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Clustering of single-cell multi-omics data
with a multimodal deep learning method

Xiang Lin1,4, Tian Tian 2,4, Zhi Wei 1 & Hakon Hakonarson2,3

Single-cell multimodal sequencing technologies are developed to simulta-
neously profile different modalities of data in the same cell. It provides a
unique opportunity to jointly analyze multimodal data at the single-cell level
for the identification of distinct cell types. A correct clustering result is
essential for the downstream complex biological functional studies. However,
combining different data sources for clustering analysis of single-cell multi-
modal data remains a statistical and computational challenge. Here, we
develop a novel multimodal deep learning method, scMDC, for single-cell
multi-omics data clustering analysis. scMDC is an end-to-end deep model that
explicitly characterizes different data sources and jointly learns latent features
of deep embedding for clustering analysis. Extensive simulation and real-data
experiments reveal that scMDC outperforms existing single-cell single-modal
and multimodal clustering methods on different single-cell multimodal data-
sets. The linear scalability of running time makes scMDC a promising method
for analyzing large multimodal datasets.

Single-cell RNA sequence (scRNA-seq) profiles a high-resolution pic-
ture inside an individual cell. Based on scRNA-seq technology,
recently, many multimodal sequencing technologies have been
developed to jointly profile multiple modalities of data in a single cell.
For example, cellular Indexing of Transcriptomes and Epitopes by
Sequencing (CITE-seq) and RNA expression and protein sequencing
assay (REAP-seq) have been developed to profile mRNA expression
and quantify surface protein simultaneously at the cellular level1,2.
Specifically, CITE-Seq employs existing single-cell sequencing tech-
nologies, such as the 10X Genomics Chromium platform3, and allows
the counting of Antibody-Derived Tags (ADT) to quantify the cell-
surface protein abundance. Each cell with ADT labels and DNA-
barcoded microbeads will be encapsulated in a droplet for single-cell
sequencing4. REAP-seq also combines DNA-barcoded antibodies with
existing scRNA-seq approaches to measure the expression levels of
genes and cell-surface proteins2. In addition to studying single-cell
transcriptomes and surface proteins, recently, the development of
single-cell approaches for the assay of the transposase accessible
chromatin sequencing (scATAC-seq) provides us a chance to measure
chromatin accessibility in a single cell5. Specifically, these technologies

are designed to identify open chromatin regions in the genome by
using the hyperactive Tn5 transposase, which simultaneously tags and
fragments DNA sequences in open chromatin regions6. The scATAC-
seq enables us to explore cell type-specific biological activities by
investigating the chromatin-accessibility signatures, such as the tran-
scription factors that control the gene expression of cells. More
recently, some multi-omics single-cell technologies have been devel-
oped to jointly profile chromatin accessibility and gene expression
within a single cell7, such as SNARE-seq and 10X Single-Cell Multiome
ATAC+Gene Expression (we denote it as SMAGE-seq)8,9. Overall, these
multimodal sequencing technologies provide us with a more com-
prehensive and complicated profile of a single cell. Therefore, the
computational tools for jointly integrating different data views for
downstream analyses, such as clustering analysis, are desired for these
new powerful experimental technologies.

It is noted that in the multimodal data, the biological information
provided by different modalities is complementary2,4, and each mod-
ality generally has its own strengths andweaknesses. Using CITE-seq as
an example, its ADTmodal focuses on surface proteins. ADT data have
demonstrated a low dropout rate4 and thus can reliably quantify cell
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activities. For the five CITE-seq datasets analyzed in this study, we
observed dropout rates of up to 12% in ADT data. In contrast, there
were more than 80% or even 90% zero entries in its corresponding
mRNA data. For most genes, protein is the final product to fulfill their
functions and messenger RNA is an immediate product. Thus, ADT
data seems ideal for characterizing cell functions and types. However,
due to current technique limits, ADT can profile only up to a couple of
hundreds of proteins. Because of this limit, investigators generally
include well-known cell type markers in ADT modal first. Therefore,
ADT data is good at identifying common cell types4,10, such as CD4+
and CD8+ T cells, when their marker genes are profiled. However,
because of its limited dimensions, ADT data may not detect rare or
minor cell types well. In contrast, the full transcriptome of mRNA data
can capture comprehensive cell types. Nevertheless, clustering cells
based on scRNA-seq may be challenged by its large dropout rate and
sparse signal with high dimensionality. Furthermore, the quantity of
ADT and mRNA sources produced by the same gene may not be the
same when considering the post-transcriptional and post-translational
regulations4,11. In this case, ADT and mRNA data provide com-
plementary information in cell type identification10. For SNARE-seq and
SMAGE-seq, scATAC-seq data provides chromatin accessibility infor-
mation which is also complementary to mRNA data8. Thus, by inte-
grating the information from multimodalities, we should be able to
arrive at a higher resolution of cell typing.

Clustering analysis is an essential step in most single-cell studies
and has been studied extensively. Based on the clustering results,
researchers can explore the biological activities in cell type or subtype
level, which could not be reached by studying bulk data12–14. Numerous
clustering methods have been designed for the analysis of scRNA-seq
data. For example, Tscan applies principal component analysis (PCA) on
the scRNA-seq data and then performs the Gaussian mixture model
(GMM) clustering on the low-dimensional representation15. Seurat
constructs a k-nearest neighbors (KNN) graph based on the Euclidean
distance in PCA space. With the graph, it then employs the Louvain16/
Leiden algorithm to iteratively group cells together by optimizing
modularity17. The Louvain/Leiden algorithm has already become one of
the most popular methods for scRNA-seq clustering. SC3 employs
spectral clustering to obtain individual clustering results based on the
distance matrices derived from the Euclidean, Pearson and Spearman
metrics, respectively. It then computes a consensus matrix by sum-
marizing the three individual clustering results. Finally, the consensus
matrix is clustered using hierarchical clustering to produce final clus-
tering results18. However, these traditional single-cell clustering meth-
ods are not ready to take the advantage ofmulti-omics data to improve
clustering performance and are thus not applicable tomultimodal data.

A couple of methods have emerged for the clustering analysis of
CITE-seq data in the past years. Recently, we proposed a single cell
deep constrained clustering framework – scDCC that can integrate
ADT information into the clustering analysis of scRNA-seq data by
manually defined constraints19. BREM-SC10, a hierarchical Bayesian
mixturemodel, applies twomultinomialmodels to jointly characterize
scRNA-seq and ADT data. It assumes that the proportions (relative
expression levels of genes or proteins) in the multinomial models
follow Dirichlet distributions, and cell-specific random effects are
introduced to model the correlation between the two data sources.
Although BREM-SC is one of the first proposed models for clustering
analysis of CITE-seq data, it has several limitations. Firstly, it assumes
that the data follow a certain specific distribution. Such parametric
assumptions may not hold in all real applications. Secondly, BREM-SC
does not characterize the dropout events, which is the major problem
in the clustering of scRNA-seq data. Finally, BREM-SC has a scalability
issue. The running time of BREM-SC becomes costly and slow when
analyzing thousands of cells.

Meanwhile, CiteFuse, Seurat V4, and Specter can cluster CITE-seq
data by using distance-based graphs. CiteFuse20 calculates the cell-to-

cell similarity matrices of ADT and mRNA separately and then merges
them by a similarity network fusion algorithm21. Clustering is per-
formed on the merged similarity matrix by using graph-based clus-
tering algorithms such as spectral22 and Louvain algorithm16. However,
similarity matrix-based clustering cannot explicitly consider the
dropout events in scRNA-seq data. Hao et al. developed a weighted
nearest-neighbor (WNN) procedure in Seurat V4 for multi-omics data
clustering23. Briefly, the WNN procedure learns the weights of multi-
modal data and generates a similarity graph of cells by a weighted
combination of mRNA and protein views. Van et al.24 proposed a
landmark-based spectral clustering (LSC) method, Spector, for clus-
tering single-cell data with linear-time scalability. LSC picks a small set
of cells as the landmarks and calculates a Gaussian kernel-based
similarity matrix between the rest of the cells and the landmarks, then
the whole Laplacian matrix is built. Different omics require a different
choice of the number of landmarks and the kernel bandwidth, and
consensus clustering is used for ensembles across modalities. Com-
pared to BREM-SC and CiteFuse, the WNN algorithm and Specter run
much faster and require lessmemory.However, these twomethods fail
to take into consideration the dropout events in the count data too.

Another line of research, which is relevant, focuses on learning a
joint embedding of different modalities. Such joint embedding is
expected to improve various downstream analyses, including cluster-
ing. TotalVI is a deep variational autoencoder that can capture the
same latent space of different data types25. With this design, TotalVI
can learn a joint probabilistic representation of the paired ADT and
mRNAmeasurements fromCITE-seqdata that accounts for the distinct
information of each modality. Similarly, for SNARE-seq or SMAGE-seq
data, Cobolt26 and scMM27 employ a Multimodal Variational Auto-
encoder to jointly model the multiple modalities and learn a joint
embedding of the single-cell mRNA-seq and ATAC-seq data. However,
these methods focusing on joint embedding are not designed and
optimized for clustering, although we can, as a naïve solution, learn
joint embeddings first, which is then followed by simple clustering
using, for example, k-means. Such a divided strategy is suboptimal for
clustering, as shown in our experiments later.

As we mentioned above, many existing methods fail to consider
the dropout events in the single-cell data during the learning of
embedding and/or clustering. However, the pervasive dropout events
make single-cell count data to be zero-inflated and over-dispersed. To
better characterize single-cell mRNA count data, a zero-inflated
negative binomial (ZINB) model has been widely used to account for
the large dispersion and the dropout events28,29. Many ZINB model-
based methods, including deep learning approaches, have been
developed to analyze scRNA-seq count data, including ZINB-WaVE29,
DCA30, scVI31, and scDeepCluster28, to name a few. These studies show
that the ZINB model can effectively characterize scRNA-seq data and
improve the representation learning and clustering results.

In this article, we propose a multimodal deep learning model,
Single Cell Multimodal Deep Clustering (scMDC), for the clustering
analysis of multimodal single-cell data. The network architecture of
scMDC is shown in Fig. 1. scMDC employs amultimodal autoencoder32,
which applies one encoder for the concatenated data from different
modalities and two decoders to separately decode the data from each
modal. Following scDeepCluster28, we apply ZINB loss as the recon-
struction loss. The bottleneck layer is used for a deep K-means
clustering33. To further improve latent feature learning, we introduce a
Kullback-Leibler divergence-based loss (KL loss), which attracts similar
cells and separates dissimilar cells34. The whole model, including the
autoencoder, the KL-loss, and the deep K-means clustering, are opti-
mized simultaneously. scMDC is an end-to-end multimodal deep
learning clustering method for modeling different multi-omics data.
Taking the advantage of graphics processing units (GPU), scMDC is
very efficient in the analyses of large datasets. In addition, by
employing a conditional autoencoder framework, scMDC can correct
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batch effects when analyzing multi-batch data. To our knowledge,
scMDC is the first end-to-end deep clustering method that can both
integrate multimodal data and remove the batch effect for different
types of multimodal data. The superior performance of scMDC is
observed from the extensive experiments on both CITE-seq and
SMAGE-seqdata. After clustering, for a given cluster,we alsodetect the
markers (genes or proteins) by transplanting anACEmodel35 to scMDC
and conduct a gene set enrichment analysis based on the gene ranks
learned from ACE. The meaningful results of these downstream

analyses further support the superior clustering performance of
scMDC. We conclude that scMDC is a promising tool for clustering
multimodal single-cell data.

Results
Real CITE-seq data evaluation
We first evaluate the clustering performance of scMDC on CITE-seq
datasets in comparison with ten competing methods. The competing
methods include the models designed for multimodal data clustering
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Fig. 1 | The architecture of scMDC. scMDC has one encoder for the concatenated
data and twodecoders for eachmodal in themultimodal data (a). It can be used for
clustering CITE-seq data and 10x Single-Cell Multiome ATAC + Gene Expression
(SMAGE-seq) data. The spiral symbols indicate the artificial noises added to the
data. For multi-batch datasets, scMDC will work in a conditional autoencoder
manner. A one-hot batch vector B (in dimension b) will be concatenated to the
input feature of the encoder (with raw feature dimension, m) and the decoders

(with latent feature dimension, z). This is designed for batch effect correction.
scMDC learns a latent representation Z (in dimension z) of data on which different
modalities are integrated. A deep K-means algorithm and a KLD loss are imple-
mented on Z. Based on the clustering results, scMDC employs an ACE model36 to
detect markers in different clusters (b). Then, pathway analyses can be conducted
based on the gene ranks learned by ACE (c).
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(BREM-SC, CiteFuse, Specter, and SeuratV4), themodelsdeveloped for
learning an embedding for single or multimodal data (SCVIS and
TotalVI), two clustering tools for single-cell data (SC3 and Tscan), and
two general clustering methods (IDEC and K-means). We test these
tools on seven single-batch CITE-seq datasets and two multi-batch
CITE-seq datasets. Of these ten methods under comparison, only
scMDC, Seurat, andTotalVI can correct batcheffects before clustering.
We hypothesize that scMDC can boost the clustering performance in
all the CITE-seq real datasets. Figure 2 shows the performance (AMI,

NMI, and ARI) of all the methods for different datasets. Overall, the
multimodal methods have shown clear advantages over the single-
modal methods. As shown in Fig. 2a, scMDC has demonstrated
superior performanceover competingmethods across twometrics for
most single-batch datasets except the BMNC dataset, in which Seurat
has comparable performance. For the two multi-batch datasets,
scMDC outperforms all the competing methods (Fig. 2b); TotalVI and
Seurat are inferior to scMDC but outperform the other competing
methods, thanks to their capability of correcting batch effects. The
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Fig. 2 | Clustering performance of scMDC and the competing methods on dif-
ferent CITE-seq datasets. All the methods are tested on seven one-batch datasets
(a, n = 7) and two two-batch datasets (b, n = 2). In panels (a) and (b), clustering
performance is illustrated in a two-dimensional manner with ARI as the Y axis and
NMI as the X axis. Circles stand for the results of the multi-omics methods and
triangles stand for the results of the single-omics methods. The differences
between the performance of scMDC and the competing methods are shown in
boxplots (c, n = 9). Each boxplot shows the minimum, first quartile (Q1), median,

third quartile (Q3), and maximum of data. The minimum and maximum are the
smallest data point that is equal to or greater than Q1 −1.5*IQR and the largest data
point that is equal to or less than Q3 + 1.5*IQR, respectively. Each data point (a
difference of performance in a dataset) is shown by a dot. We also summarized the
performance of each method by showing the averaged ranks (d, n = 9). Each data
point (a rank of amethod in a dataset) is shownby a dot and the standard errors are
shown by the error bars. In panels (c) and (d), clustering performance is evaluated
by AMI, NMI, and ARI. Source data is provided as a Source Data file.
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differences between the performance of scMDC and the competing
methods are summarized in Fig. 2c. A positive differencemeans higher
performance in scMDC than the competing methods. We find that
scMDC has a steady advantage over all the competing methods in
multiple datasets. We then rank all competing methods for each
dataset based on their performance metrics. Figure 2d shows the
averaged rank of each method for the nine datasets. We can see that
scMDCconstantly ranks number 1 in all datasets for all threemetrics. In
contrast, the second-best methods, Seurat for AMI and NMI and
Specter for ARI, have an averaged rank of 3. Using one-sided paired t-
tests on the clusteringmetrics (AMI,NMI, andARI), we confirm that the
improvements of scMDC over competing methods are all significant
(Supplementary Table 1). In summary, our results on multiple real
datasets reveal that scMDC has stable and robust clustering perfor-
mance on the CITE-seq datasets.

Real SMAGE-seq data evaluation
We then test the clustering performance of scMDC on the SMAGE-seq
data. Here we compare scMDC with four competing methods: Cobolt,
scMM, SeuratV4, and K-means + PCA. Cobolt and scMM are designed
for multi-omics data embedding learning. SeuratV4 is developed for
CITE-seq data but herewe apply theWNN algorithm to the SMAGE-seq
data. We test these methods on three real SMAGE-seq datasets from
10X genomics, including two PBMC datasets and one embryonic
mouse brain dataset. We also conduct a multi-batch experiment by
combining twoPMBCdatasets (denoted as PBMC13K). For scATAC-seq
data, we use a cell-to-gene matrix as input for scMDC, scMM, Seurat,
andKmeans. Thismatrix is built bymappingATAC reads onto the gene
regions (Seemethod for details). Cobolt uses the peak countmatrix as
the input. Figure 3 shows the clusteringperformanceof scMDCand the
competing methods in single-batch datasets (a) and multi-batch
datasets (b). We find that scMDC has superior performance in both
single- and multi-batch datasets from all the metrics (NMI and ARI).
Cobolt is the second-best method in the tests and has a comparable
performance with scMDC on the E18 dataset in NMI, but its perfor-
mance is inferior to that of scMDC in other datasets. Figure 3c sum-
marizes thedifferences in clustering performancebetween scMDCand
the competing methods. We find that the median differences are
around0.1 in AMI andNMI, and around0.3 in ARI for all the competing
methods, which illustrates the superiority of scMDC. We then rank all
competing methods for each dataset based on their performance
metrics. Figure 3d shows the averaged rank of each method for the
four datasets. We can see that scMDC ranks best in all three metrics,
while Cobolt is the second-best for AMI and ARI, and Seurat is the
second-best for ARI. Using one-sided paired t-tests done on the raw
performance metrics, we confirm that the improvements of scMDC
over competing methods are all significant (Supplementary Table 2).

Taking the results from CITE-seq and SMAGE-seq experiments
together, we conclude that scMDC is a general and promising clus-
tering model for various single-cell multimodal data.

Simulation experiments
To test the robustness of scMDCunder different scenarios,we conduct
two simulation experiments with various clustering signals and drop-
out rates. We generate all the simulation datasets using the SymSim
package (v0.0.0.9) in R. Figure 4a–c show the performance of scMDC
and the competing methods on the simulated CITE-seq data with low,
medium, and high clustering signals, respectively. scMDC has
demonstrated superior performance across all levels of clustering
signals, especially in terms of AMI and NMI. TotalVI has comparable
performance with scMDC in ARI, but it is outperformed by scMDC in
othermetrics. Besides, when the clustering signal is low, scMDC shows
a greater advantage over other methods, revealing its capability to
handle datasets with low signal-to-noise ratios. Figure 4d–f show the
clustering results of all the methods with low, medium, and high

dropout rates, respectively. We can see that scMDC yields the optimal
performance under various dropout rates, followed by TotalVI. We
also observe that, the higher the dropout rate, the larger
the improvement scMDC brings, in comparison with its competing
methods. Such a result is compelling because most real single-cell
datasets exhibit high dropout rates. The robust performance under
high dropout eventsmakes scMDC to be a superior clusteringmethod.
This result also consolidates our statement that scMDC is a better tool
to cluster the datasets with low signal-to-noise ratios than the com-
petingmethods. Formulti-batchdata,we compare scMDCwithTotalVI
and Seurat, the only two competing methods that can correct batch
effects. Medium dropout rate and clustering signal are used for
simulating the multi-batch dataset. scMDC outperforms the two

D
iff in AM

I
D

iff in AR
I

D
iff in N

M
I

Seu
rat

Cob
olt

sc
MM

Kmea
ns

 + 
PCA

0.00

0.05

0.10

0.15

0.1

0.2

0.3

0.4

0.00

0.05

0.10

0.15

1

3

5

R
an

ks

AMI

1

3

5

R
an

ks

NMI

1

3

5

R
an

ks

ARI

Mouse brain E18 PBMC10K PBMC3k

0.30 0.32 0.34 0.60 0.65 0.50 0.55 0.60 0.65

0.3

0.4

0.5

0.6

0.4

0.5

0.6

0.7

0.150

0.175

0.200

0.225

NMI

AR
I

0.3

0.4

0.5

0.6

0.55 0.60 0.65
NMI

AR
I

a

b

c d

scMDC

Seurat

Cobolt

scMM

Kmeans + PCA

Multi

Single

Fig. 3 | Clustering performance of scMDC and the competing methods on dif-
ferent SMAGE-seq datasets. All the methods are tested on three one-batch data-
sets (a, n = 3) and one two-batch dataset (b, n = 1). In panels (a) and (b), clustering
performance is illustrated in a two-dimensional manner with ARI as the Y-axis and
NMI as the X-axis. Circles stand for the results of the multi-omics methods and
triangles stand for the results of the single-omics methods. The differences
between the performance of scMDC and the competing methods are shown in
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performance of each method by showing the averaged ranks (d, n = 4). Each data
point (a rank of amethod in a dataset) is shownby a dot and the standard errors are
shown by the error bars. In panels (c) and (d), clustering performance is evaluated
by AMI, NMI, and ARI. Source data is provided as a Source Data file.
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competing methods in all three metrics (Fig. 4g). The differences
between the performance of scMDC and each competing method are
summarized in Fig. 4h. Although the distribution of differences varies
across different methods, all the medians of differences are greater
than zero indicating a consistent superiority of scMDC over all the
competing methods. Similarly, we rank all methods in the analyses of

these simulated datasets. scMDC and TotalVI constantly rank No. 1 and
No. 2, respectively (Fig. 4i). Like the results in the real datasets, multi-
omics methods have better overall performance than single-source
methods. Using one-sided paired t-tests done on the three raw per-
formance metrics, we confirm that the improvements of scMDC over
competing methods are all significant (Supplementary Table 3). These
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simulation results demonstrate that scMDC has robust clustering
performance under various scenarios.

Latent representations of real data
Figure 5 shows the t-SNEplots of the embedding of scMDC (a) and four
competingmethods, IDEC (b), SCVIS (c), TotalVI (d), and Seurat (e), on
the BMNC dataset. We also show the expression pattern of three
marker genes in the t-SNE plots. They are LYZ (the first column) for
CD14 monocyte cells, CD8A (the second column) for CD8 cells, and
NKG7 (the third column) for NK cells. True labels (cell types) are shown
in the fourth column.We find that scMDC can dividemost cell types in
the latent space. In contrast, SCVIS, TotalVI, and Seurat fail to separate
many cell types, including some large cell types, such as CD14 mono-
cyte and CD4 memory cells, which are connected or mixed with other
cell types in the latent spaces. IDEC divides large cell types into many
small clusters. Many of themaremixedwith other cell types. It is noted
that scMDC fails to divide some sub-cell types, such as CD8 effect 1,
CD8 effect 2, CD8 memory 1, and CD8 memory 2, on the latent space.
This problem is also observed on the t-SNE plots of other methods. In
the latent space of scMDC, the marker genes are only expressed in

some isolated clusters. However, in the latent space of other methods,
the marker genes are either expressed in multiple clusters or in a part
of a large cluster. These are all unsatisfactory expression patterns.
Similar results are observed in the expression pattern of ADT markers
(Supplementary Fig. 1).We then build t-SNEplots of the embeddings of
a multi-batch dataset SLN111 with two batches of data (Fig. 6). This
dataset contains 28 cell types including some large ones (>1000 cells,
such as CD4 and CD8 T cells) and tiny ones (<100 cells, such as ery-
throcytes and plasmacytoid dendritic cells). An ideal model should be
capable of 1) dividing different cell types on the latent space, and 2)
removing the batch effect and mixing the cells from different batches
on the latent space. In other words, biological variations should be
captured while technical variations are omitted during the embedding
learning. Figure 6 shows the latent representations of scMDC (a) and
four competingmethods including IDEC (b), SCVIS (c), TotalVI (d), and
Seurat (e). We find that scMDC can separate most cell types in the
latent space. In addition, it mixes the cells from two batches in most
clusters. IDEC can separate the large cell types but fails to divide many
small cell types. SCVIS, TotalVI, and Seurat show inferior performance
in dividing different cell types in the latent space. Like scMDC, TotalVI

Fig. 4 | Clustering performance of scMDC and the competing methods on the
simulation datasets. The first simulation experiment is to test the clustering
performance of scMDC with low (a), medium (b), and high (c) clustering signals.
The second simulation experiment is to test the clustering performance of
scMDCwith low (d), medium (e), and high (f) dropout rates. Since scMDC, Seurat,
and TotalVI can correct the batch effect, we also test their clustering performance
on a multi-batch simulation dataset (g). In panels (a–f), bars stand for the mean
values, dots stand for the data points, and error bars stand for the standard
errors. We generate ten replicates for each experimental setting (n = 10). The
differences between the averaged performance of scMDC and the competing

methods over all simulation datasets are shown in boxplots (h, n = 6). Each
boxplot shows the minimum, first quartile (Q1), median, third quartile (Q3), and
maximum of data. Theminimum andmaximum are the smallest data point that is
equal to or greater than Q1 − 1.5 * IQR and the largest data point that is equal to or
less than Q3 + 1.5 * IQR, respectively. Each data point (a difference of averaged
performance in a dataset) is shown by a dot. We also summarized the perfor-
mance of each method by showing the averaged ranks (i, n = 7). Each data point
(an average rank of a method in a setting) is shown by a dot and the standard
errors are shown by the error bars. In all panels, the clustering performance is
evaluated by AMI, NMI, and ARI. Source data is provided as a Source Data file.
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and Seurat also have satisfactory performance on batch effect cor-
rection. SCVIS and IDEC cannot address the batch effects, so the cells
from the two batches are separated on the latent space. In summary,
scMDC is the only method that has superior performance on both cell
typepartition andbatcheffect removal. Similar results canbe foundon
the t-SNE plots of a multi-batch SMAGE-seq dataset (PBMC13K, Sup-
plementary Fig. 2).

The advantages of using multimodal data
As described in the introduction, different omics of data provide dif-
ferent and complementary information for cell clustering and cell typ-
ing. Therefore, using multi-omics data in clustering should be able to
achieve better performance than using single-source data. In this
experiment, we conduct two tests. In the first test, we compare the
performance of scMDC with three variant models: a sub-model of
scMDC with only mRNA input and reconstruction loss (named scMDC-

RNA), a sub-model of scMDC with only ADT/ATAC input and recon-
struction loss (named scMDC-ADT/scMDC-ATAC), and a variant model
with concatenated mRNA and ADT data as input but with only one
reconstruction loss (named as scMDC-Concat). Figure 7a, b shows the
performance of scMDC and three variant models in CITE-seq and
SMAGE-seq data, respectively. We find that scMDC outperforms the
variantmodels in all the datasets. For CITE-seq data, scMDC-ADThas the
second-best performance in all datasets. This is consistent with our
expectation becausemost ADTs are strongmarkers for identifying some
cell types. On the other hand, scMDC-ATAC has inferior performance in
two SMAGE-seq datasets. The differences between the performance of
scMDC and each variant model are summarized in Fig. 7c. We find a
stable advantage of scMDC over all the variant models. Using a one-
sided paired t-test, we find that scMDC significantly outperforms most
variant models for both CITE-seq and SMAGE-seq data (Supplementary
Table 4). The only exception is the scMDC-ATACmodel (P-value = 0.07),
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because of the low sample size of SMAGE-seq data (n=4). Considering
that the sub-models of scMDC are not optimized for clustering scRNA-
seq data, we then compare scMDC with scDeepCluster, a state-of-art
tool for clustering scRNA-seq data. It is noted that scMDC uses multi-
omics data as input (either mRNA + ADT or mRNA + ATAC), while
scDeepCluster only uses mRNA-seq data as input. We find that scMDC

outperforms scDeepCluster in all datasets (Fig. 7d, e), indicating that
scMDC can integrate the information from multimodal data to boost
clustering performance. We also build the t-SNE plots of the embed-
dings from scMDC and three variant models (Supplementary Fig. 3).
Consolidating our expectations in the introduction, scMDC-RNA cor-
rectly separates some tiny cell types but falsely combines some large cell
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types. In constrast, scMDC-ADT separates most large cell types but fails
to detect some small cell types. scMDC-Concat exhibits similar perfor-
mance as scMDC-RNA, which suggests a predominant role of mRNA
data in the concatenated input. The t-SNE plots of SMAGE-seq data
(PBMC13K) from scMDC and three variant models are shown in Sup-
plementary Fig. 4. scMDC also outperforms the variant models in cell
type partition on the latent space. In addition, we compare the single-
modal scMDC (scMDC-RNA and scMDC-ADT/scMDC-ATAC) to other
single-modal methods (Supplementary Figs. 5–12). We find that in most
datasets, the single-modal scMDCmodels also have the best or close-to-
best performance. Based on these single-modal methods, the multi-
modal scMDC further boosts the clustering performance by integrating
the information from two omics of data.

Downstream analysis
Based on the clustering results, we perform two popular downstream
analyses, differential expression (DE) analysis and gene set enrichment
analysis (GSEA). We employ the algorithm from ACE36, which ranks
genes based on the confidence of them to be assigned to a cluster. The
DE analysis can be performed between two clusters or between one
cluster and the rest of the clusters. Then, we calculate the log-fold
change of each gene to get the directions of differential expression
(namely upregulation or downregulation) based on the normalized
mRNA counts. With gene ranks and directions, we perform GSEA to
find the enriched pathways in a target cluster. Here, we show the
results of the BMNC dataset (Fig. 8). We conduct DE and GSEA for the
four largest clusters in the BMNC data. All comparisons are performed
between the target cluster and the rest of the clusters. Figure 8a shows
the DE genes for CD14 monocyte, CD4 memory T cells, CD4 naive
T cells, and CD8 naive T cells. We find many proven marker genes for
each cell type. For example, LYZ, CST3,HLA-DRA, CD74, and CD14 have
been shown to be highly expressed in the monocyte cells37. CD27 and
CCR7 are themarker genes for naive cells38. They are in the top ranks in
both CD4 naive and CD8 naive clusters. IL7R and S100A4 have been
demonstrated to be highly expressed in memory T cells39. Figure 8b
shows the GSEA results of the Hallmark pathways based on the DE
analysis. Hierarchical clustering is performed on both pathways and
cell clusters. We find that two naive cell types are clustered together
and have many common enriched pathways. The MYC targets are
enriched in CD4 naive, CD4 memory, and CD8 naive clusters. Their
important functions in CD4 and CD8 T cells have been demonstrated
by Marchingo et al.40. The complement system has the highest
enrichment score in CD14monocytes. It is an essential pathway for the
phagocytosis of mesenchymal stromal cells by monocytes41. The
hypoxia pathway is enriched in CD4memory T cells. It has beenwidely
shown that hypoxia has a significant influence on the metabolism and
differentiation of memory CD4 T cells42–44. IL2 signaling is also enri-
ched inCD4memory T cells. Its dynamic roles in CD4T cells have been
demonstrated in many previous studies45,46. The enrichment plots of
the significant Hallmark pathways are shown in Supplementary
Figs. 13–16. These downstream analyses further consolidate the cor-
rectness of the clustering results of scMDC.

Hyperparameter tuning and time complexity
scMDC has two key hyperparameters φ(Phi) and γ(Gamma) that con-
trol the KL loss and clustering loss, respectively. Figure 9a, b shows the
clustering performance of scMDC on both CITE-seq and SMAGE-seq
datasets with various φ and γ, respectively. We find that when φ is
lower than 0.01 and γ is lower than 10, scMDC is insensitive to these
parameters.Whenφ goes beyond 0.01 and γ goes beyond 10, scMDC’s
performance drops dramatically. It is noted that the clustering loss has
a clear contribution to the performance of most datasets (P <0.05
from a one-sided paired t-test between γ = 0.1 and γ = 0.001). On the
other hand, the KL loss contributes slightly to the performance of
some CITE-seq datasets but boosts the performance of SMAGE-seq
datasets, especially in ARI. The statistical tests of the hyperparameter
tuning results are listed in Supplementary Table 5.

To test the running time of scMDC, we simulate datasets with cell
numbers ranging from 1000 to 100,000. Figure 9c shows the running
time of scMDC with ascending cell numbers. We find a linear rela-
tionship between the cell numbers and the running time of scMDC.
When the cell number is ten thousand, scMDC only needs about 7min
to finish the clustering analysis. Even when the cell number is as large
as a hundred thousand, scMDC just takes about 1 h to finish the clus-
tering analysis. All results are obtained on the Nvidia Tesla P100 with
16Gb memory.

Discussion
We have introduced scMDC - a multimodal deep learning method for
clustering analysis of different single-cell multi-omics data. scMDC
jointly models both mRNA and ADT/ATAC data by employing a mul-
timodal autoencoder. Deep K-means clustering is conducted on the
bottleneck of the autoencoder, and a KL-loss is employed to facilitate
separating distinct cell groups. scMDC is an end-to-end deep model,
and all components are optimized simultaneously. Current existing
clustering methods for CITE-seq data either apply a shallow Bayes
model, such as BREM-SC, or combine two distance-based graphs of
mRNA and ADT, such as CiteFuse and Seurat, to leverage information
from different data sources. These methods do not explicitly model
dropout events and overdispersions in mRNA and/or ADT count data.
Our real-data results demonstrate that the multimodal-based deep
learning approach can characterize different sources of count data of
CITE-seq and SMAGE-seq more effectively and efficiently.

The clustering results are essential for the downstream analyses,
such as differential expression and gene set enrichment analysis. We
employ a deep learning-based differential expression algorithm36 to
rank genes in a target cluster based on their confidence of being
assigned to that cluster. Given the ranked list of genes, GSEA can be
performed to profile cell types at a functional level. The advantages of
this deep differential expressionmethodover the traditionalmethods,
such as Wilcoxon test and DEseq247, have been demonstrated by Lu
et al.36. With the acceleration of GPU, scMDC is very efficient for ana-
lyzing large multi-omics datasets. Taking all results together, we con-
clude that scMDC is a promising method for the analysis of single-cell
multi-omics data.

Fig. 7 | Clustering performance of scMDC and the variant models on the mul-
timodal datasets. scMDC, scMDC-RNA, scMDC-ADT, and scMDC-Concat are tes-
ted on the CITE-seq data (a, n = 9) and scMDC, scMDC-RNA, scMDC-ATAC, and
scMDC-Concat are tested on the SMAGE-seq data (b, n = 4). In panels a and b,
clustering performance is illustrated in a two-dimensionalmannerwithARI as the Y-
axis and NMI as the X-axis. Circles stand for the results of multi-batch datasets and
triangles stand for the results of single-batch datasets. The differences between the
performance of scMDC and the competing methods in CITE-seq data (left, n = 9)
and SMAGE-seq data (right, n = 4) are shown in boxplots (c). Each boxplot shows
theminimum, first quartile (Q1),median, third quartile (Q3), andmaximumof data.

The minimum and maximum are the smallest data point that is equal to or
greater thanQ1− 1.5 * IQR and the largest datapoint that is equal to or less thanQ3+
1.5 * IQR, respectively. The comparisons between scMDC and scDeepCluster are
shown in a dotplot (d, n = 13). The paired performance for each dataset from
the twomethods are connected by lines. The differences between the performance
of scMDC and the scDeepCluster are shown in boxplots and violin plots (e, n = 13).
The definition of boxplots is the same as that in panel (c). In panels (d) and (e),
the results of CITE-seq data are shownby circles, and the results of SMAGE-seqdata
are shown by triangles. Source data is provided as a Source Data file.
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Method
Count data preprocessing
The raw CITE-seq data is preprocessed and normalized by the Python
package SCANPY48. mRNA andADTdata are normalized separately but
using the samemethod. Specifically, the genes andADTswith no count
are filtered out. The counts of a cell are normalized by a size factor si
(specifically, spi for ADT data and sri formRNA data), which is calculated
as dividing the library size of that cell by the median of the library size
of all cells. In this way, all cells will have the same library size and
become comparable. Finally, the counts are transformed into loga-
rithms and scaled to have unit variance and zero mean. The treated
count data of mRNA and ADT are used in our denoising multimodal
autoencodermodel.We use the raw countmatrix to calculate the ZINB
loss30,31. Before processing the Single-cell Multiome ATAC Gene
Expression (SMAGE-seq) data, we map all the reads from scATAC-seq
to the gene regions (see details below). Thenwe use the samemethods
to preprocess and normalize SMAGE-seq data as forCITE-seq data. The
size factor sai for ATAC data is also calculated.

Denoising hierarchical multimodal autoencoder
The autoencoder is a neural network that is able to learn nonlinear
representations efficiently49. There are various types of autoencoder
models. The denoising autoencoder receives corrupted data with
artificial noises and reconstructs theoriginal data50. It iswidely used for
noisy datasets to learn a robust latent representation. We use the
denoising autoencoder for the mRNA, ADT, and ATAC data since they
are very noisy. Let us denote the preprocessed counts of mRNA, ADT,
and ATAC as Xr, Xp, and Xa and the corrupted mRNA, ADT and ATAC
data as Xr

c, X
p
c , and Xa

c , formally:

Xr
c =X

r + σr*nr ð1Þ

Xp
c =X

p + σP*np ð2Þ

Xa
c =X

a + σa*na ð3Þ

here nr, np, and na are the artificial gaussian noise (with mean = 0
and variance = 1) for mRNA, ADT and ATAC data, respectively, and σr,
σp, and σa controls the weights of nr, np and na. We set σr and σa as 2.5
and σp as 1.5.

Next, ADT/ATAC and mRNA data are reduced to latent spaces by
an autoencoder model. Our autoencoder model contains one encoder
(E) for the concatenated data and two decoders (D) for different omics
of data. Both the encoder and decoders are multi-layered fully con-
nected neural networks. We denote encoder Z= EwðXr

c � Xp
c Þ for the

concatenated mRNA and ADT data, encoder Z= EwðXr
c � Xa

cÞ for the
concatenated mRNA and ATAC data, and decoder Xa0 =Da

w0
a
ðZaÞ for

ATAC data, decoder Xp0
=Dp

w0
p
ðZpÞ for ADT data, and decoder

Xr0 =Dr
w0

r
ðZrÞ for mRNA data. Xr′, Xp′, and Xa′ stand for the reconstructed

data of mRNA, ADT, and ATAC. w and w0 stand for the learnable
weights of the encoder and the decoders, respectively. ʘ indicates the
concatenation of twomatrices. The ELUactivation function51 is used for
all the hidden layers in the encoder and the decoders. Batch normal-
ization is performed on the output of all the hidden layers. The
reconstruction loss functions of our autoencoder model are:

LADT = L Xp,Dp
w0

p
Ew Xcon

c

� �� �� �
ð4Þ

LATAC = L Xa,Da
w0

a
Ew Xcon

c

� �� �� �
ð5Þ

LmRNA = L Xr,Dr
w0

r
Ew Xcon

c

� �� �� �
ð6Þ
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Fig. 9 | Hyperparameter tuning and running time testing of scMDC. This
experiment is conducted on six real datasets (n = 6). Phi (a) and Gamma (b) are set
ranging from 0 to 1 and 0.001 to 100, respectively. We test the running time of
scMDC by increasing the cell numbers in the simulated datasets from 1000 to
100,000 (c, n = 7). Source data is provided as a Source Data file.
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Xcon
c stands for the concatenated data from either mRNA + ADT or

mRNA + ATAC. For all the omics of data, we employ the zero-inflated
negative binomial (ZINB) models as the reconstruction loss function28.
It is noted that the raw count data is used in the ZINBmodels28,30,31. Let
Xp
ij be the count for cell i and protein j in the raw count matrix of ADT,

Xa
ij be the count for cell i and gene j in the raw count matrix of ATAC,

and Xr
ij be the count for cell i and gene j in the raw count matrix of

mRNA. The NB distributions are parameterized by mean values μp
ij ,

μa
ij and μr

ij , and dispersions θpij , θ
a
ij and θr

ij , for ADT, ATAC and mRNA
respectively. Formally:

NB Xp
ij ∣μ

p
ij ,θ

p
ij

� �
=
Γ Xp

ij +θ
p
ij

� �
Xp

ij !Γ θp
ij

� � θpij
θp
ij +μ

p
ij

 !θpij θpij
θp
ij +μ

p
ij

 !Xp
ij

ð7Þ

NB Xa
ij ∣μ

a
ij ,θ

a
ij

� �
=
Γ Xa

ij +θ
a
ij

� �
Xa

ij !Γ θa
ij

� � θaij
θa
ij +μ

a
ij

 !θaij θaij
θa
ij +μ

a
ij

 !Xa
ij

ð8Þ

NB Xr
ij ∣μ

r
ij ,θ

r
ij

� �
=
Γ Xr

ij +θ
r
ij

� �
Xr

ij !Γ θr
ij

� � θrij
θr
ij +μ

r
ij

 !θrij θrij
θr
ij +μ

r
ij

 !Xr
ij

ð9Þ

ZINB distribution is parameterized by the negative binomial of
count data and an additional coefficient (πp

ij , πa
ij and πr

ij) for the
probabilities of dropout events:

ZINB Xp
ij ∣μ

p
ij ,θ

p
ij ,π

p
ij

� �
=πp

ijδ0 Xp
ij

� �
+ ð1� πp

ijÞNBðXp
ij ∣μ

p
ij ,θ

p
ijÞ ð10Þ

ZINB Xa
ij ∣μ

a
ij ,θ

a
ij ,π

a
ij

� �
=πa

ijδ0 Xa
ij

� �
+ ð1� πa

ijÞNBðXa
ij ∣μ

a
ij ,θ

a
ijÞ ð11Þ

ZINB Xr
ij ∣μ

r
ij ,θ

r
ij ,π

r
ij

� �
=πr

ijδ0 Xr
ij

� �
+ ð1� πr

ijÞNBðXr
ij ∣μ

r
ij ,θ

r
ijÞ ð12Þ

To estimate these parameters in the ZINB loss functions, we add
three independent fully connected layersM,θ, andΠ to the last hidden
layer of each decoder. The layers are defined as

MADT =diag spi
� �

× expðwp μð ÞX
p0Þ;ΘADT = expðwp θð ÞX

p0Þ;ΠADT = expðwp πð ÞX
p0Þ
ð13Þ

MATAC =diag sai
� �

× expðwaðμÞX
a0Þ;θATAC = expðwaðθÞX

a0Þ;ΠATAC = expðwaðπÞX
a0Þ
ð14Þ

MRNA =diag sri
� �

× expðwrðμÞX
r0Þ;θRNA = expðwrðθÞX

r0Þ;ΠRNA = expðwrðπÞX
r0Þ ð15Þ

here MADT, θADT and ΠADT are the matrices of estimated mean, dis-
persion, and dropout probability for the ZINB loss of ADT data,MATAC,
θATAC and ΠATAC are the matrices of estimated mean, dispersion, and
dropout probability for the ZINB loss of ATAC data, and MRNA, θRNA

andΠRNA are thematrices of estimatedmean, dispersion, and dropout
probability for the ZINB loss of mRNA data. wpðμÞ, wpðθÞ, wpðπÞ, waðμÞ,
waðθÞ, waðπÞ, wrðμÞ, wrðθÞ and wrðπÞ are the learnable weights. The size
factor spi , s

a
i and sri for ADT, ATAC and mRNA are calculated in the

preprocessing step. The loss function of the ZINB-based autoencoder
is defined as

LADT =
X
ij

�log ZINB Xp
ij ∣μ

p
ij ,θ

p
ij ,π

p
ij

� �� �
ð16Þ

LATAC =
X
ij

�log ZINB Xa
ij ∣μ

a
ij ,θ

a
ij ,π

a
ij

� �� �
ð17Þ

LmRNA =
X
ij

�log ZINB Xr
ij ∣μ

r
ij ,θ

r
ij ,π

r
ij

� �� �
ð18Þ

for ADT, ATAC and mRNA data, respectively.

Conditional autoencoder
Conditional autoencoder (CAE) has been designed to integrate the
data from different batches25. Based on the traditional autoencoder
model, we add amatrix B on the input of the encoder and decoders. B
is the one-hot coding from a batch vector b of cells. If there are M
batches in b, the dimension of B would be N × M. So, the encoder
becomes Z= EwðXcon

c � BÞ and the decoders become
Xp0 =Dp

w0
p
ðZ� BÞ for ADT, Xa0 =Da

w0
a
ðZ� BÞ for ATAC, and

Xr0 =Dr
w0

r
ðZ� BÞ for mRNA data.

Model Architecture
Our model can be used for clustering CITE-seq data and SMAGE-seq
data. For CITE-seq data, the encoder is set as {256, 64, 32, 16}, the
decoder for mRNA is set as {16, 64, 256} and the decoder for ADT is set
as {16 20}. For SMAGE-seq data, the encoder is set as {256, 128, 64} and
the decoders for both mRNA and ATAC data are set as {64, 128, 256}.
So, the latent space of CITE-seq and SMAGE-seq data has 16 and 64
dimensions respectively. The overall architecture of the scMDCmodel
is shown in Fig. 1.

KL divergence on the latent layer
In the clustering analysis, similar points should be grouped into the
same cluster. According to the method described by Chen et al.34, we
employ a KL divergence loss function to enhance the association
between similar cells and prevent squeezing the centroids of clusters
in the latent space. Following t-SNE52, the t-distribution kernel function
is used to describe the pairwise similarity among two cells i and i’ in
the latent space of our autoencoder:

qii0 =
ð1 + ∣ Zi � Zi0

� �
∣∣2Þ�1

P
l≠ið1 + ∣ Zi � Zl

� �
∣∣2Þ�1 ð19Þ

here qii =0. The P is the target distribution in training, which
strengthens and weakens the affinities between the cells with high and
low similarities, respectively. P is defined as the square of Q then
normalized:

pii0 =
q2
ii0=
P

i≠qi0P
l≠iðq2

il=
P

i≠lqilÞ
ð20Þ

With the two similarity distributions, we construct the KL loss
function by the Kullback-Leibler (KL) divergence between Q and the
derived target distribution P:

Lkl =KL P k Qð Þ=
X
i

X
j

pijlog
pij

qij
ð21Þ

whichmeasure the probability-distance between the twodistributions.
During the training process, P and Q are calculated per batch.

Deep K-means clustering
We perform unsupervised clustering on the latent space of the
autoencoder34. Our multimodal autoencoder learns a nonlinear
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mapping for each cell i, which transfers two input matrices to a low-
dimensional space Z. The clustering loss function is defined as

Lc =
XN
i = 1

XK
j = 1

wijτf ðZi,VjÞ ð22Þ

here V stands for the K clustering centroids and f calculates the
Euclidean distance between a cell (in latent space) and a centroid. τ is a
hyperparameter.We set τ as 1 for CITE-seq data and 0.1 for SMAGE-seq
data. The Gaussian kernel function is applied in weight measuring to
smooth the gradient descent optimization process:

ewij =
expð�f ðZi,VjÞÞPK
k = 1expð�f ðZi,VkÞÞ

ð23Þ

Then, to speed up the convergence, an inflation operation is
applied on the weights:

wij =
ewα
ijPK = 1

k ewα
ik

ð24Þ

here the hyperparameter α is set to 2.
The total loss of scMDC is defined as

argmin
w,w0

p ,w
0
r ,U

LtotalðXp,Xr∣w,w0
p,w

0
r ,UÞ= LmRNAðXr∣w,w0

rÞ + LADT ðXp∣w,w0
pÞ

+ γ � LcðXr,Xp∣w,UÞ+φ � Lkl Xr,Xp∣w
� �

ð25Þ

For CITE-seq data, and

argmin
w,w0

a,w
0
r ,U

LtotalðXa,Xr∣w,w0
a,w

0
r ,UÞ= LmRNAðXr ∣w,w0

r Þ+ LATACðXa∣w,w0
aÞ+ γ � LcðXr,Xa∣w,UÞ

+φ � Lkl Xr,Xa∣w
� �

ð26Þ

For SMAGE-seq data. w is the weight matrix of the encoder.
w0

a, w
0
p, and w0

r are the weights of mRNA decoder, ADT decoder and
ATAC decoder, respectively. U is the set of centroids initialized by
K-means. Here, γ and φ are the hyperparameters that control
the weights for the clustering loss and the KL loss, respectively.
The value of γ is set as 0.1 for all experiments.φ is set to 0.001 for CITE-
seq data and 0.005 for SMAGE-seq data.

Marker gene detection
Weemploy an approachproposed by Lu et al.36 to findmarker genes in
each cluster against another cluster or the rest of the clusters. Briefly,
for each gene, this algorithm will find the minimal perturbation that
alters the group assignment from a source group (s) to the target
group(s) (t). The objective function for one-to-one comparison is:

min
δ

∣∣δ∣∣+ λmaxð0,α +ms x + δð Þ �mtðx+ δÞÞ ð27Þ

here the tradeoff coefficient λ and the margin α are set to 100 and 1,
respectively. x 2 X is the normalized data of a cell. δ 2 RP is the per-
turbation for altering the cluster assignment of cells. L1 norm of δ is
used to encourage sparsity and non-redundancy. The objective
function for one-to-rest comparison is:

min
δ

∣∣δ∣∣+ λmaxð0,α +ms x + δð Þ �max
t≠s

mtðx+ δÞÞ ð28Þ

It is equal to comparing a source cluster to a target cluster for
which cell x has the highest confidence. The confidence from a cell x to

a cluster c is defined as

mcðxÞ= log
expð�β k EwðxÞ � μc kÞP
kexpð�β k EwðxÞ � μk kÞ

� �
ð29Þ

here μc is the centroid of cluster c and β is set to 1. Besides the mRNA
matrix, this algorithm can also be applied to ADT and ATAC matrix.

The gene rank learned from ACE is then multiply by a direction
vector of genes to get the directed gene rank. The direction vector of
genes is calculated based on the log fold change between clusters by
changing positive values to 1 and negative values to −1. Based on the
directed gene rank, gene set enrichment analysis (GSEA) is performed
by the package fgsea (v1.19.4) and msigdbr (v7.4.1) in R.

Model implementation
The model is implemented in Python3 using PyTorch53. Adam with
AMSGrad variant54,55 with an initial learning rate = 0.001 is used for
the pretraining stage. The Adadelta optimizer56 with a learning rate
= 1 and rho = 0.95 is used in the clustering stage. The batch size is set
as 256. We pretrain the autoencoders for 400 epochs before
entering the clustering stage. In the pretraining stage, we optimize
the reconstruction losses in the first 200 epochs. The KL loss (Lkl)
on the bottleneck layer is then added to the training in the
remaining 200 epochs. After pretraining, the users need to specify
the number of clusters (K). At the beginning of the clustering stage,
we initialize K centroids by implementing K-means algorithm on the
pretrained latent space. During the clustering stage, all loss func-
tions including clustering loss (Lc) are optimized simultaneously,
and the centroids are also continuously updated by the learning
process. The convergence threshold for the clustering stage is that
the predicted labels are changed less than 0.1% per epoch. All
experiments of scMDC in this study are conducted on Nvidia Tesla
P100 (16 G) GPU.

Competing methods
BREM-SC (v0.2.0, https://github.com/tarot0410/BREMSC)10, CiteFuse
(v1.0.0, https://github.com/SydneyBioX/CiteFuse)20, Seurat (v4.0.4,
https://github.com/satijalab/seurat)17, IDEC (https://github.com/
XifengGuo/IDEC)33, K-means (sklearn v0.22.2, https://scikit-learn.org/
stable/modules/generated/sklearn.cluster.KMeans.html), SC3 (v1.21.0,
https://github.com/hemberg-lab/SC3)18, SCVIS (v0.1.0, https://github.
com/shahcompbio/scvis)57, Tscan (v1.31.0, https://github.com/zji90/
TSCAN)15, TotalVI (scvi-tools v0.15.0, https://scvi-tools.org/), Cobolt
(v1.0.0, https://github.com/epurdom/cobolt)26, scMM (v1.0.0, https://
github.com/kodaim1115/scMM)27 and Specter (https://github.com/
canzarlab/Specter)24 are used as competing methods. For the multi-
modal methods, ADT/ATAC and mRNA data are used as input, and
standard normalization is applied if the authors described it. For single
data source methods, ADT/ATAC and mRNA matrices are pre-
processed and normalized separately and then concatenated as a
single input. To keep consistency, all themethods use the same highly
variable genes in RNA and ATAC data and use full ADTs in the CITE-seq
data. If the methods require normalized data as inputs without defin-
ing a specific way of normalization, we apply the same normalization
method as that for scMDC (described above). Before doing K-means
clustering, PCA is performed on the normalized mRNA data and the
top 20 PCs are used for clustering. BREM-SC uses the raw countmatrix
as input directly. The data normalization for Citefuse follows
the vignette (https://sydneybiox.github.io/CiteFuse/articles/CiteFuse.
html). Specifically, mRNA counts are normalized by the function
“logNormCounts” in the Scater package58 with default settings. ADT
counts are normalized and log-transformed by the function “normal-
iseExprs” from the CiteFuse package. Seurat uses the raw count
matrices as input. Following the CITE-seq tutorial of Seurat, we use
“LogNormalize” for mRNA and “centered log-ratio transformation” for
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ADT data normalization. Then the function “ElbowPlot” is used to find
the best PCs (principal components) for clustering. The resolution in
“FindClusters” function of Seurat is adjusted for different datasets in
order to estimate a satisfactory number of clusters that are close to
the real K. For the single-omics and multi-omics clustering, the
function ‘FindNeighbors’ and ‘FindMultiModalNeighbors’23 are used
to find the neighbors of cells by the SNN (shared nearest-neighbor)
and WNN (weighted nearest-neighbor) algorithms, respectively. For
IDEC and Tscan, normalized data are provided as the inputs. SC3
needs both the raw data and the normalized data as input. When the
cell number is higher than 5000, SC3 runs a SVM to estimate the cell
types of the extra cells in a supervised manner. SCVIS is a variational
autoencoder-based model aimed to reduce the dimension of scRNA-
seq data. According to the author’s protocol57, the count data are
firstly processed as log2(CPM/10 + 1), where ‘CPM’means the ‘counts
permillion’. Next, we concatenate CPMs ofmRNA and ADT. Then the
100 PCs are extracted from the CPM matrix by PCA and used as the
input for SCVIS analysis. K-means clustering is performed on the
latent output of SCVIS. For TotalVI, we keep the default setting for all
thedatasets according to the official pipeline (https://docs.scvi-tools.
org/en/stable/tutorials/notebooks/totalVI.html). We then perform
K-means clustering on the latent space from TotalVI since the num-
ber of clusters is supposed to be known. Specter24 uses the normal-
ized RNA and ADT expression data as the input. We used the default
setting for Specter’s multimodal analysis. For SMAGE-seq datasets,
we compare our model to four competing methods: K-means + PCA,
Seurat, scMM, and Cobolt. All the methods use the top 2000 highly
variable mRNA and ATAC data from the SMAGE-seq data. If the
methods need normalized data as input, we apply the same nor-
malization method for it as that for scMDC. Before doing K-means,
PCA is performed on both mRNA and ATAC data and the top 20 PCs
of each are used for clustering. For Seurat, the ATAC data, which is
mapped to the gene regions, is processed in the same way as for the
mRNA data. Then the WNN algorithm is used for integrating multi-
modal data as described before. For Cobolt, we follow the official
pipeline (https://github.com/epurdom/cobolt/blob/master/docs/
tutorial.ipynb) to produce the data embeddings. We then perform
K-means clustering on the latent space of datasets since the number
of clusters is supposed to be known. We followed the tutorial pro-
vided by scMM (v1.0.0)27 and used the default parameters. The
embeddings of scMM are obtained and used for the K-means
clustering.

Evaluation metrics
Adjust Rand Index (ARI)59, Adjusted Mutual Information (AMI)60, and
NormalizedMutual Information (NMI)61 are used asmetrics to evaluate
the clustering performance.

Adjust Rand Index measures the agreements between two sets C
and G. Assuming a is the number of pairs of two objects in the same
group in both C and G; b is the number of pairs of two objects in
different groups in both C and G; c is the number of pairs of two
objects in the same group in C but in different groups inG; and d is the
number of pairs of two objects in different groups inC, but in the same
group in G. The ARI is defined as

ARI =
n
2

� �
a+dð Þ � ½ a+bð Þ a+ cð Þ+ ðc+dÞðb+dÞ�
n
2

� �� ½ a+ bð Þ a+ cð Þ+ ðc+dÞðb+dÞ� ð30Þ

LetC = {C1, C2,…, Ctc}andG = {G1, G2,…, Gtg} be the predicted and
ground truth labels on a dataset with n cells. NMI is defined as

NMI =
IðC,GÞ

maxfH Cð Þ,HðGÞg ð31Þ

here I(C,G) represents the mutual information between C and G
and is defined as

I C,Gð Þ=
Xtc
p = 1

Xtg
q= 1

∣Cp

\
Gq∣ log

n∣Cp \ Gq∣
∣Cp∣× ∣Gq∣

ð32Þ

And H(C) and H(G) are the entropies:

H Cð Þ= �
Xtc
p= 1

∣Cp∣ log
∣Cp∣
n

ð33Þ

H Gð Þ= �
Xtg
p= 1

∣Gp∣ log
∣Gp∣
n

ð34Þ

Similarly, AMI is defined as

AMI C,Gð Þ= I C,Gð Þ � EfI C,Gð Þg
maxfH Cð Þ,H Gð Þg � EfI C,Gð Þg ð35Þ

The extra component EfI C,Gð Þg is the expected mutual informa-
tion between two random clusters60.

To illustrate the superiority of scMDC over the competing meth-
ods in multiple datasets, we rank the methods based on their cluster-
ing performance (AMI, NMI, and ARI) on each dataset. The lower the
rank, the better the performance. Besides, a one-sided paired t-test is
conducted to test if the clustering metrics (NMI, AMI, and ARI) of
scMDC are significantly higher than that of the competing methods,
which is implemented by the “t.test()” function in R. Nominal p-value
<0.05 is considered to indicate a significant difference.

Public real datasets
The real CITE-seq datasets used in this study are summarized in Sup-
plementary Table 6. The GSE100866 dataset is downloaded from GEO
(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE100866).
The cells in this dataset are cord bloodmononuclear (CBMN) cells and
annotated by Wang et al. from marker genes and ADTs10. Cells with
‘Unknown’ cell types were filtered out. The bonemarrowmononuclear
cells (BMNC, GSE128639) and the cell type labels are downloaded from
the “bmcite” dataset in “SeuratData” package (v0.2.1). The mouse
spleen lymph node datasets (SLN208 and SLN111, GSE150599) and the
cell type labels are provided by TotalVI25 on GitHub (https://github.
com/YosefLab/totalVI_reproducibility). Cells are also filtered by the
author. PBMC dataset is available on the 10X website (https://support.
10xgenomics.com/single-cell-gene-expression/datasets). We down-
loaded the preprocessed data and the cell type labels from the GitHub
of Specter (https://github.com/canzarlab/Specter)24.

The real Single-cell Multiome ATAC Gene Expression (SMAGE-seq)
datasets used in this study are summarized in Supplementary Table 7. All
the SMAGE-seq datasets are downloaded from the 10X Genomics web-
site (https://www.10xgenomics.com/resources/datasets). The first and
second datasets are from human peripheral blood mononuclear cells
(PBMCs) with about 3k and 10k cells. We denote them as PBMC3K and
PBMC10K respectively. The third dataset is from the E18mousebrain.We
denote it as E18. For each dataset,mRNA counts are downloaded directly
while the ATAC gene counts are generated by us. Specifically, after fil-
tering the reads by ATAC peak region fragments, nucleosome signal, and
TSS enrichment, we mapped each read to a gene region by the function
‘GeneActivity’ in Signac (v1.4.0)62. All the steps are referred to the official
pipeline from Satija lab. Then, the PBMC cells are annotated by the label
transferring method in Seurat V362 with the reference datasets
“pbmc_10k_v3.rds” (https://www.dropbox.com/s/zn6khirjafoyyxl/pbmc_
10k_v3.rds?dl=0) provided by Satija lab. For the E18 dataset, we
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transfer the labels from another mouse brain dataset (GSE126074 P0
mouse brain cortex) and the cell type labels are provided by the author
of the SNARE-seq paper8.

Simulation
The simulated data are generated by the R package SymSim
(0.0.0.9000)63. The overall setting for simulation is from the Online
vignettes of SymSim (https://github.com/YosefLab/SymSim/blob/
master/vignettes/SymSimTutorial.Rmd). This setting was estimated
from the Zeisel 2015 dataset64. We lower the parameter “n_de_evf” to
5 to keep about 50% differential expressed genes/ADTs in the data-
set. We perform three experiments to test the clustering perfor-
mance of scMDC and generate 10 datasets in each experiment. In the
first experiment, we adjust the parameter “Sigma” in the function
SimulateTrueCounts() to 0.6, 0.7, and 0.8 in mRNA and 0.3, 0.4, and
0.5 in ADT to simulate the high, medium, and low clustering signal
among clusters (cell types). We give lower sigma values (higher sig-
nal) to ADT data than mRNA data since it has higher signal-to-noise
ratios in the real datasets10. In the second experiment, we adjust the
parameter “alpha_mean” in function True2ObservedCounts() to
0.001, 0.00075, 0.0005 in mRNA and 0.05, 0.045, 0.04 in ADT data
to simulate low, medium, and high dropout rates. These settings are
also consistent with the observations in the real datasets sincemRNA
data has higher dropout rates than ADT data as we described in the
introduction. In the third experiment, we add a batch effect in the
data to test the model’s performance in batch effect correction.
Medium signal and dropout rate are used for this data and the
parameter “batch_effect_size” in function DivideBatches() is set to 1.
All the simulated datasets have 8 groups, 1000 cells, 2000genes, and
30 ADTs.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The GSE100866 data used in this study are available in the GEO data-
base under accession code GSE100866. Cell type labels are down-
loaded from the GitHub of BREM-SC (https://github.com/tarot0410/
BREMSC). The BMNC dataset and the cell type labels are downloaded
from the “bmcite” dataset in “SeuratData” package (https://github.
com/satijalab/seurat-data). The mouse spleen lymph node datasets
(SLN208 and SLN111) and the cell type labels are provided by TotalVI25

on GitHub (https://github.com/YosefLab/totalVI_reproducibility).
These datasets are sequenced in two batches. PBMC dataset is avail-
able on 10x Genomics website (https://support.10xgenomics.com/
single-cell-gene-expression/datasets) and the cell type labels are
downloaded from the GitHub of Specter (https://github.com/
canzarlab/Specter). All SMAGE-seq datasets (PBMC3K, PBMC10K, and
mouse brain E18) are downloaded from the 10X Genomics website
(https://www.10xgenomics.com/resources/datasets). Labels are trans-
ferred by Signac (v1.4.0) from the annotated datasets. Source data are
provided with this paper.

Code availability
Codes supporting this study are available on GitHub: https://github.
com/xianglin226/scMDC/releases/tag/v1.0.0.
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