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Abstract

Coronary 18F-sodium-fluoride (18F-NaF) positron emission tomography (PET) showed promise in 

imaging coronary artery disease activity. Currently image processing remains subjective due to the 

need for manual registration of PET and computed tomography (CT) angiography data. We aimed 

to develop a novel fully automated method to register coronary 18F-NaF PET to CT angiography 

using pseudo-CT generated from non-attenuation corrected (NAC) PET by generative adversarial 

networks (GAN). Non-rigid registration was used to register pseudo-CT to CT angiography and 

the resulting transformation was subsequently used to align PET with CT angiography.

A total of 169 patients, 139 in the training and 30 in the testing sets were considered. We 

compared translations at the location of plaques, maximal standard uptake value (SUVmax) 

and target to background ratio (TBRmax), obtained after observer and automated alignment. 

Automatic end-to-end registration was performed for 30 patients with 88 coronary vessels and 

took 95 seconds per patient. Difference in displacement motion vectors between GAN-based and 

observer-based registration in the x, y and z directions was 0.8 ± 3.0 mm, 0.7 ± 3.0 mm, and 1.7 

± 3.9 mm respectively. TBRmax had a coefficient of repeatability (CR) of 0.31, mean bias of 0.03 

and narrow limits of agreement (LOA) (95% LOA: −0.29 to 0.33). SUVmax had CR of 0.26, mean 

bias of 0 and narrow LOA (95% LOA: −0.26 to 0.26).

In conclusion, pseudo-CT generated by GAN from PET, which are perfectly aligned with PET, can 

be used to facilitate quick and fully automated registration of PET and CT angiography.
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INTRODUCTION

Coronary positron emission tomography (PET) has shown promise for the non-invasive 

assessment of atherosclerotic plaque(1). By targeting processes directly involved in plaque 

progression and rupture (including inflammation and microcalcification) PET has broadened 

our understanding of plaque biology(2). Importantly, it has recently been demonstrated 

that beyond pathophysiological insights 18F-sodium fluoride (18F-NaF) provides prognostic 

implications with the coronary microcalcification activity (CMA) acting as a strong 

independent predictor of myocardial infarction(3, 4).

While 18F-NaF emerged as a promising tool for risk stratification in CAD patients, 

wider adoption of this imaging modality remains challenging(2). 18F-NaF PET requires co-

registered computed tomography (CT) angiography images for precise anatomic localization 

of 18F-NaF activity within coronary plaques. Although typically the CT angiography is 

acquired on a hybrid PET/CT scanner during the same imaging session as PET, in order 

to allow for patient repositioning and the respiratory phase at which the CT angiography is 

acquired the reading physician has to carefully co-register both datasets(5). This important 

step is necessary for precise quantification of PET activity, which needs to be guided 

by the anatomical information derived from CT angiography(6, 7). Currently this step is 

time consuming, subjective and requires great operator expertise, adding to the complexity 

of coronary PET protocols. In view of the already existing tools for 18F-NaF PET 

quantification, CT angiography and PET co-registration emerges as the final obstacle for 

near-full automation of post-acquisition data processing and analysis which could facilitate 

widespread use of this promising imaging modality.

In the current study we aimed to develop and evaluate a novel, fully automated method for 

co-registering coronary PET and CT angiography datasets using a conditional generative 

adversarial network (GAN)(8, 9) and a diffeomorphic nonlinear registration algorithm(10, 

11). GANs are a type of deep learning algorithms where two neural networks trained 

simultaneously, one responsible for generating images and the other classifying whether 

the generated images are realistic. The two networks are trained against each other, thus 

“adversarial”, to generate new realistic data. They are prominently used for generation and 

translation of image data with the objective of learning the underlying distribution of source 

domain to generate indistinguishable target realistic data samples. In medical imaging, 

GANs are often used for denoising(12), low-dose to high-dose translation(13) and increasing 

samples in medical imaging training datasets(14). In our study we employ GAN to generate 

“pseudo-CT” from corresponding non-attenuation corrected (NAC) PET data. The generated 

pseudo-CT is perfectly aligned to PET as it is derived from the PET image, unlike the 

actual non-contrast CT, which is acquired during the same imaging session but is prone 

to misalignment due to patient motion. The pseudo-CT is then non-linearly registered to 

CT angiography using diffeomorphic registration algorithm called demons which iteratively 

computes the displacement for each voxel in a computationally efficient manner. The 

resulting transformation is used for the final PET to CT angiography registration.
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METHODS

Patient population

169 patients with established coronary artery disease undergoing hybrid coronary 18F-NaF 

PET and contrast CT angiography at the Edinburgh Heart Centre within the investigator-

initiated, double-blind, randomized, parallel-group, placebo-controlled DIAMOND (Dual 

Antiplatelet Therapy to Reduce Myocardial Injury) trial (NCT02110303) were included in 

the current study(15). All patients underwent a comprehensive baseline clinical assessment 

and hybrid 18F-NaF PET imaging alongside coronary CT calcium scoring and coronary 

CT angiography. The study was approved by the local institutional review board, the 

Scottish Research Ethics Committee (REC reference: 14/SS/0089 and it was performed in 

accordance with the Declaration of Helsinki. All patients provided written informed consent 

before any study procedures were initiated.

Acquisition

All patients underwent 18F-NaF PET on a hybrid PET/CT scanner (128-slice Biograph 

mCT, Siemens Medical Systems, Knoxville, Tennessee) 60 min after intravenous 18F-NaF 

administration. During a single imaging session, we acquired a non-gated non-contrast 

CT attenuation correction (AC) scan for attenuation correction purposes, followed by a 

30-min PET emission scan in list mode. The electrocardiogram (ECG)-gated list mode 

dataset was reconstructed using a standard ordered expectation maximization algorithm 

with time-of-flight and point-spread-function correction. Using 4 cardiac gates, the data 

were reconstructed on a 256 × 256 matrix (with 75 slices using 2 iterations, 21 subsets, 

and 5-mm Gaussian smoothing). After the PET scan, based on standard protocol, a gated 

low-dose non-contrast ECG-gated CT for calculation of the coronary artery calcium score 

was performed. Subsequently, a contrast-enhanced, ECG-gated coronary CT angiogram was 

obtained in mid-diastole on the same PET/CT system without repositioning the patient. The 

ECG-gated non-contrast and contrast CT were not used in automatic registration method.

Manual image registration

We used a dedicated software package for coronary PET image analysis (FusionQuant, 

Cedars-Sinai Medical Center, Los Angeles, California)(16). PET and CT angiography 

reconstructions were reoriented, fused, and systematically co-registered in 3 orthogonal 

planes(5). 18F-NaF uptake in the sternum, vertebrae, blood pool in the left, and right 

ventricle served as key points of reference. Subsequently, PET activity in the ascending 

aorta and aortic arch was aligned with the non-contrast CT AC and final refinement of 

co-registration was performed according to landmarks around the coronary arteries as well 

as the aortic and mitral valves (Figure 1).

Automatic deep learning- based registration

We developed a fully automated PET and CT angiography registration using conditional 

generative adversarial network (GAN)(9) and nonlinear diffeomorphic (demons) registration 

(10, 11). In the first step, we generated CT images (pseudo-CT) from NAC PET images 

(Figure 2). We choose NAC PET for our registration (pipeline) as it is immune to potential 
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misregistration of emission data and non-contrast CT AC images which can affect PET 

attenuation correction (AC) reconstructions. These pseudo-CTs are in perfect alignment with 

the original PET images. In the second step, these pseudo-CTs were used to register PET to 

CT angiography (Figure 3).

Pseudo-CT generation—GANs(8) are a type of deep learning networks which use 

generative modelling to synthesize realistic images from a given input, consisting of two 

key components generator and discriminator. The generator learns the mapping between two 

types of images, in our case source (PET) and target (non-contrast CT AC), generated on 

the condition of the target image corresponding to input source image(9) (Figure 2). The 

second component is the discriminator which tries to classify the generated images as real or 

fake (generated from source). These two networks were trained in an adversarial fashion(8), 

competing with one another, until the discriminator network was unable to distinguish 

between the real and generated cases of CT.

In our implementation, the generator used was a modified UNet(17) with skip connections 

and attention gates(18). The UNet is a popular encoder decoder network commonly used 

in biomedical imaging to learn the information present in the input image and encapsulate 

it. The input to the generator was a 2D NAC PET slice and the output was the generated 

pseudo-CT slice. The encoder part consisted of repeated convolution layers each followed 

by a batch normalization(19) and a rectified linear unit (ReLU) (20) followed by a maxpool 

operation for dimension reduction. The decoder part upsampled the information learnt in a 

meaningful representation based on the condition of same slice of real CT AC image. Skip 

connections were used with attention gates to connect layers of encoder with corresponding 

layers of decoder to localize high-level salient features present in PET, often lost in 

downsampling. Attention gates help to suppress irrelevant background noise without the 

need of segmenting heart regions and preserve features relevant for CT generation. The 

output of attention gates was concatenated with the corresponding upsampling block.

The discriminator used was a deep convolutional neural network (CNN) which had two 

inputs: the pseudo-CT which was the output of the generator, and the corresponding CT AC 

image slice. The network took a 70×70 patch of both the inputs and estimated a similarity 

metric. The discriminator repeated this process for the entire slice, averaging the similarities 

for each patch, to provide a single probability of whether the pseudo-CT slice was real or 

fake when compared to the CT AC image slice.

Image preprocessing—CT images were resampled and resized to PET dimensions, 

per patient. For generation of pseudo-CT, each slice of PET and CT were normalized by 

subtracting with mean and dividing with the voxel range of gaussian smoothed patient 

data(21). The images were cropped using the largest CT slice by automatically obtaining the 

bounding box using the boundary of CT scan. The same bounding box was applied to the 

corresponding PET scan. Slices of output pseudo-CT were combined and overlayed with the 

real CT AC image to obtain the background.

Training of pseudo-CT generation—The patient population was randomly divided 

into train and test sets of 139 and 30 patients. The generator model was trained using 
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a combination of adversarial loss for discriminator and a mean squared loss between 

input PET and generated pseudo-CT slice. The adversarial loss was optimized to ensure 

the generator produces realistic pseudo-CT slices and the discriminator was unable to 

distinguish between real and pseudo-CT slices. The conditional GAN was trained for 250 

epochs with a learning rate of 0.0001, an input batch size of 8 NAC PET slices of 256×256 

voxels. The output pseudo-CT slices were consolidated per patient and used as reference for 

the final registration.

Nonlinear diffeomorphic registration—The pipeline for the end-to-end registration of 

PET to CT angiography is shown in Figure 3. We first registered the generated pseudo-CT 

scan to the non-contrast CT AC using a nonlinear diffeomorphic registration algorithm 

called demons(10, 11). The non-contrast CT AC is subsequently registered rigidly to CT 

angiography. Both these transforms were applied by integrating the 2 motion vector fields 

from the first step with the second step to PET thus registering PET to CT angiography 

using the generated pseudo-CT.

Image quantification

On co-registered PET and CT angiography images, 18F-NaF uptake within coronary plaque 

we measured activity using automatically extracted whole-vessel tubular and tortuous 3-

dimensional volumes of interest from CT angiography data sets using FusionQuant(6, 7, 

16). These encompass all the main native epicardial coronary vessels and their immediate 

surroundings (4-mm radius), enabling both per vessel and per patient uptake quantification. 

Within these volumes of interest, we measured maximum standardized uptake values 

(SUVmax) (Figure 4) and target to background (TBR) values - calculated by dividing the 

coronary SUVmax by the blood pool activity measured in the right atrium (mean SUV in 

cylindrical volumes of interest at the level of the right coronary artery ostium: radius 10 

mm and thickness 5 mm)(6, 7). We also measured the coronary microcalcification activity 

(CMA) which quantifies 18F-NaF activity across the entire coronary vasculature, is highly 

reproducible, and acts as an independent predictor of myocardial infarction(3). CMA was 

defined as the integrated activity in the region where standardized uptake value exceeded the 

corrected background blood-pool mean standardized uptake value +2 SDs. The per patient 

CMA was defined as the sum of the per vessel CMA values. The same analysis was repeated 

after automatic co-registration utilizing the same region of interests. Translation vectors in 

each of the 3 directions for observer and automatic registered PET were exported from 

observer marked vessels per patient using FusionQuant.

Statistical Analysis

Categorical variables are presented as frequencies (percentages) and continuous variables 

as medians (interquartile range). Variables were compared using a Pearson χ2 statistic 

for categorical variables and a Wilcoxon rank-sum or Kruskal-Wallis test for continuous 

variables. We assessed the distribution of data with the Shapiro-Wilk test.

The performance of the proposed method was evaluated through the coefficients of 

reproducibility (CR) with observer manual registration using Bland-Altman plots with 95% 

limits of agreement (LOA) and difference in displacement vector fields.
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RESULTS

The study population comprised 169 patients (81.1% men; mean age: 65.3± 8.4 years) with 

139 used for training and 30 for testing. All participants had advanced stable coronary 

atherosclerosis with a high burden of cardiovascular risk factors (hypertension: n=101; 

60%; hyperlipidemia: n=148; 88%; tobacco use: n=113; 67%) and were on guideline 

recommended therapy (statin: n=151; 90%; antiplatelet therapy: n=155; 92%; angiotensin-

converting enzyme inhibitor or angiotensin receptor blockers: n=113; 67%) and had high 

rates of prior revascularization (n=137; 81%). Baseline study population characteristics of 

train and test sets are presented in Table 1.

Twenty-five (83%) of the 30 patients in the testing set had poor registration between NAC 

PET and non-contrast CT AC, according to expert observer. To achieve perfect alignment of 

the PET and CT images all datasets in the training dataset required adjustments made by the 

interpreting physician. These were most prominent in the z axis reflecting the discordance in 

the diaphragm position – which is a result of breathing (while CT AC data can be acquired 

during a breath-hold the PET scan last for 30 minutes).

A case example of GAN-based nonlinear diffeomorphic registration in Figure 4 shows 

similar registration and SUVmax in the coronary arteries compared to expert observer. 

Activity of 88 vessels in the 30 patients, was assessed using TBRmax, SUVmax and CMA. 

TBRmax had a coefficient of repeatability (CR) of 0.31, mean bias of 0.92 and narrow limits 

of agreement (LOA) (95% LOA – 0.29 to 0.33) (Figure 5A). SUVmax had excellent CR 

of 0.26, mean bias of 0 and narrow limits of agreement (95% LOA – 0.26 to 0.26) (Figure 

5B). Between observer and GAN based registration, CMA had CR of 0.57, mean bias of 

0.07 and narrow limits of agreement (95% LOA – 0.54 to 0.60) (Figure 6). Difference in 

displacement motion vectors between GAN and observer-based registration (Figure 7) was 

0.8 ± 3.02 mm in the x direction, 0.68 ± 2.98 mm in the y direction and 1.66 ± 3.94 mm 

in the z direction. The overall time for the GAN-based registration with analysis was 95 

seconds on a standard CPU workstation. The overall registration and analysis time for the 

experienced observer was 15±2.5 minutes.

DISCUSSION

We propose a fully automated deep learning-based framework to register 18F-NaF PET 

to CT angiography images. A conditional GAN was used to synthesize pseudo-CT from 

coronary NAC PET images. The perfectly registered pseudo-CT provides an input to a 

non-linear registration pipeline which transforms PET alignment to match CT angiography. 

We trained the proposed method with 139 pairs of coronary PET/CT angiography images. 

The evaluation in a separate cohort of 30 patients demonstrated excellent correlation of 

TBRmax, SUVmax and CMA between observer and our method. The proposed method runs 

automatically in 95 seconds, approximately 10 times faster than expert observer, and has 

great potential to streamline time consuming manual rigid registration which is necessary for 

coronary PET/CT angiography data. Our approach is the first to use pseudo-CT generated 

from GAN for nonlinear diffeomorphic registration of coronary PET and CT angiography 

images. This development paves the way for more widespread utilization of coronary PET. 
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Since acquisition protocols have been already validated across multiple centers and image 

analysis has been automated, by providing automatic co-registration an 18F-NaF CMA 

uptake value can become available as soon as image reconstruction is completed, and CT 

angiography coronary centerlines are available.

18F-NaF PET has emerged as a promising noninvasive imaging tool for assessment of 

active calcification processes across a wide range of cardiovascular conditions(16, 22–27). 

In coronary artery disease 18F-NaF uptake provides an assessment of disease activity and 

prediction of subsequent disease progression and clinical events(1, 3). Over the past years 

multiple technical refinements for 18F-NaF PET have been introduced(28–31). Motion 

correction techniques address heart contractions, tidal breathing and patient repositioning 

during the prolonged PET acquisitions(32–34). Novel uptake measures such as CMA enable 

a patient level assessment of disease activity which is guided by centerlines derived from 

contract enhanced CT angiography(6, 7). Dedicated software tools, optimized timing of the 

acquisition and dedicated reconstruction algorithms further streamline 18F-NaF coronary 

imaging(16, 35). In view of all these refinements to date, the need for manual co-registration 

of the CT angiography and PET datasets remains the last step, which still requires advanced 

cardiac imaging expertise for image quantification and is associated with subjectivity. 

Our current study addresses this important aspect of 18F-NaF coronary PET imaging. By 

leveraging AI, we were able to develop and test a fully automated tool aligning the CT 

angiography and PET datasets.

GAN AI methods(8, 9) have recently become popular in medical imaging for image-to-

image translation tasks(36). By learning the mapping from one type of the image to the 

to another, they are often used for denoising(13, 37, 38), segmentation(39, 40), low-dose 

to high-dose reconstruction(41) and registration(42–44) tasks. Dong et al.(45) have used 

GANs for generation of CT from PET has been used for attenuation correction. In this 

study we propose to use GANs for the challenging task of fully automated coronary PET 

and CT angiography image registration. Automatic registration of PET and CT angiography 

is difficult to accomplish due to nonlinear respiratory and cardiac motion displacement 

between the two modalities and limited anatomical information provided by coronary PET. 

We leverage the fact that the generated pseudo-CT is perfectly registered to PET, which is 

the input to GAN, unlike the non-contrast attenuation correction image acquired in the same 

imaging session. The latter misalignment occurs due patient motion and the lengthy PET 

acquisition. By registering the pseudo-CT to the actual CT and then subsequently to CT 

angiography with nonlinear diffeomorphic registration, these issues are overcome, and we 

obtain the transform to register PET to CT angiography.

Automatic GAN-based nonlinear diffeomorphic registration of PET and CT angiography 

can be employed for accurate alignment of images. This method facilitates automated 

analysis of 18F-NaF coronary uptake with the user input limited to careful inspection 

whether extra-coronary activity does not corrupt the coronary 18F-NaF uptake 

measurements. In view of the already available tools for quantification of 18F-NaF activity 

on a per vessel and per patient level(6, 7), by developing automatic PET to CT angiography 

registration we have paved the way for more widespread use of coronary PET. This 
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development could simplify further the complex processing protocols needed for clinical 

application of coronary PET imaging.

Several studies have attempted automatic cardiac PET to CT registration. In previous 

studies, Nakazato et al.(46) have evaluated a non-AI based method to register myocardial 

perfusion 13N-ammonia PET to CT angiography. Yu et al.(47) proposed an AI based 

framework using convolution neural networks to non-rigidly register PET/CT images. 

However, 18F-NaF coronary PET imaging does not visualize the myocardium and so direct 

PET to CT angiography registration is not feasible. Our proposed solution overcomes the 

difficulties in image registration of images with different visual appearance.

Our study has limitations. It is a post-hoc analysis of single-center data and was acquired 

on one hybrid PET/CT scanner. The observer registration was performed rigidly using a 

summed PET scan registered to the diastolic gate, however the pseudo-CT was generated 

using summed NAC PET data and CT angiography was registered non-rigidly using 

corresponding AC PET scan. The CT AC misregistration may occur between the PET 

and CT affecting the quality of the PET images. This causes difference in observer 

registration, which was performed using potentially incorrect attenuation corrected PET, and 

automatic registration, which was performed with NAC pet images. Further studies could 

be performed utilizing the generation of pseudo-CT for optimizing attenuation correction of 

the PET signal. However, to date no clinical studies have utilized such corrections. The user 

correction was limited to rigid translation of the vessel in contrast to automatic nonlinear 

alignment by our method. Nevertheless, there is currently no other suitable standard to 

evaluate the misalignment and the vessel based rigid co-registration is the basis of the 

current clinical analysis.

CONCLUSIONS

Pseudo-CT generated by GAN from PET, which are perfectly aligned with PET, can be used 

to facilitate rapid and fully automated nonlinear diffeomorphic registration of PET and CT 

angiography. We show that our method has excellent agreement and is approximately 10 

times faster as compared to expert observer registration.
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Abbreviations and Acronyms

AI artificial intelligence

CMA coronary macrocalcification activity

CR coefficient of repeatability

CT computed tomography

GAN generative adversarial networks

PET positron emission tomography

SUV standard uptake value

TBR target to background
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Figure 1: Methodology for manual co-registration of PET and CT angiography
PET and CT angiography were manually co-registered by first aligning the blood pool (left) 

using key points of reference. The PET activity was subsequently aligned in the aorta to the 

CT angiography (middle). The final refinement of co-registration was performed according 

to landmarks around the coronary arteries as well as the aortic and mitral valves.
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Figure 2: Generation of pseudo-CT from NAC PET
The GAN consisted of two deep learning networks, the generator and discriminator which 

were trained together to generate realistic pseudo-CT images. The input to the UNet based 

generator was a 2D NAC PET slice and the output was the corresponding pseudo-CT slice. 

The encoder part of the generator consisted of 4 contracting convolution blocks each. Each 

convolution block was followed by a 2×2 max pool operation for dimension reduction. 

The decoder block consisted of 3 repeated upsampling blocks each doubling the number 

of feature channels. Batch normalization normalized inputs from a layer and stabilized the 

learning process. ReLU is used to set all negative inputs to zero and pass all positive inputs 

to introduce non-linearity in the network. Skip connections were used with attention gates 

connecting the encoder to the decoder. The discriminator with convolution blocks had inputs 

of generated pseudo-CT and corresponding real CT AC slice. The output of the network 

was an averaged similarity between the two inputs. The generated pseudo-CT slices were 

consolidated per patient and input to the diffeomorphic registration pipeline.

AC: attenuation correction, CT: computed tomography, NAC: non-attenuation corrected, 

PET: positron emission tomography, ReLU: rectified linear unit
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Figure 3: Overview of nonlinear diffeomorphic registration pipeline
The GAN generated pseudo-CT from NAC PET was registered to the corresponding 

non-contrast CT attenuation correction image using diffeomorphic (demons) non-rigid 

registration (Transform 1). The non-contrast CT AC was then registered rigidly to CT 

angiography image of the same patient (Transform 2). These two transforms (Transforms 1 

and 2) were applied to AC PET image, registering PET to CT angiography automatically.

AC: attenuation corrected, CT: computed tomography, NAC: non-attenuation corrected, 

PET: positron emission tomography

Singh et al. Page 14

J Nucl Cardiol. Author manuscript; available in PMC 2023 April 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4: Case example of original, expert observer and GAN-based registration of PET and CT 
angiography with SUVmax values
Hybrid CT angiography (grey blue) and 18F-NaF PET (red) of the left anterior descending 

(LAD) and left circumflex (LCx) coronary arteries of a 52-year-old man; unregistered 

(left), registered by expert observer (center) and by GAN-based nonlinear diffeomorphic 

registration (right). Manual and GAN-based registration have similar increase in standard 

uptake value (SUVmax) compared to unregistered PET/CT angiography.

Singh et al. Page 15

J Nucl Cardiol. Author manuscript; available in PMC 2023 April 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5: Expert observer and GAN-based registration: Agreement of TBRmax and SUVmax
Bland Altman plots of observer and GAN-based nonlinear diffeomorphic registration 

measurements of maximal target to background ratio (TBRmax) (A) and standard uptake 

value [SUVmax] (B) at vessel level.

CR: coefficient of repeatability, SD: standard deviation
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Figure 6: Expert observer and GAN-based registration: Agreement of CMA
Bland Altman plot of observer and GAN-based nonlinear diffeomorphic registration 

measurements of coronary microcalcification activity (CMA) at vessel level.

CR: coefficient of repeatability, SD: standard deviation
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Figure 7: Expert observer and GAN-based registration displacement differences in x, y and z 
directions
Expert observer and GAN-based nonlinear diffeomorphic registration displacement 

difference at vessel level in mm, in the location of the quantified vessels.
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Table 1:

Patient characteristics of training and testing sets

Characteristics Training set
(n = 139)

Testing set
(n = 30)

Age (years) 65.3 ± 8.2 65.2 ± 9.4

Gender (males) 104 (74.8) 25 (83.3)

Body-mass index (kg/m2) 29.6 ± 5.4 29.1 ± 4.8

Cardiovascular risk factors

Diabetes mellitus (type II) 25 (18) 3 (10)

Current smoker 22 (15.8) 2 (6.7)

Hypertension 74 (53.2) 14 (46.7)

Hyperlipidemia 128 (92.1) 28 (93.3)

Agatston Calcium Score (AU) 299 [90.8 – 685] 565 [183 – 1201]

Continuous variables reported as mean ± SD or median and interquartile range [IQR]; categorical variables reported as n (%), Continuous variables 
reported as mean ± SD or median and interquartile range [IQR]; categorical variables reported as n (%).
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