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Abstract

Introduction: The effect of random error on performance of blood-based biomarkers for 

Alzheimer’s disease must be determined before clinical implementation.

Methods: We measured test-retest variability of plasma Aβ42/Aβ40, NfL, GFAP, and P-tau217 

and simulated effects of this variability on biomarker performance when predicting either CSF 

Aβ-status or conversion to AD dementia in 399 non-demented participants with cognitive 

symptoms.

Results: Clinical performance was highest when combining all biomarkers. Among single-

biomarkers, P-tau217 performed best. Test-retest variability ranged from 4.1% (Aβ42/Aβ40) to 

25% (GFAP). This variability reduced the performance of the biomarkers (~ΔAUC −1% to −4%) 

with least effects on models with P-tau217. The percent of individuals with unstable predicted 

outcomes was lowest for the multi-biomarker combination (14%).

Discussion: Clinical prediction models combining plasma biomarkers – particularly P-tau217 

– exhibit high performance and are less effected by random error. Individuals with unstable 

predicted outcomes (“gray zone”) should be recommended for further tests.

Introduction

The field of Alzheimer’s disease (AD) has been transformed in recent years by development 

of several clinically relevant blood-based markers (BBMs), including plasma amyloid-β 
(Aβ) and phosphorylated tau (p-tau), along with neurofilament light (NfL, a marker 

of neurodegeneration) and glial fibrillary acidic protein (GFAP, a marker of astrocytic 

activation)1. In large, independent cohort studies, these biomarkers have consistently been 

shown to provide useful prognostic information with respect to longitudinal cognitive 

decline and risk for AD dementia2–6. Recent work has even demonstrated the superiority 

of plasma biomarkers (combined with other accessible measures) compared to clinicians’ 

predictions of AD-related outcome in a population with subjective cognitive decline (SCD) 

and mild cognitive impairment (MCI)7.

BBMs also show high diagnostic performance, particularly in differentiating individuals 

based on abnormal amyloid or tau status as measured by cerebrospinal fluid (CSF) or 

positron emission tomography (PET)8–10. These promising results have led to expectations 

that BBMs may eventually serve as a complement or even replacement for more invasive 

and expensive modalities, like CSF- and PET-based methods, in scenarios where high 

throughput or low cost is a priority11.

However, one obstacle to the implementation of BBMs at the patient level is the large 

overlap in biomarker levels observed between normal and disease groups. As an example, 

the plasma Aβ42/40 ratio is only 10% lower in amyloid-PET positive individuals, while the 

same ratio is 43% lower when measured in CSF12. Due to this overlap, random error in 

biomarker measurements may cause individuals who are close to diagnostic cutoffs to be 

classified as having normal levels of AD biomarkers at one timepoint but abnormal levels 

at another, hampering the detection of meaningful biological changes. Such random error 

is caused by a combination of 1) intra-individual variability in the biomarker levels in the 
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blood over time (“biological variation”), 2) uncontrolled factors associated with sample 

collection/handling (“pre-analytical variation”), and 3) intra- and inter-assay variability 

(“analytical variation”)13. The extent to which the overlap between diagnostic groups 

interacts with observed levels of random error is still an open question since test-retest 

variability for core BBMs has not been empirically measured due to their novelty.

In the present study we aimed to gather information on this topic by collecting and analyzing 

test-retest plasma and CSF samples from 38 study participants, at different occasions close 

in time, to derive the total random error estimates for plasma Aβ42/Aβ40, P-tau217, NfL, 

and GFAP. We then simulated the impact of these random error estimates in a larger group 

of non-demented patients with cognitive symptoms from the Swedish BioFINDER study 

(n=399) when predicting AD-related outcomes (Figure 1). We hypothesized that predictions 

from a model combining multiple BBMs together would be perturbed less by simulated 

random error when compared to using only individual BBMs.

Methods

Study design and participants

An overview of the study design in presented in Figure 1.

Participants (n=399) from the Swedish BioFINDER-1 study (http://biofinder.se; 

NCT01208675) consisted of consecutively included non-demented patients with mild 

cognitive symptoms referred to the participating memory clinics as previously described7. 

The inclusion criteria were (i) referred to the memory clinic due to cognitive symptoms 

experienced by the patient and/or informant; (ii) age between 60 and 80 years; (iii) MMSE 

score of 24–30 points at the baseline visit; (iv) do not fulfill the criteria for any dementia; 

and (v) speaks and understands Swedish to the extent that an interpreter was not necessary 

for the patient to fully understand the study information and neuropsychological tests. The 

exclusion criteria included (i) significant unstable systemic illness or organ failure, such as 

terminal cancer, that makes it difficult to participate in the study; (ii) current significant 

alcohol or substance misuse; and (iii) refusing lumbar puncture or neuropsychological 

assessment.

Participants in the test-retest study (n=38) were selected from the clinical practice of the 

Memory Clinic at Skåne University Hospital such that the percentage of participants who 

were amyloid positive was approximately equal (actual = 47.4%). For each participant, CSF 

and plasma samples were collected at a first visit and at a second visit which occurred 6 – 10 

weeks later (average 7.4 ± 1.05 weeks). The collection procedure, amount of fluid collected, 

and pre-analytical handling protocol was identical across visits.

All patients gave their written informed consent to participate in the BioFINDER study. 

Separate written informed consent was given to participate in the test-retest study. The study 

was approved by the regional ethics committee in Lund, Sweden.
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Biomarker measurements

As described previously, CSF was collected according to routine clinical procedures 

following the Alzheimer’s Association Flow Chart for lumbar puncture, centrifuged, frozen 

at −80C on dry ice, and shipped for analysis16. Plasma was collected in EDTA-plasma 

tubes and centrifuged (2,000g, +4 C) for 10 minutes. Following centrifugation, plasma 

from all tubes were transferred into one 50 ml polypropylene tube and mixed, after which 

1ml was aliquoted into 1.5ml polypropylene tubes and stored at −80C within 30 – 60 

minutes of collection. All plasma samples underwent one freeze-thaw cycle when 200μl 

were further aliquoted into 0.5ml LoBind tubes and the 200μl aliquots were stored at 

−80C as described previously14. Prototype immunoassays on a cobas e 601 and e 411 

analyzer (Roche Diagnostics International Ltd, Rotkreuz, Switzerland) were used at the 

Clinical Neurochemistry laboratory in Gothenburg to analyze Aβ42, Aβ40, NfL and GFAP 
17–19. Plasma and CSF P-tau217 were measured using an assay developed by Eli Lilly and 

analyzed at Lund University as previously described14.

Outcomes

The primary outcome of the clinical prediction modelling was normal versus abnormal 

levels of amyloid pathology as determined by CSF Aβ42/Aβ40 levels measured using 

enzyme-linked immunosorbent assay (ELISA) kits (Euroimmun). The cutoff for a positive 

(“abnormal”) CSF Aβ42/Aβ40 status (“CSF Aβ+”) versus a negative (“normal”) CSF 

Aβ42/Aβ40 status (“CSF Aβ−“) was 0.091 pg/mL as determined previously using gaussian 

mixture modelling20. This CSF measure has been validated extensively against both Aβ 
PET21,22 and neuropathology. The secondary outcome was conversion to AD dementia 

within four years of the baseline visit, based on the DSM-5 criteria for major neurocognitive 

disorder due to probable AD along with confirmation of abnormal amyloid accumulation 

according to the 2011 NIA-AA criteria for AD dementia23. Follow-up diagnosis was based 

on the treating physician’s assessments and reviewed by a consensus group of memory 

clinical physicians and a neuropsychologist.

Statistical Analysis

Random error estimates for each biomarker were derived in the test-retest study by 

calculating the relative percent change (100 * [x − y] / y) of biomarker values between 

the first and second sample for each participant (which were both collected and analyzed 

separate in time). The biomarker test-retest variability was then calculated as the standard 

deviation of this distribution of percent change values.

In the larger group of study participants, ROC analysis was used to calculate the overall 

classification performance (area under the curve, AUC) of each individual plasma biomarker 

to identify CSF Aβ status (with conversion to AD dementia as secondary outcome). 

Youden’s index was used to identify the optimal cutoff independently for each individual 

plasma biomarker that best distinguished Aβ− and Aβ+ participants. Percent agreement 

(i.e., accuracy) and AUC was then calculated for each biomarker at its respective cutoff. 

Additionally, a logistic regression model was fit that included all plasma biomarkers and 

optimal cutoffs were derived from individual-level predicted risk values.
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Next, we randomly varied plasma biomarker values for each participant based on a random 

sample from a normal distribution with mean equal to zero and standard deviation equal to 

the variability estimate for each biomarker, obtained from the test-retest study. The model 

performance of these “noisy” (estimated) biomarker values was evaluated and compared to 

the performance of original biomarker values. The primary metric was change in AUC value 

between noisy and original biomarker models. We also reported the percentage of study 

participants whose predicted outcome changed when biomarkers were randomly varied. This 

simulation was run over 1000 bootstrap trials to obtain confidence intervals.

We performed the same analysis using the same biomarkers measured in CSF based on their 

corresponding estimates of test-retest variability. A sensitivity analysis was also performed 

for the primary outcome of CSF Aβ status whereby test-retest variability estimates were 

a priori specified as 5%, 10%, 20%, and 30% for all biomarkers and the effect on 

model performance was investigated. All statistical analysis was performed using the R 

programming language (v5.0.0) with an alpha level of 0.05.

Results

Characterizing study participants

A total of 399 participants were included in the clinical prediction analysis. The average age 

was 70.8 ± 5.5 years, and the average educational attainment was 11.7 ± 3.6 years, with 

46.9% of participants being female (Table 1). A total of 196 (49.1%) participants were CSF 

Aβ+ and 96 (24.1%) participants developed AD dementia within four years of baseline.

Estimating test-retest biomarker variability

The observed test-retest variability was 4.1% for plasma Aβ42/Aβ40, 20.0% for plasma 

P-tau217, 23.7% for plasma NfL, and 25.0% for plasma GFAP. Individual-level relative 

change values across test-retest measurements for each plasma biomarker are displayed 

visually in Figure 2, which can be compared to the test-retest variability for CSF markers in 

Supplementary Figure 1.

Modelling Alzheimer-related outcomes

When using baseline samples of participants from the BioFINDER study (n=399), the 

highest performing individual biomarker model in terms of separating Aβ− from Aβ+ 

participants was plasma P-tau217 (AUC = 0.82, 95% CI [0.80, 0.85]), followed by plasma 

Aβ42/Aβ40 (AUC = 0.79, CI [0.76, 0.82]), plasma GFAP (AUC = 0.72, CI [0.70, 0.74]), 

and finally plasma NfL (AUC = 0.60, CI [0.57, 0.64]). All individual biomarker models 

were outperformed by the multi-biomarker model (AUC = 0.86, CI [0.85, 0.88]; P < 0.05 

for all comparisons). The performance of the biomarkers was qualitatively similar with 

conversion to AD dementia at 4 years as outcome. The ROC curves from these results are 

displayed graphically in Figure 3A. Moreover, the performance of CSF biomarkers was 

generally somewhat higher for predicting conversion to AD dementia, except for CSF GFAP 

(Supplementary Figure 2A).

Cullen et al. Page 5

Alzheimers Dement. Author manuscript; available in PMC 2023 December 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Simulating effects of variability on model performance

We next simulated the effect on model performance in the same participants from 

the BioFINDER study when random adding noise to each biomarker based on the 

corresponding test-retest variability for each biomarker measured in the first analysis 

(n=38). Here, we found that plasma P-tau217 was affected least by simulation of test-retest 

variability (ΔAUC = −0.98%), followed by the combined biomarker model (ΔAUC = 

−1.2%), plasma NfL (ΔAUC = −1.7%), plasma Aβ42/Aβ40 (ΔAUC = −2.5%), and plasma 

GFAP (ΔAUC = −3.7%). The results were similar with conversion to AD dementia as 

outcome: ΔAUC = −0.88% for combined model, ΔAUC = −1.29% for plasma P-tau217, 

ΔAUC = −2.29% for plasma Aβ42/Aβ40, ΔAUC = −1.64% for plasma NfL, ΔAUC = 

−3.43% for plasma GFAP. The difference in AUC values from each of the 1000 simulation 

trials is displayed graphically in Figure 3B and the AUC values for both original and 

noise-simulated models are presented in Figure 3C. A sensitivity analysis using Cox 

regression instead of logistic regression for the longitudinal conversion to AD outcome 

is also presented in Supplementary Figure 5.

The decrease in AUC values when simulating test-retest variability in the same manner 

on CSF biomarkers was generally much lower than seen in plasma and is displayed 

graphically in Supplementary Figure 2B–C. Additionally, a sensitivity analysis in which 

all possible models with plasma P-tau217 were investigated and compared against a model 

with all biomarkers besides plasma P-tau217 (see Supplementary Figure 4). Here, we found 

that models with plasma P-tau217 always contained similar levels of performance-related 

robustness to test-retest variability as the model with plasma P-tau217 by itself. Moreover, 

the model with all plasma biomarkers besides plasma P-tau217 had a worse robustness to 

test-retest variability than any model with plasma P-tau217.

While our primary analysis focused on empirical estimates of biomarker test-retest 

variability, we also performed a sensitivity analysis in which we investigated a scenario 

where each plasma biomarker had the same test-retest variability which was defined in 

advance. Test-retest variability levels were varied from 5%, 10%, 20%, and 30%. Here, we 

found that plasma P-tau217, plasma NfL, and plasma GFAP had similar decreases in AUC 

value while plasma Aβ42/Aβ40 had a significantly larger decrease than all other biomarkers. 

The combined model also had a similar decrease in AUC value as individual biomarkers 

despite also including plasma Aβ42/Aβ40. These results are visualized in Supplementary 

Figure 6.

Estimating individual-level uncertainty of predictive models

Finally, we calculated the percentage of participants with uncertain predicted outcomes 

as estimated when simulating test-retest variability. These individuals are those whose 

biomarker values place them in the “gray zone” where test-retest variability means they 

have a >5% chance of having a different predicted outcome if they were to have two 

plasma samples collected and analyzed close in time with some weeks apart. First, we 

developed a 95% confidence interval for thresholds of each biomarker model (Figure 4). 

Next, we derived the percentage of participants who fell within this uncertain interval for 

each biomarker model (individual and combined). With Aβ-status as outcome, we found 
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that the individual biomarkers with lowest prediction uncertainty were plasma P-tau217 

(uncertain = 20.3%) and plasma Aβ42/Aβ40 (uncertain = 20.3%; note: equal to plasma 

P-tau217), followed by plasma NfL (uncertain = 30.1%) and plasma GFAP (uncertain 

= 30.6%). The combined plasma biomarker model had a lower percentage of uncertain 

participant predictions than all individual biomarkers (uncertain = 14.3%). These results 

were similar with conversion to AD as outcome, except that plasma P-tau217 (uncertain 

= 19.5%) had lower prediction uncertainty than plasma Aβ42/Aβ40 (uncertain = 22.3%). 

These results are displayed graphically in Figure 5. The individual-level uncertainty for CSF 

biomarkers was generally much lower than compared to plasma biomarkers and is displayed 

in Supplementary Figure 7.

Discussion

The results of the present study showed that plasma biomarkers of AD exhibit varying levels 

of test-retest variability, with plasma Aβ42/Aβ40 having the lowest levels of variability. 

However, the effect of this variability on clinical performance depended greatly on how 

well-separated the biomarker distributions were between individuals with and without the 

outcome of interest (here, abnormal cerebral amyloid accumulation or development of AD 

dementia). This was evidenced by the finding that plasma P-tau217 was least influenced 

by simulating the additional of test-retest variability to real clinical data. Moreover, our 

results suggest that the effects of test-retest variability on clinical performance can be largely 

neutralized by combining plasma biomarkers into a multi-variable panel.

This study contributes to a better understanding of how random error affects the uncertainty 

of predicting AD-related outcomes from core plasma biomarkers measured in non-demented 

patients with cognitive symptoms. The specific test-retest variability estimates for each 

plasma biomarker provided here can also be used by other researchers to perform similar 

analyses to understand how random error affects clinical prediction models. Understanding 

effects of random error is of outmost importance for implementing BBMs for prospective 

use in clinical practice and trials

We directly quantified the estimated percentage of cases where predicted outcome would 

have a >5% chance to be non-concordant between two visits in a short time span. This type 

of analysis could lead to the development of a “gray zone” model used in clinical practice 

whereby individuals whose plasma biomarkers provide an uncertain diagnostic or prognostic 

prediction can be referred for other tests such as through PET to determine AD biomarker 

status. Note that because we did not include demographic variables (e.g., age and APOE4 
genotype) in our models and these variables have no test-retest variables, the gray zone 

measured here likely provides a maximum bound on the real gray zone. Including stable 

variables are likely to shrink the gray zone, but such investigations are outside the scope of 

the present analysis where we aimed to isolate effects on a specific set of biomarkers.

The relationship between random error and overlap between normal and abnormal groups 

is not specific to AD BBMs but is a general problem throughout the field of clinical 

chemistry. It has therefore been suggested to define gray zones for diagnostic biomarkers, 
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where biomarker results should be interpreted with caution and need to be confirmed with 

orthogonal methods24–27.

Note that we chose CSF amyloid status as the primary outcome because this represents 

in our view the most likely outcome of interest to be used when implementing plasma 

biomarkers for two major reasons: 1) evidence of cerebral Aβ pathology is very often 

required as an inclusion criteria in clinical trials, and plasma biomarker are likely to be used 

as pre-screeners identifying individuals likely to exhibit an abnormal CSF Aβ42/Aβ40 (or 

Aβ-PET) status, and 2) detection of cerebral Aβ in clinical practice will likely be important 

in the future considering the possible clinical implementation of anti-Aβ therapies. Plasma 

biomarkers represent an inexpensive, first-line risk screening tool for determining whether 

individuals have abnormal amyloid accumulation, and this may only be the first step in a 

long workflow towards diagnosis or inclusion in clinical trials.

Besides using empirical measurements of test-retest variability, we also simulated effects 

on performance in a scenario where all plasma biomarkers had the same level of test-retest 

variability. We found that plasma P-tau217, plasma NfL, and plasma GFAP were all about 

equally influenced by the same levels of test-retest variability and plasma P-tau217 may 

have performed better in the primary analysis because it has lower empirical test-retest 

variability. This result suggests that plasma assays should optimize for test-retest variability 

in addition to model performance. Importantly, this analysis provided even more evidence 

that the performance of a combined biomarker model is not greatly degraded even when 

included one biomarker which was essentially just noise (e.g., plasma Aβ42/Aβ40 at 20% 

and 30% variability). Thus, a combined biomarker model will continue to perform even if 

one biomarker becomes completely unusable due to random error. Still, diagnostic model 

combining multiple plasma biomarkers may be more complicated to implement than a 

model with only one biomarker. A multi-biomarker model would require careful work 

to standardize and control all factors that may contribute to random noise across several 

biomarkers. We also found that CSF biomarkers generally had less test-retest variability at 

the individual level and that performance of CSF biomarkers decreased less when random 

error was simulated.

In this study, we primarily considered only one type of error in the present analysis – 

random error estimated by collecting and analyzing samples from the same individuals at 

different occasions but within a short time span. Another source of noise which can greatly 

affect biomarker values is systematic error caused by assay-related changes in the analytical 

performance of the methods such as when changing lots of key materials (such as antibodies 

or calibrators)28,29. However, systematic error is much more difficult to quantify empirically 

given its unpredictable nature. Systematic error can also greatly degrade performance of 

diagnostic models when the assay is characterized by low dynamic range or when there is 

high overlap between positive and negative groups.

The major strength of the study is the availability of real test-retest variability measurements 

on which to base our investigation into how clinical prediction models are influenced by 

such noise. This means that our assumptions are based in real experience and are more likely 

to be applicable. The duration between sample visits was short on an AD timescale and 
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there was no significant shift in biomarker levels across sample visits, indicating that disease 

progression was unlikely to affect test-retest estimates. However, a major limitation of the 

study is the fact that the participants used to derive the test-retest variability estimates was 

not the same population used when evaluating clinical prediction models. Although there 

were no significant differences in the participant characteristics between groups, it is not 

entirely possible to rule out that test-retest variability estimates in the clinical population 

may have been different.

In all, our results provide a first step towards a better understanding of the effects of plasma 

biomarker assay variability in a clinical prediction context. This is an important area of 

research given the potential use of plasma biomarkers at the earliest stage of AD detection. 

The potential impact of these results on clinical practice is two-fold. For one, these 

findings suggest that implementing a multi-biomarker panel for use in prediction of AD-

related outcomes could potentially lead to fewer misclassifications. Whether the improved 

performance outweighs the increased cost of a multi-biomarker panel requires further 

investigation. Secondly, these findings may impact clinical practice by better establishing 

“gray zones” for each biomarker where patients may be recommended for additional testing 

if their biomarker levels fall into these intervals. Taken together, this work represents a step 

towards improving performance of AD plasma biomarkers in clinical practice.

In the future, we plan to apply this type of test-retest analysis to other plasma biomarker 

assays (e.g., more accurate IP-MS assays20), biomarker modalities (e.g., PET), clinical 

scenarios (e.g., shorter or longer time horizons for AD-related outcomes), and statistical 

models (e.g., Cox regression, mixed effects models).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Research in Context

Systematic review:

The authors reviewed the literature using traditional sources and found that there is a lack 

of studies investigating how individuals along the Alzheimer’s disease (AD) spectrum 

will shift from having “normal” values for core plasma biomarkers to having “abnormal” 

values (or the other way around) if blood is collected, processed, and analyzed at 

different occasions.

Interpretation:

The predictive performance of plasma biomarkers is largely unaffected by test-retest 

variability when biomarkers are combined (compared to used individually) or when 

plasma P-tau217 is included in the panel.

Future directions:

This work will spur more interest in the concept of “gray zones” – i.e., ranges 

of biomarker values for which prediction of relevant outcomes is uncertain, thereby 

requiring further testing by more invasive biomarkers such as CSF or PET.
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Figure 1. Study flowchart
This figure gives an overview of the workflow involved in the present study. Briefly, random 

error estimates for each plasma biomarker from the test-retest variability studies were used 

to simulate the effect on prediction of abnormal CSF amyloid status using plasma biomarker 

values collected from the BioFINDER study.
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Figure 2. Test-retest variability of plasma biomarkers
This figure shows the observed test-retest variability at the individual level for each plasma 

biomarker along with the mean and 95% confidence interval. Test-retest variability for each 

biomarker was derived by first calculating the relative percent change (100 * [x − y] / y) of 

biomarker values for each participant across the two samples and then using the standard 

deviation of this distribution as the overall estimate of random error.

Cullen et al. Page 14

Alzheimers Dement. Author manuscript; available in PMC 2023 December 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. Modelling performance of plasma biomarkers and the simulated effect of test-retest 
variability
This figure shows the ability of plasma biomarkers (individually and combined) to predict 

abnormal amyloid pathology in CSF and conversion to AD dementia within four years 

from baseline (panel A). This figure also shows the effect on AUC values when test-retest 

variability for each biomarker was simulated over 1000 trials (panel B). The change in AUC 

represents the mean difference between the model performance with original (i.e., true) 

biomarker values versus the model performance with random error added to each biomarker. 
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Finally, this figure shows AUC results with original, unperturbed plasma biomarker data and 

AUC results after simulation (panel C).
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Figure 4. Distribution of plasma biomarker values across diagnostic/prognostic groups and 
optimal cutoff variability
This figure demonstrates the distribution of plasma biomarker values (or risk predictions 

from logistic regression for the combined model) across CSF amyloid-negative and CSF 

amyloid-positive groups (panel A) or across participants who remained stable versus those 

who developed AD dementia within four years from baseline (panel B). The optimal cutoff 

derived from Youden’s index is also plotted for each model, along with the 95% confidence 

interval of the cutoff as derived from 1000 trials of simulating random error for each 

biomarker according to empirical estimates of test-retest variability.
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Figure 5. Individual-level uncertainty in predicted outcomes due to test-retest variability of 
plasma biomarkers
This figure shows the percentage of participants whose predicted outcome (CSF amyloid 

status or conversion to AD dementia) would (theoretically) have a greater than 5% chance 

of varying back-and-forth across the cutoff threshold due to random error of each plasma 

biomarker.
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Table 1:

Cohort characteristics

Overall CSF Aβ− CSF Aβ+ p

n 399 203 196

AGE (mean (SD)) 70.78 (5.50) 69.63 (5.59) 71.96 (5.17) <0.001

EDUCATION (mean (SD)) 11.69 (3.62) 11.90 (3.71) 11.48 (3.52) 0.250

GENDER (%) 0 212 (53.1) 108 (53.2) 104 (53.1) 1.000

1 187 (46.9) 95 (46.8) 92 (46.9)

Diagnosis (%) SCD 175 (43.9) 111 (54.7) 64 (32.7) <0.001

MCI 224 (56.1) 92 (45.3) 132 (67.3)

Four-year AD dementia (%) No 195 (48.9) 124 (61.1) 71 (36.2) <0.001

Yes 96 (24.1) 4 (2.0) 92 (46.9)

Not eligible 108 (27.1) 75 (36.9) 33 (16.8)

CSF Aβ42/Aβ40 (mean (SD)) 69.31 (30.55) 95.62 (15.72) 41.28 (11.75) <0.001

Plasma Aβ42/Aβ40 (mean (SD)) −0.11 (0.02) −0.12 (0.02) −0.11 (0.01) <0.001

Plasma P-tau217 (mean (SD)) 0.24 (0.22) 0.14 (0.13) 0.35 (0.25) <0.001

Plasma NfL (mean (SD)) 2.99 (2.28) 2.82 (2.35) 3.17 (2.20) 0.125

Plasma GFAP (mean (SD)) 0.11 (0.07) 0.09 (0.07) 0.13 (0.07) <0.001

This table displays characteristics for participants in the clinical modelling analysis. All continuous values are reported as mean and standard 
deviation, while all categorical variables are reported as total counts and percentage in the entire study population. All variables are described in 
the entire study population and separately in Aβ− and Aβ+ individuals (as defined using CSF Aβ42/Aβ40). Individuals who were “not eligible” 
in the four-year AD dementia analysis were individuals who did not convert to AD dementia but did not have at least four years’ follow-up time. 
P-values represent the result of statistical tests (t-test for continuous, chi-square for categorical) when comparing variable values between Aβ− and 
Aβ+ participants. Abbreviations: CSF Aβ− = normal CSF Aβ42/Aβ40 levels; CSF Aβ+ = abnormal CSF Aβ42/Aβ40 levels; SCD = Subjective 
Cognitive Decline; MCI = Mild Cognitive Impairment; SD = standard deviation; n = number of participants

Alzheimers Dement. Author manuscript; available in PMC 2023 December 14.


	Abstract
	Introduction
	Methods
	Study design and participants
	Biomarker measurements
	Outcomes
	Statistical Analysis

	Results
	Characterizing study participants
	Estimating test-retest biomarker variability
	Modelling Alzheimer-related outcomes
	Simulating effects of variability on model performance
	Estimating individual-level uncertainty of predictive models

	Discussion
	References
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.
	Figure 5.
	Table 1:

