNA, DNA methylation and CNAs. The evaluation shows
that information from CNAs can contribute up to 39% to the discov-
ery of integrated subtypes. Many tools have not included genomic
variables like CNAs in this task. However, the high proportion of
the contribution of CNAs to new subtypes shown in these results
shows that emphasis should be placed on these datasets. More
algorithms that support heterogeneous datasets are required, and
the ability to exploit information from non-continuous and contin-
uous genomic variables simultaneously should be prioritised.

Latent variable models using prior knowledge. Latent variable
models hypothesise that there are hidden factors in the datasets
that represent major underlying biological processes. Intuitively,
within different groups of samples, these biological processes
occur at different degrees that explain the variations between
them. However, the factors learnt might not always represent real
interpretable biological processes but other sources of heterogene-
ity due to the specific experimental setup or other confounding
variables. To help construct biologically interpretable factors, there
is a line of research where the models are induced to construct fac-
tors correlated with known pathways.

One example of this approach is the tool PathME [56]. It incor-
porates pathway information into a multi-modal autoencoder to
help reduce the dimensionality of omic features. The method pro-
duces a patient-pathway scores matrix which is used for further
analysis. This is done using the autoencoder framework to find a
non-linear mapping from the original patient-feature matrix to a
patient-pathway matrix. The patient-pathway score matrix is fur-
ther decomposed using NMF to identify clusters of patients with
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similar pathway scores. For example, if a set of pathways is dysreg-
ulated in two patients, they would more likely be grouped into the
same subtype. Using NMF, the pathways are also clustered, obtain-
ing information on how different pathways are involved in orches-
trated pathogenic processes. PathME revealed the activation of
pathways in specific subtypes of 4 cancers. This facilitated the dis-
covery of highly interpretable molecular subtypes from the inte-
grated data.

A few benchmarking studies compare selected methods for sub-
type identification that help assess their strengths on different
objective-specific criteria. The benchmarking study of [37] com-
pares nine jDR tools using DNA methylation, transcriptome and
protein expression features. They included iCluster, MOFA, JIVE,
intNMF, and other JDR tools not specifically designed for clustering
like MCIA and RGCCA. The aforementioned tools were evaluated
based on their capacity to classify the samples against ground truth
subtypes, predict their survival and therapeutic outcome as well as
the implicated pathways/ biological processes. Among the nine
selected methods/tools, intNMF and iCluster, intrinsically designed
for the clustering of samples, have been shown to perform best in
identifying the subtypes from simulated datasets. However, on real
datasets the factors produced by MOFA and RGCCA had better
associations with clinical annotations or survival status. It is clear
that tools have strengths and weaknesses against the different
objective-specific criteria, and that, depending on the questions
at hand, different tools could be combined to get the best results.

Other benchmarking studies use different sets of data like
mRNA, miRNA and DNA methylation in [38]. Including binary
mutation data and CNAs in subtype identification has been
approached by a limited set of tools. The benchmarking study of
[57] performs clustering using simulated heretogeneous datasets
from different distributions: gaussian, binary and beta-like. They
evaluated the performance of detecting variables that drive sub-
types. The most challenging variables to detect were binary and
beta-like. moCluster, intNMF and CIMLR were better at detecting
binary variables than RGCCA, MCIA and iClusterPlus. For beta-
like variables moCluster was the best performer.

6.2. Detect disease-associated molecular patterns

This objective concerns the discovery of covarying molecules or
highly correlated modules that could reveal disease-specific mech-
anisms. The molecules/entities within the modules could be func-
tionally related and it is assumed that their co-expression and
relationship is associated with the disease state. The additional
output that results from multi-omics analysis is that, apart from
significant molecules/entities, we can identify significant within-
layer and across-layers connections as markers of disease state.

A primary challenge is to make the high-dimensional datasets
more interpretable. Reducing the datasets to a smaller number of
important features could help relate the findings to the pathogen-
esis of the disease and pinpoint causal mechanisms. This analysis
can be quite exploratory and may act as a starting point to generate
more specific questions and research hypotheses. In order to assess
the quality of the output, the highlighted (connected or not) mole-
cules are expected to have significant transcriptional or functional
enrichment.

To aid with the interpretation, these methods are often coupled
with downstream analysis to further annotate the extracted pat-
terns. This is done either by producing a network to observe the
relationships between the molecules or by performing pathway
analysis. These approaches will be described further in the next
section.

Correlation/Covariance-based jDR. Tools based on jDR for data
integration are emerging in the last decade, and have been widely
used to explore and derive complex molecular patterns. The review
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of [34] offers an in-depth description and links of the different cor-
relation and covariance-based jDR methods (eg. CCA, rCCA, RGCCA,
MCIA) for integration. There are numerous implementations of
these methods, with variations that adopt different objective func-
tions and computational approximations to obtain the transformed
datasets [58]. Here, we refer to a set of implementations that have
been optimised to deal with the different challenges of multi-
omics data integration.

Correlation and covariance-based jDR methods transform the
multi-view datasets by maximising their correlation or covariance
in the transformed space. The transformed datasets are then used
to visualize common major patterns across multiple datasets. In
CCA, a set of components is estimated that maximizss the correla-
tion between the datasets in the transformed space. In MCIA [34],
the co-inertia is maximised. Generalised CCA (GCCA) implementa-
tions are further extensions to apply to more than two datasets.
Regularised (RCCA) and sparse (sCCA) variations are implemented
to deal with matrices where the number of features exceeds the
number of samples [21]. The RGCCA implementation in [36] is an
extension of CCA to apply to multiple datasets and also for a high
number of features. From a statistical point of view, GCCA and
MCIA can be recovered using the RGCCA algorithm with different
values of its input parameters, shrinkage and sparsity. A useful
practical guide of different applications of each one is offered in
[59]. DIABLO [54], available in the mixOmics package, is an exten-
sion to create a supervised framework of a previous implementa-
tion of sGCCA [60]. It simultaneously maximises the covariance
of the transformed datasets and minimises the error rate of pre-
dicting a response variable y. This way, it selects co-varying mod-
ules that best explain a response variable, usually a phenotypic
variable or trait.

A study on Crohn’s disease focused on understanding the role
of dysbiosis of gut bacteria on disease activity, by identifying rel-
evant microbiota-metabolite interactions [61]. rCCA from [62]
was applied to the differentially abundant features from metage-
nomics and metabolomics datasets. Afterwards, they produced a
relevance network, connecting the two sets of features using
the transformed datasets given by the CCA. Analysis of the result-
ing network highlighted two main clusters of bacteria-metabolite
interactions, involving sulfur metabolism as a key mechanism
linked to disease.

Partial Least Squares (PLS) analysis finds a set of components to
maximise the covariance of the transformed datasets. sMBPLS [55]
is another variation to apply to more than two datasets, with the
aim to identify regulatory modules from multiple omics datasets.
PLS-DA [63], a supervised adaptation of PLS, was adopted to predict
amyloid positivity from non-invasive plasma biomarkers [63]. The
authors integrated RNAseq data, plasma metabolomics and lipido-
mics. The metabolomics block was found to be the most discrimi-
native in predicting amyloid-positive and amyloid-negative
samples. A molecular signature of ten metabolites and transcripts
was able to predict amyloid positivity with an extremely high
chance.

Factor analysis. jNMF was one of the first tools to define the
notion of multi-dimensional (md) modules using factor analysis.
In [28], an ovarian cancer cohort was analysed to discover the main
md-modules. Using the multi-omic features of the md-modules to
perform GSEA separately for each module, they were found to be
functionally homogeneous and enriched in known cancer
processes.

MOFA [43] is one of the most recent implementations to
approach this objective. A difference from the majority of the
correlation-based methods described above is that it learns a single
factor matrix that is common to all the data modalities. Intuitively,
the multiple factors would represent the main biological processes
that vary within the samples. The factors can be used for further
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downstream tasks to tackle more specific objectives including
annotation of factors using principal component gene-set enrich-
ment [64] and association of factors with clinical variables.

In order to compare the toxicological mechanisms related to
cigarette smoke (CS) and to modified risk tobacco products, five
omic datasets from mice were collected and analysed with the tool
MOFA [65]. The first factor captured a significant part of the varia-
tion and showed a signature that spans all omic layers. An associ-
ation network for the first factor was derived from a set of
knowledge databases for functional interpretation, showing that
the main processes involved include immune response, oxidative
stress response, lipid metabolism and extracellular matrix.

Because of the exploratory character of these methods it is
rather difficult to compare and establish a benchmark to evaluate
them. One way is to convert the problem to a supervised task
and assess how the modules or latent variables produced can be
used to predict complex traits as seen in [58].

The methods described here facilitate the reduction of the
omics datasets to help extract novel insights. However, the trans-
formations and reductions that the methods produce, comprise
of features that represent biological processes that span several
omic layers. To facilitate their interpretation, a set of downstream
analysis tools can be used to complement the findings. These tools
are presented in Section 7.

6.3. Understand regulatory processes

The most common task to understand regulatory processes in
disease is to construct and analyse gene regulatory networks
(GRN). GRNs can be homogeneous, where nodes represent genes,
or heterogeneous, where nodes represent genes and other biologi-
cal factors (eg. DNA methylation, CNVs, miRNAs and regulatory
proteins) that are involved in the regulation of GE.

There is a vast amount of literature on methodologies to infer
homogeneous GRNs from GE datasets (microarray or RNAseq),
and potentially including prior information from knowledge
databases related to protein–protein interactions (PPIs) and tran-
scription factors (TFs) to help infer the presence, weight and
direction of regulatory links. For example, PPIs help to estimate
the strength of regulatory links, time series GE data can help
to find the directionality of the relationship, and knockout data
helps in the inference of causal relationships [66]. However,
including mainly prior information and only GE for the
sample-specific measurements produces generic networks that
are not specific to the patient cohort at hand. Here we focus
on tools that produce context-specific regulatory networks using
the simultaneous measurements and integration of omics from
the patient samples.

GRN inference requires a search of potential regulators (from
genes, CNVs, DNA methylation sites, miRNAs etc.) for each gene.
This is computationally intensive and prone to false positive
edges being constructed due to correlations and indirect connec-
tions between genes and regulators. [67]. When inferring regula-
tory networks, the identification of causal relationships between
genes is crucial. If indirect correlations are not distinguished, this
leads to very dense networks (high number of edges) and hence
to limited interpretability. Therefore, this is one of the primary
challenges and evaluation criteria for GRN inference methods.
Other evaluations to assess the performance of GRN tools include
an estimation of how functionally informative the inferred net-
works are using the strength of associations between GO and
the networks.

The highlightedmethods found to be applied to reconstruct reg-
ulatory networks are the following:

Regression-based. In the case of Regression-based approaches,
the expression of each gene, is represented by a regression model



E. Athieniti and G.M. Spyrou Computational and Structural Biotechnology Journal 21 (2023) 134–149
that includes measurements from other omic datasets and their
parameters. The problem of inferring links between a set of N
genes and their regulators, is decomposed into a set of N regression
problems. iGRN [51] produces a gene-to-gene adjacency matrix
and two biadjacency matrices for the interactions of CNV and
DNA methylation with genes (CNV-gene and DNA methylation
site-gene). The expression of gene i is then modelled by a sparse
linear model incorporating other genes and also interaction effects
of its nearby CNVs and DNA methylations. The parameters are esti-
mated using the least absolute shrinkage and selection operator
(LASSO), to select the most predictive variables. Because the num-
ber of GE features is much higher than DNA methylation and CNV
features associated with a gene, this would likely result in only the
gene parameters in the model being non-zero during regulariza-
tion. In order to deal with this, the estimation is done in a stepwise
manner, first, the coefficients for CNVs and DNA methylation are
computed, and then for the genes. iGRN was used to infer a gene
regulatory network from human brain data of patients with 3 psy-
chiatric disorders, schizophrenia, bipolar disorder and major
depression. The samples have 25 k GE, 1028 CNVs and 24 k sites
for DNA methylation. A small set of inferred interactions was
extracted, and revealed regulatory mechanisms common to the 3
diseases.

BMNPGRN [50] makes use of non-convex penalty-based regres-
sion methods suggested to be better alternatives to LASSO when
dealing with sparse problems such as estimating interactions from
multi-omics datasets. To study the mechanisms of breast cancer,
BMNPGRN is applied to a multi-omics dataset of 760 case and 80
control samples. The inferred network proposes potential regula-
tors for key driver genes (KCNK12,SLC2A3 and TP53) in the context
of breast cancer.

Probabilistic models. iBAG [49] and Fusenet [68] are probabilistic
models that explicitly model the probability distribution of the dif-
ferent datasets to be integrated. This allows data with different
probability distributions to be integrated and also different param-
eters to be estimated for each of the datasets. Using probabilistic
models, however, introduces different algorithmic considerations,
like the selection of the approximation method for the calculation
of the posterior distribution [69]. iBAG uses a mechanistic model to
predict the measure of GE from corresponding methylation sites. In
order to fit the model and solve for the parameter set they use a
Bayesian formulation of the LASSO. Fusenet incorporates latent
variable models to perform the gene network inference from
mRNA and mutation data. The measurements from each different
omics dataset is represented as a random variable with Poisson
probability distribution for GE or multinomial for mutation data.
These are defined in terms of latent variables. The network is
jointly estimated from the combination of the two, by collectively
inferring the latent variable parameters using cyclical coordinate
descent. The model is evaluated based on three simulated network
structures (hub, scale-free and small world) and compared to
related methods including the Local Poisson Graphical Model
which also uses Graphical Models but without including latent
variables. Fusenet shows improved performance and it is con-
cluded that inferring the parameters using latent variables is
beneficial.

Evaluating the methods for gene regulatory networks is not
a straightforward task because there are no sets of ground-
truth or true comprehensive regulatory networks listed [70].
Apart from that, these networks are tissue-specific, time-
specific, and disease/biological condition-specific and their
experimental verification requires large collaboration efforts.
Most methods rely on simulations to establish the accuracy of
their method, and this can be biased as some assumptions
taken into the model construction are also taken in producing
the simulated datasets.
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7. Downstream analysis to extract biological insight

7.1. Using molecular interaction networks for DI

In this approach the multi-omics datasets are joined using a
biological network as backbone. The network can be constructed
from knowledge databases or inferred from the data. These tools
map the input datasets onto an extensive interactome network.
Further analysis finds a high-confidence subnetwork relevant to
the datasets. The subnetwork is context-specific and is thought
to provide a template for inferring causal pathways. Subnetwork
identification is a well-known problem in graph theory with imple-
mentations like PCSF, jActiveModules and Random Walk with Res-
tart [71].

The tools we present here can be used as standalone or as com-
plementary to the DI methods explained in the previous section, to
obtain additional mechanistic insights.

Omics Integrator [72] performs this integration using the sub-
module Garnet that finds TFs associated with mRNA expression
changes and produces an interactome network using known PPIs.
Then, the submodule Forest uses the PCST algorithm to identify a
high confident relevant subnetwork from the underlying
interactome.

COSMOS [73] uses a meta prior knowledge network (metaPKN)
produced from databases STITCH, OmniPath and Recon3D. Using
the metaPKN as a backbone, it searches for causal paths between
the deregulated TFs, kinases, phosphatases and/or metabolites in
the input datasets. To find the smallest sign-coherent subnetwork
connecting the deregulated molecules, it uses the implementation
from the tool Carnival [74]. Cosmos was applied to clear cell renal
cell carcinoma to investigate the regulation of signalling cascades
and metabolic reactions. The analysis produced an enriched sub-
network around the IFN pathway that revealed possible causal
mechanisms between the dysregulated molecules.

iOmicsPass [75] first transforms the quantitative data of indi-
vidual molecules into interaction scores based on their z-scores
to infer an interaction network. It then selects densely connected
subnetworks to predict phenotypic groups. The subnetworks are
considered to correspond to functional modules, like transcrip-
tional regulatory processes, that differentiate the phenotypic
groups. iOmicsPASS was used to map transcriptomics and pro-
teomics from the TCGA breast cancer dataset to TF and PPI net-
works. The analysis identified predictive subnetworks for four
breast cancer subtypes. Their approach is shown to improve the
prediction of molecular markers when the omics datasets are
uneven in size. The jDR method MOFA resulted in a higher number
of RNAseq features as subnetwork-predictive, possibly because of
their larger representation. iOmicsPass allowed the discovery of
important proteins too, since using the molecular interaction
knowledge, it was forced to integrate the datasets in a more bal-
anced manner.
7.2. Multi-omics pathway analysis

Performing pathway analysis from a set of multi-omics datasets
is envisioned to detect more accurate biological processes com-
pared to single omics datasets. Firstly, adding evidence from mul-
tiple molecular layers is assumed to increase the statistical power
of the enrichment analysis. Also, by collecting dysregulated fea-
tures from the different omic layers can help detect dysregulated
processes that span different layers. The task however is not
straighforward and comes with its own practical challenges. We
urge the reader to consult with [76] for a comprehensive review
of multi-omics pathway analysis tools. The authors group the tools
into four types based on their integration method, and they evalu-
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ate them based on their strengths and drawbacks. In our analysis
we identify two main approaches, firstly, the more traditional, p-
value based integration approaches. And secondly, novel tools that
use latent variable models to transform the dataset before per-
forming enrichment analysis. We list a set of tools, the omic types
they support and the pathway database used in Table 3.

P-value based integration methods might require a mapping of
the features from different omic layers to their corresponding
genes. PaintOmics [77] maps features from different omic types
to genes and performs GSEA analysis separately for each layer. This
results in a separate p-value for each layer and each pathway. In
order to integrate the information, the p-values are combined
using Fisher’s test or Stouffer’s test. Because of possible correla-
tions between the different omic types, Fisher’s test might result
in false positives and thus Stouffer’s test is adopted more fre-
quently. MultiGSEA [78] also uses Stouffer’s method. MetaboAna-
lyst offers both methods Stouffer’s method to specifically
integrate transcriptomic and metabolomic data. Metaboanalyst
does not require the metabolomics datasets to be mapped to
equivalent genes. ActivePathways [79] uses Brown’s extension of
Fisher’s combined probability test (to also deal with correlations
between the different omics). It was used to reveal 33 pathways
from genomics and transcriptomics data that were only apparent
through the integrative pathway analysis but not in genomics or
transcriptomics alone. This is potentially due to increasing evi-
dence for specific genes from additional features coming from
the second omic layer.

MOGSA [80] is a novel methodology to perform multi-omics
enrichment analysis based on integration of the datasets using
multiple factor analysis. MOGSA uses the joint latent variables pro-
duced by integration, using factor analysis to perform enrichment.
It does not require all features to be mapped to a single gene.
Instead, the user must provide a feature to gene-set membership
association for each feature. This is a binary matrix where a feature
is set to 1 for a gene set if it belongs to the set. This allows a feature
(for example, a methylation site) to associate with multiple gene-
sets simultaneously. Then a matrix of factor loadings is produced
Table 3
Multi-omics pathway analysis tools, omic types they support as input and the
pathway database they use.

Name Omics type Pathway Database

ReactomeGSA [84] proteomics,
transcriptomics

GO, KEGG, MSigDb,
Reactome

PaintOmics3 [77] transcriptomics,
proteomics,
metabolomics, ATAC-
seq, ChIP-seq data

KEGG

IMPALA [86] Transcriptomics,
proteomics,
metabolomics

KEGG, Reactome, BioCyc,
Pathway Interaction
Database, Biocarta,
NetPath, INOH, EHMN,
PharmGKB,
WikiPathways, SMPD

MultiGSEA [78] Metabolomics,
transcriptomics,
proteomics,

KEGG, Biocarta, Reactome,
NCI/Nature Pathway
Interaction Database,
HumanCyc, Panther,
SMPDB, PharmGKB

ActivePathways [79] Transcriptomics,
genomics,

GO, Reactome

MetaboAnalyst [85] Transcriptomics,
Metabolomics

KEGG

Ingenuity Pathway
Analysis

Metagenomics,
Transcriptomics,
Proteomics,
Metabolomics,

IPA database

MOGSA [80] Transcriptomics,
proteomics, genomics

MSigDb, Biocarta, KEGG,
Reactome, GO
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using factor analysis. To obtain the combined gene set scores, the
gene-set association matrices are multiplied with the factor load-
ings matrix. An advantage of factorisation methods is the ability
to detect factors associated with the unwanted signal from batch
effects and confounding variables. For example, when MOGSA
was applied to a cancer data integration task, one of the top factors
of the model was associated with cell doubling time. After remov-
ing the scores associated to this factor the significance of the cell
cycle checkpoint pathway was decreased. This allows the method
to produce a more accurate ranking of clinically meaningful
pathways.
8. Discussion

In this work, we set out to establish trends and patterns of
which omic types and what methodologies are used in multi-
omics studies, and how these choices are made. We examined a
set of multi-omics studies from 2018–2021 found on PUBMED
and collected the omic types used, and the type of analysis
methodologies they used to answer their scientific questions.

Firstly, we established a set of five scientific objectives that
multi-omics studies have: subtype identification, extraction of
disease-associated molecular patterns, diagnosis/ prognosis, drug
response prediction and understanding of regulatory processes.
We find that the scientific objectives of these multi-omics studies
are patient-specific. Rather than finding general insights into dis-
eases, they focus on understanding patient-specific mechanisms,
outcomes and treatments.

We observe that the authors of multi-omic studies choose
omics combinations based on the biological evidence already
reported in previous studies, the scientific objectives of their study
and also the identified different trends in the choice for different
diseases. For the objective of diagnosis, researchers look for omics
closer to the phenotype (proteomics and metabolomics), whereas
for understanding regulatory processes the most relevant omics
are closer to understanding the genotype hence the transcrip-
tomics and epigenomics. To predict drug response, the fact that
genomic variants are known to be associated with drug resistance
leads to the selection of genomics and DNA methylation. The anal-
ysis of metagenomics together with metabolomics can reveal
mechanistic explanations of the disrupted metabolome and/or
microbiome in disease as well as the human host-microbiome
cross-talk through the study of the perturbations in the metabo-
lites that they are derived and consumed from both sides. We
observe a difference in the selection of omics combinations
between cancer and other diseases. As shown in Fig. 2c, for cancer,
the study of the influence of genomics and epigenomics on tran-
scriptomics is the basic strategy. They are specially used for better
patient stratification and can contribute to the understanding of
multiple, simultaneous disruptions in gene regulation (either acti-
vation or inhibition) related to cancer and its progression. For the
other diseases, even though we observe the trend of measuring
the influence of genomics and epigenomics on transcriptomics
again, there is also a clear downstream focus on the produced pro-
teins, and the cross-talk between transcriptomics, proteomics and
metabolomics. Interestingly, although extremely variable and sen-
sitive, metabolomics seem to be the bridge between the upstream
perturbation (transcriptomics/proteomics) and the environment
(nutrition and microbiome).

In the second part of the analysis we seek to find out whether
specific computational methods are more commonly used for
specific scientific objectives. We categorised the multi-omics anal-
ysis methods into joint Dimensionality Reduction, Correlation and
Covariance-based jDR, Factor analysis, Probabilistic Models,
Similarity- (Kernel-) based, Network-based integration,
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Regression-based and Deep Learning. This categorization helped to
find links between tools and compare them against different com-
putational challenges in DI and objective-specific criteria. The com-
mon challenges for all objectives are to be able to capture the
complex non-linearities, to deal with uneven sizes between the
datasets, missing data, heterogeneity in the statistical distributions
and data format and large numbers of variables compared to the
sample sizes. We assessed how different methods aim to tackle
these challenges and whether they were optimised against
objective-specific criteria.

Subtype identification is a well-defined problem in the field of
omics data analysis, and many specialised tools are designed
specifically to tackle this. Factor analysis methods allow for the
subtyping to be done in a transformed space which captures com-
mon patterns across different datasets. NMF variations have been
popular in very efficiently detecting subtypes from transcriptomics
and proteomics datasets. In addition, reducing the datasets to the
main factors of variation makes them highly interpretable and it
is advisable to start with them when exploring the heterogeneous
biology of the samples. Similarity (kernel) based methods are gen-
erally good in dealing with missing data and specifically partial
omics datasets. Tools that adopt multiple kernel learning for inte-
gration have shown promise in integrating heterogeneous datasets
from different statistical distributions. Generally, combining Ker-
nel functions allows for higher-order relationships between sam-
ples to be uncovered, even though interpreting the learnt
functions is not as straightforward as it has been discussed for fac-
tor analysis methods. Finally, Deep Learning methods are able to
integrate heterogeneous datasets and uncover complex relation-
ships. To avoid overfitting, because of the high dimensional space
of omics datasets, several approaches include domain knowledge
from biological networks and thus can become more generalisable.

Joint dimensionality reduction methods are used for the extrac-
tion of disease-associated molecular patterns. Factor analysis, cor-
relation and covariance-based integration methods allow for the
reduction of the dimensionality of the datasets. The extracted fac-
tors help with the identification of the main biological processes
that associate with disease and allow for an easier interpretation
of the datasets. jDR methods offer flexibility in answering several
downstream translational medicine objectives, like the association
of the factors with clinical variables including survival and drug
response prediction. Variations of these methods are implemented
mainly to deal with the relatively large feature space compared to
the smaller sample size of omics datasets.

Gene regulatory network inference is especially affected by a
large number of correlated variables within the multi-omics data-
sets which makes it challenging to infer direct gene-regulator con-
nections. Regression-based approaches are commonly used to
select a small number of the most informative regulators to predict
gene expression. Mixed Graphical Models (MGMs) have shown
promise in identifying direct interactions among large pools of cor-
related variables. These are useful to represent direct interactions
since the edges represent conditional dependency relations. In
addition, they have been adopted previously to specifically deal
with integrating continuous and discrete categorical variables
[81]. For example, in [82] they apply MGMs to integrate GE and
clinical features. Such models could be extended and adapted to
the challenges of multi-omics data integration.

Finally, we have observed efforts to extend functional interpre-
tation methods to multi-omics datasets. We highlighted several
tools with respect to producing molecular interaction networks
frommulti-omics datasets. With the help of information frommul-
tiple omics layers, context-specific networks can give further
insight into disease pathogenesis. In addition, we have highlighted
novel approaches performing gene set analysis from multiple
omics datasets.
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Overall, we notice significant efforts in developing new tools to
deal with the challenges of data integration. However, tools to
simultaneously deal with all the challenges are lacking. For now,
users must address intricacies specific to their datasets and decide
on the selection of tools. A promising approach is to combine the
results and get a consensus from different integration approaches
that deal with different challenges.

As a concluding remark, we can say that there are significant
contributions to make the great hope of the integration of multi-
omics data in clinical practice a reality. The proper translation of
the clinical needs as described in specific objectives, the wise omics
data generation and usage and the informed selection of data inte-
gration methods under the prism of the accompanying computa-
tional challenges, is a triptych that will guide the successful
application of multi-omics datasets in translational medicine pro-
jects. This article aimed to answer questions regarding the scien-
tific objectives that benefit from multi-omics studies,
highlighting the most preferred omics combinations per scientific
objective and summarising the computational methods to achieve
these scientific objectives. It is expected that this work will shed
light on the design of the next multi-omics experiments and guide
the way that the data can be integrated given the objectives of each
study.
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