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Summary
By combining data from 160,500 individuals with breast cancer and 226,196 controls of Asian and European ancestry, we conducted

genome- and transcriptome-wide association studies of breast cancer. We identified 222 genetic risk loci and 137 genes that were asso-

ciated with breast cancer risk at a p < 5.03 10�8 and a Bonferroni-corrected p < 4.63 10�6, respectively. Of them, 32 loci and 15 genes

showed a significantly different association between ER-positive and ER-negative breast cancer after Bonferroni correction. Significant

ancestral differences in risk variant allele frequencies and their association strengths with breast cancer risk were identified. Of the sig-

nificant associations identified in this study, 17 loci and 14 genes are located 1Mb away from any of the previously reported breast cancer

risk variants. Pathways analyses including 221 putative risk genes identifiedmultiple signaling pathways that may play a significant role

in the development of breast cancer. Our study provides a comprehensive understanding of and new biological insights into the genetics

of this common malignancy.
Introduction

Breast cancer is the most commonly diagnosed cancer in

women worldwide, with an estimated 2.3 million new

cases in 2020.1 Genetic factors play a critical role in the eti-

ology of both familial and sporadic breast cancers. In addi-

tion to breast cancer predisposition genes, such as BRCA1

and BRCA2,2–4 common genetic variants in approximately

200 loci have been identified in genome-wide association
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studies (GWASs).5–7 However, most GWASs of breast cancer

have been conducted among women of European

ancestry,8 and GWASs conducted among women of Asian

ancestry have had relatively smaller sample sizes.9,10

Although most susceptibility loci have been shown to be

shared across European and Asian populations, the lead

variants at some susceptibility loci can be different be-

tween these two populations given their differences in ge-

netic architecture.11,12 To identify additional genetic risk
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loci and provide a more comprehensive understanding of

breast cancer genetics, we conducted cross-ancestry meta-

analyses of data from the Asia Breast Cancer Consortium

(ABCC) and the Breast Cancer Association Consortium

(BCAC), including 386,696 women (139,523 of Asian

ancestry and 247,173 of European ancestry). Furthermore,

we performed a transcriptome-wide association study

(TWAS) to uncover putative breast cancer susceptibility

genes and gain biological insights into the genetics of

this common malignancy.
Subjects and methods

Study population
In this study, we conducted a cross-ancestry meta-analysis using

data from two large breast cancer genetic research consortia:

ABCC and BCAC. All studies were approved by relevant institu-

tional ethical committees. The detailed descriptions of partici-

pating studies are described in the supplemental information. In

brief, the 133,384 individuals with breast cancer and 113,789 con-

trols of European ancestry included in this analysis were from

BCAC, which consisted of three datasets: iCOGS (38,349 individ-

uals with breast cancer and 37,818 controls), OncoArray (80,125

individuals with breast cancer and 58,383 controls), and other

GWASs (14,910 individuals with breast cancer and 17,588 con-

trols).6 For European-ancestry participants, we used summary sta-

tistics data generated in BCAC, following the data use agreements.

Individuals of Asian ancestry included in this analysis were 27,116

individuals with breast cancer and 112,407 controls recruited by

studies in AABC and BCAC (Table S1). Proper informed consent

was obtained from all study participants.

Genotyping and quality control
Genotyping and quality control procedures for the contributing

studies have been described previously.5–7,9–11,13–19 After quality

control, we imputed all datasets using the 1000 Genomes Project

Phase 3 and excluded variants with an imputation quality score

(R2) <0.3. Variants with a minor allele frequency (MAF) of >0.01
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56These authors contributed equally

*Correspondence: wei.zheng@vanderbilt.edu

https://doi.org/10.1016/j.ajhg.2022.10.011.

2186 The American Journal of Human Genetics 109, 2185–2195, Dec
in Asian-ancestry datasets or >0.005 in European-ancestry data-

sets were included for association analyses.
Statistical meta-analyses
Analyses using logistic regression models were performed within

each of the ABCC studies, except Biobank Japan project (BBJ2),

to estimate the per-allele odds ratio (OR) for each variant using

PLINK 2.0.20 Age and the top two principal components (PCs)

were adjusted as covariates. The number of PCs included in the

regression was determined by evaluating the Scree plot. Summary

statistics were acquired for BBJ2 and BCAC-European dataset. Age

and top five PCs were adjusted in BBJ as covariates.13 The country

of contributing studies and the first ten PCs were adjusted in the

BCAC-European dataset.6 A fixed-effects model was used for

ancestry-specific meta-analyses and cross-ancestry meta-analyses

for risk of overall breast cancer and estrogen receptor (ER) subtypes

using METAL.21 The heterogeneity of risk estimates was evaluated

using Cochran’s Q statistic and I2. We estimated the statistical po-

wer of our cross-ancestry meta-analyses with a at 5 3 10�8

(Figure S1). We had 80% power to detect a minimum per-allele

OR of 1.07, 1.05, 1.04, and 1.03 for variants with a MAF of 0.05,

0.15, 0.20, and 0.30, respectively. In order to take into account

of the population heterogeneity, we also used the meta-regression

approach implemented in MR-MEGA22 in cross-ancestry meta-an-

alyses for overall breast cancer. At each risk locus, we performed

fine-mapping analysis using SuSiE23 and constructed a 95% cred-

ible set for the lead variant at the locus (detailed methods in

supplemental information). We investigated the ancestral hetero-

geneity of the lead variants and all variants in the credible sets.

Novel risk loci were defined as loci with the sentinel variants

located at least 1 Mb away from any of the risk variants identified

by previous GWASs included in the NHGRI-EBI GWAS Catalog.24

For each novel locus, we conducted conditional analyses to iden-

tify additional independent signals located flanking 5 500 kb

from the lead variant. The GCTA-COJO was used for the condi-

tional analyses. In each iteration of the stepwise conditional anal-

ysis, we conducted ancestry-specific conditional analyses and

combined the results by a fixed-effects model using METAL. Asian

samples (N ¼ 20,554) genotyped by Multi-Ethnic Genotyping
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Array (MEGA) chips were used as a reference panel for linkage

disequilibrium (LD) estimation among women of Asian ancestry.

For women of European ancestry, we used 5,000 samples from

the Vanderbilt University Medical Center biobank (BioVU) geno-

typed by MEGA as a reference panel for LD estimation.25,26 Since

the conditional analyses were restricted to local regions of the

novel loci identified at genome-wide significance, we used

1 3 10�4 as significance level (adjusting for �500 comparisons

in each locus). If the variant with the lowest conditional p was

lower than 1 3 10�4, it was considered an independent signal at

that locus, and it was subsequently adjusted, along with the lead

variant, from cross-ancestry meta-analyses in later iterations.

This process was repeated until there were no variants with a

cross-ancestry conditional p < 1 3 10�4.
Genetic variance explained by novel risk variants
We estimated the genetic variance explained by novel risk variants

identified in this study using a log-additive model:

Xn

i

2pi
�
1 � pi

��
b2
i � t2i

�

where n is the total number of novel risk variants, pi is the MAF of

the ith variant, bi is the log-OR for the ith variant and ti is the stan-

dard error of bi. The explained genetic variance was estimated for

overall breast cancer and by ER subtypes for Asian- and European-

ancestry populations, respectively.
Transcriptome-wide association analysis
We used RNA sequencing data from 115 samples collected from

European-ancestry women from the Genotype-Tissue Expression

Project (GTEx, version 8) to build prediction models for each

gene expressed in normal breast tissue. Germline genotyping

data were obtained using whole-genome sequencing (WGS) of

genomic DNA extracted from blood samples. The details of data

processing are described in the supplemental information. We

used a cross-tissue approach, joint-tissue imputation (JTI), to build

prediction models for gene-expression levels in normal breast tis-

sue.27 Besides breast tissue, data from all 31 other tissues were bor-

rowed in the JTI approach to leverage shared genetic regulation

and improve prediction performance in a tissue-dependent

manner (Table S10). Prediction models were built using genetic

variants within flanking þ/� 500 kb from the respective gene

boundaries. Five-fold cross-validation was conducted to validate

the models internally. Genes with a model prediction R > 0.1

were included for association analyses.

To evaluate the performance of prediction models, we per-

formed an external validation using 86 tumor-adjacent normal

breast tissue samples from European-ancestry females with breast

cancer in The Cancer Genome Atlas (TCGA). We calculated the

Spearman’s correlation between the prediction performance (R2)

in GTEx and TCGA.

We conducted association analyses of predicted gene expression

with breast cancer risk with S-PrediXcan tool,28 using the sum-

mary statistics from our ancestry-specific and cross-ancestry

meta-analyses of GWASs for breast cancer. For genes identified at

Bonferroni correction in the association analyses, we also conduct-

ed TWAS fine-mapping analyses and colocalization analyses.

Pathway analyses were conducted for protein-coding genes. The

details of statistical analyses were described in supplemental

information.
The American Jour
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By cross-ancestry meta-analyzing GWAS data from

160,500 individuals with breast cancer and 226,196 con-

trols of Asian and European ancestry using fixed-effects

models, we identified 23,461 variants in 184 regions that

were associated with overall breast cancer risk at genome-

wide significance level (p < 5.00 3 10�8; Table S2).

Twenty-seven additional risk loci were uncovered in popu-

lation-specific analyses, including 25 loci identified in Eu-

ropean-specific GWASs and two in Asian-specific GWASs.

In total, we identified 211 loci showing a significant asso-

ciation with risk of overall breast cancer. Of them, 16 loci

are novel, with the sentinel variants located at least 1 Mb

away from any of the risk variants identified by previous

GWASs (Table 1).

Analyses by ER status identified 13,392 variants in 100

loci and 2,425 variants in 34 loci that were associated

with ER-positive and ER-negative breast cancer, respec-

tively, at the genome-wide significance level (Tables S3

and S4). Two loci for ER-positive and nine loci for ER-nega-

tive breast cancer did not overlap with any of the loci iden-

tified for overall breast cancer. Of them, 17p13.2, associ-

ated with ER-negative breast cancer risk, has not yet been

reported in previous GWASs (Table 1).

Of the 222 lead risk variants identified in our study that

were associated with the risk of either overall breast cancer

(n ¼ 211) or exclusively ER-positive (n ¼ 2) or ER-negative

(n ¼ 9) breast cancer, 68 variants showed a significantly

different association by ER status at a false discovery rate

(FDR) <0.05 in heterogeneity tests (Table S7). Among

them, eight risk loci were not reported previously. Except

for rs12335941 at 9p21.3, all other seven variants had a

stronger association with ER-positive than ER-negative

breast cancer. Of the 32 variants showing a different asso-

ciation at a Bonferroni-corrected p < 2.25 3 10�4 (0.05/

222, Table 2), five lead variants showed an opposite direc-

tion of the association by ER status.
Of the 211 lead risk variants for overall breast cancer, 166

variants had a >25% difference in the effect allele fre-

quency between Asian-ancestry and European-ancestry

women (Figure S2). Seventeen lead variants, all identified

from ancestry-specific GWASs, are rare (a MAF of <0.01)

in one population but common in the other population.

For nine of these lead variants, all variants included in their

95% credible sets were rare in one population but common

in the other population (Table S2). Of the 194 common

risk variants in both populations, 36 showed a significant

difference in risk estimates between Asian- and Euro-

pean-ancestry populations at p < 0.05, including 31 lead

variants with the entire credible sets showing ancestral

heterogeneity in risk estimates (p < 0.05). Three variants

showed ancestral heterogeneity with a p < 2.58 3 10�4,

the significance level after adjusting for multiple compari-

sons (0.05/194) (Table S2). In particular, variant

rs59957907 showed a highly significant ancestral differ-

ence in risk estimate with a p for heterogeneity of
nal of Human Genetics 109, 2185–2195, December 1, 2022 2187



Table 1. Results for the lead risk variants at 17 novel loci identified in cross-ancestry meta-analyses of GWAS data

Variants Loci Nearest gene Gene region Allelesa EAFb OR (95% CI) pc I2, % p_het

Overall

rs727477 2p22.1 SLC8A1 Intron G/T 0.36 0.97 (0.96, 0.98) 2.85 3 10�8 52.1 0.03

rs3010266 5q13.2 LINC02056 8.5 kb from 50 A/G 0.24 0.96 (0.95, 0.98) 3.56 3 10�8 0 0.83

rs6890591d 5q35.2 CPEB4 3.3 kb from 30 A/T 0.38 0.97 (0.96, 0.98) 3.25 3 10�8 50.5 0.04

rs3829964 6p21.2 CDKN1A Intron T/C 0.47 0.97 (0.96, 0.98) 4.61 3 10�9 0 0.46

rs74392007 6q22.31 HSF2 5.4 kb from 50 T/C 0.12 1.05 (1.03, 1.07) 1.55 3 10�8 0 0.93

rs3778663 6q27 AFDN Intron A/G 0.13 1.06 (1.04, 1.07) 8.51 3 10�9 0 0.69

rs17167576 7p21.2 AC005019.3e 5.5 kb from 30 A/T 0.37 1.03 (1.02, 1.04) 6.93 3 10�9 47.2 0.05

rs3988353 8p22 PCM1 Intron CT/C 0.42 1.03 (1.02, 1.04) 4.32 3 10�8 0 0.81

rs1937680 10q21.1 PRKG1 Intron C/A 0.36 1.03 (1.02, 1.04) 8.18 3 10�9 1.3 0.42

rs11354045 11q23.1 ALG9 Intron CT/C 0.35 1.03 (1.02, 1.04) 2.68 3 10�8 22.3 0.25

rs36028244 11q23.3 PCSK7 Intron C/CTTA 0.07 1.06 (1.04, 1.08) 1.77 3 10�8 0 1.00

rs3809114 12q13.3 INHBE 50 UTRf G/A 0.47 0.97 (0.96, 0.98) 2.33 3 10�8 37.8 0.12

rs956006 15q22.2 TLN2 Intron T/C 0.32 1.03 (1.02, 1.05) 3.54 3 10�8 1.7 0.42

rs4797754 18p11.21 LDLRAD4 Intron G/C 0.31 1.03 (1.02, 1.05) 2.08 3 10�8 0 0.50

rs112208395 20q11.23 PHF20 Intron C/CT 0.14 1.05 (1.03, 1.07) 4.11 3 10�8 0 0.96

rs74157632g 10q26.11 DENND10 Missense G/A 0.05 0.86 (0.81, 0.90) 1.41 3 10�8 0 1.00

ER-negative

rs2123844 17p13.2 ZZEF1 Intron A/C 0.07 1.13 (1.09, 1.18) 2.81 3 10�10 37.4 0.16

aEffect allele/reference allele.
bEffect allele frequency.
cUnless otherwise specified, p derived from meta-analyses using fixed-effects model.
dIdentified using cross-ancestry meta-regression (Table S6). The p derived from cross-ancestry fixed-effects model is 1:16310�7 (Table S2).
eAC005019.3 (ENSG00000224330) does not have a gene symbol in HUGO yet.
fUTR, untranslated region.
gIdentified in Asian-specific GWASs. The p for cross-ancestry fixed-effects model is 1:74310�7 (Table S2).
1.27 3 10�104. Overall, risks estimated in European-

ancestry populations are larger than those estimated in

Asian-ancestry populations with a regression beta coeffi-

cient of 0.579 derived from linear regression (Figure 1,

Table S2). The ancestral difference observed in our study

could be underestimated, as variants with similar risk esti-

mates were more likely to be identified by cross-ancestry

meta-analyses.

Twenty-three previously reported index variants are not

located at the regions identified at genome-wide signifi-

cance in our meta-analyses. However, 16 of themwere asso-

ciated with breast cancer risk at p < 2.04 3 10�4, a signifi-

cant level with Bonferroni correction for comparisons of

245 index variants. Of the remaining seven index risk vari-

ants, four were previously identified in a GWAS by breast

cancer intrinsic subtypes6 (Table S8). Two index variants

showed a nominally significant association with breast can-

cer in cross-ancestry and European-ancestry meta-analyses

(p < 0.05). Only variant rs9348512 showed a null associa-

tion with overall breast cancer risk (p ¼ 0.505). The associa-

tion with this variant was originally reported in a GWAS

conducted among individuals with BRCA2 mutation29 but

was not replicated in subsequent studies.5,6
2188 The American Journal of Human Genetics 109, 2185–2195, Dec
The sentinel variants at all 17 newly identified risk loci

showed the same association direction in both Asian-

and European-ancestry populations (Tables S2 and S4).

Except for the Asian-specific risk variant rs74157632, all

other lead variants are common, with a MAF >0.01 in

both populations. Significant ancestral heterogeneity was

observed for rs6890591 (identified by meta-regression)

and rs74157632 (identified as Asian specific). The esti-

mated ORs for these 17 lead variants in the BCAC and

AABC studies are shown in Table S5. The proportion of

variance explained by the 17 novel loci identified in our

study was 1.15% for overall breast cancer, 1.07% for ER-

positive breast cancer, and 1.03% for ER-negative breast

cancer in Asian-ancestry populations. The corresponding

numbers are 0.74%, 0.61%, and 1.03% for European-

ancestry populations. The higher percentage of genetic

variation explained by these new loci in Asian- compared

to European-ancestry populations was because of the pop-

ulation differences in the risk estimates at the new loci. Of

the 17 novel loci, one locus was specific to the Asian pop-

ulations. For the remaining 16 loci, the effect size, as

measured using OR, was larger in Asian- than in Euro-

pean-ancestry populations for nine loci, including two
ember 1, 2022



Table 2. Results for breast cancer risk loci showing different associations by estrogen receptor status

Variants Loci Allelea EAFb

ER-Positive ER-Negative

p for ER heterogeneityOR (95% CI) p OR (95% CI) p

rs2506885 1p36.22 T/A 0.34 0.95 (0.94, 0.97) 5.91 3 10�10 0.88 (0.86, 0.90) 3.68 3 10�27 2.63 3 10�8

rs11249433 1p11.2 G/A 0.39 1.13 (1.11, 1.15) 3.45 3 10�59 1.01 (0.99, 1.04) 0.29 1.01 3 10�15

rs12129456 1q32.1 G/T 0.38 1.02 (1.00, 1.03) 0.03 0.92 (0.90, 0.94) 1.52 3 10�13 2.00 3 10�13

rs2169137 1q32.1 G/C 0.25 1.00 (0.98, 1.02) 0.9 1.13 (1.11, 1.16) 4.03 3 10�24 2.30 3 10�17

rs56158184 2p23.2 C/T 0.09 1.03 (1.00, 1.05) 0.02 0.89 (0.86, 0.92) 1.01 3 10�9 1.60 3 10�10

rs2016394 2q31.1 A/G 0.44 0.94 (0.93, 0.96) 1.05 3 10�16 1.00 (0.98, 1.02) 0.91 2.51 3 10�6

rs4442975 2q35 G/T 0.46 1.15 (1.14, 1.17) 1.42 3 10�92 1.05 (1.03, 1.07) 1.12 3 10�5 3.72 3 10�14

rs552647 3p24.1 A/C 0.48 1.12 (1.10, 1.14) 6.35 3 10�60 1.05 (1.03, 1.07) 4.89 3 10�6 1.06 3 10�7

rs7697216 4q34.1 T/C 0.15 0.89 (0.87, 0.91) 1.17 3 10�30 0.98 (0.96, 1.01) 0.24 1.49 3 10�8

rs2853669 5p15.33 G/A 0.31 0.96 (0.95, 0.97) 3.29 3 10�8 0.89 (0.87, 0.91) 3.03 3 10�24 4.32 3 10�8

rs7710996 5p12 A/G 0.25 1.00 (0.98, 1.02) 0.97 1.07 (1.04, 1.09) 1.50 3 10�8 3.84 3 10�6

rs10941679 5p12 G/A 0.31 1.16 (1.14, 1.18) 5.38 3 10�86 1.02 (1.00, 1.05) 0.04 1.45 3 10�20

rs59957907 5q11.2 G/A 0.22 1.19 (1.17, 1.21) 2.95 3 10�90 1.06 (1.04, 1.09) 2.09 3 10�6 2.46 3 10�13

rs60954078 6q25.1 G/A 0.17 1.16 (1.14, 1.19) 1.75 3 10�41 1.33 (1.29, 1.37) 6.92 3 10�76 2.18 3 10�12

rs910416 6q25.1 C/T 0.46 0.95 (0.94, 0.96) 3.23 3 10�13 0.91 (0.89, 0.93) 1.08 3 10�21 1.02 3 10�4

rs116426014 8p23.3 G/A 0.26 1.03 (1.01, 1.04) 0.01 1.09 (1.06, 1.12) 1.83 3 10�10 1.68 3 10�4

rs60037937 9q31.2 T/TAA 0.26 1.10 (1.08, 1.11) 7.92 3 10�28 1.03 (1.00, 1.05) 0.04 1.57 3 10�5

rs7862747 9q31.2 C/A 0.36 0.88 (0.87, 0.90) 1.89 3 10�58 0.98 (0.96, 1.00) 0.05 4.49 3 10�13

rs7098100 10p12.31 A/G 0.34 1.07 (1.06, 1.09) 9.46 3 10�21 0.97 (0.95, 1.00) 0.02 1.42 3 10�12

rs9420318 10q26.12 A/G 0.33 0.94 (0.93, 0.95) 2.55 3 10�17 1.00 (0.98, 1.02) 0.74 6.53 3 10�6

rs2981579 10q26.13 A/G 0.41 1.32 (1.31, 1.34) 3.72 3 10�359 1.06 (1.04, 1.08) 4.23 3 10�8 5.37 3 10�74

rs78540526 11q13.3 T/C 0.07 1.39 (1.35, 1.42) 3.11 3 10�137 1.01 (0.97, 1.05) 0.73 1.67 3 10�36

rs199504893 11q22.3 CA/C 0.41 1.02 (1.00, 1.03) 0.01 0.94 (0.92, 0.96) 3.31 3 10�9 1.56 3 10�10

rs1292011 12q24.21 G/A 0.39 0.90 (0.89, 0.92) 3.34 3 10�47 0.97 (0.95, 0.99) 0 1.05 3 10�7

rs1744947 14q24.1 T/C 0.15 1.08 (1.06, 1.10) 8.58 3 10�14 1.00 (0.97, 1.03) 0.82 2.26 3 10�5

rs4784227 16q12.1 T/C 0.24 1.26 (1.25, 1.28) 1.03 3 10�202 1.15 (1.13, 1.18) 3.57 3 10�36 3.21 3 10�11

rs2123844 17p13.2 A/C 0.07 1.03 (1.00, 1.06) 0.03 1.13 (1.09, 1.18) 2.81 3 10�10 6.69 3 10�5

rs745983748 18q11.2 A/AAGTGTT 0.32 0.93 (0.91, 0.94) 6.12 3 10�24 1.01 (0.99, 1.03) 0.44 3.07 3 10�10

rs4609972 19p13.11 C/G 0.48 1.00 (0.98, 1.01) 0.80 0.88 (0.86, 0.90) 6.13 3 10�35 6.60 3 10�24

rs34753522 20q12 C/T 0.35 0.96 (0.94, 0.97) 3.21 3 10�8 1.02 (1.00, 1.04) 0.1 8.07 3 10�6

rs2403907 21q21.1 A/C 0.29 0.91 (0.90, 0.93) 1.09 3 10�32 0.97 (0.95, 1.00) 0.02 3.14 3 10�6

rs4822992 22q12.1 A/G 0.02 1.25 (1.19, 1.31) 7.16 3 10�19 1.00 (0.93, 1.09) 0.91 6.23 3 10�6

aEffect allele/reference allele.
bEffect allele frequency.
loci showing a significant difference (p for heterogeneity

<0.05). In only two loci, the OR for the lead variant was

larger in European- than in Asian-ancestry populations,

but no significant heterogeneity was found in either locus.

The Asian-specific lead variant rs74157632 (GenBank:

NM_207009.4; c.658A>G; p.Asn220Asp) is a missense

variant of protein-coding gene DENND10, which has

been shown to regulate the progression of epidermal

growth factor receptor (EGFR) trafficking.30 Eleven lead
The American Jour
variants are located in the intronic regions of genes.

Some of these genes have been reported to be involved

in breast cancer cell migration and invasion (SLC8A1,31

CDKN1A,32 AFDN,33 TLN234), resistance to radiotherapy

(ALG935), and TGF-b (LDLRAD436) or p53 (PHF2037)

signaling pathways.

For each of the novel loci identified in this study, we per-

formed conditional analyses for variants located within

500 kb of the lead variant, adjusted for the lead variant
nal of Human Genetics 109, 2185–2195, December 1, 2022 2189



Figure 1. Comparison of risk estimates
for lead risk variants between Asian- and
European-ancestry women
The red regression line shows the trend of
risk estimates in both ancestry groups. To
be conservative, the regression was per-
formed excluding four variants with risk
estimates >0.15 in European-ancestry
women, which could be outliers or with a
high leverage. The black dashed diagonal
line shows where risk estimates are the
same in both ancestries.
separately for Asian and European descendants, to identify

potential secondary association signals. These results were

then combined by meta-analyses. We found eight inde-

pendent association signals (conditional p < 1.0 3 10�4)

at six loci: 2p22.1, 6q22.31, 6q27, 8p22, 15q22.2, and

18p11.21 (Table S9). There were two additional indepen-

dent association signals found at loci 8p22 and 18p11.21.

To identify putative breast cancer susceptibility genes,

we conducted a transcriptome-wide association analysis

(TWAS). We used whole-genome sequencing data gener-

ated in genomic DNA samples and RNA sequencing data

generated in normal tissues obtained from 115 individuals

included in the GTEx project (version 8) to build genetic

models to predict gene expression across the transcriptome

(Material and methods, Table S10). Of the 30,362 genes

evaluated, models were successfully built for 17,127 genes,

in which 10,820 genes could be predicted with R> 0.1. The

performance of the models was evaluated using the adja-

cent normal breast tissue samples from TCGA. Overall,

genes that were predicted with R > 0.1 in GTEx data

were also predicted well in TCGA tumor-adjacent normal

tissue data (correlation coefficient of 0.69; Figure S3).

Of the 10,820 genes evaluated using GWAS data from

160,500 individuals with breast cancer and 226,196 con-

trols, we identified 137 genes in association with risk of

breast cancer at the Bonferroni-corrected threshold of

p < 4.62 3 10�6, including 76 protein-coding genes

(Tables S11 and S18). Of them, 14 genes at 13 loci are

located at least 1 Mb away from any of the previous

GWAS-identified risk variants for breast cancer (Table 3),

including 11 genes associated with overall breast cancer

risk and three additional genes associated with ER-positive

breast cancer. CPNE1 is located at a novel risk locus identi-

fied in our cross-ancestry meta-analyses. CPNE1 has been

reported to be overexpressed in triple-negative breast can-

cer and promotes tumorigenesis and radio-resistance

by the AKT signaling pathway.38 In addition, we also
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identified 87 genes (including 39 pro-

tein-coding genes) that are located

in known risk loci but have not

yet been reported in previous

TWASs39,40–42 (Table S11).

Of the 137 genes identified by

TWAS, 15 genes showed different as-
sociations with ER-positive and ER-negative breast cancer,

with a p for heterogeneity<3.653 10�4 (0.05/137; Tables 4

and S12). Of them, protein-coding genes ABHD8 and

ANKLE1 at 19p13.11 showed an exclusive association

with ER-negative breast cancer, and similar heterogeneity

also was found for the lead variant rs4808616 at this risk

locus. These findings were supported by a previous study,

which identified ABHD8 and ANKLE1 as potential target

genes at the risk locus 19p13.11.43

In addition, 16 genes showed a significantly different as-

sociation between Asian- and European-ancestry women

at the Bonferroni-corrected threshold p for heterogeneity

<3.65 3 10�4, including seven protein-coding genes

(Table S13). Of them, CASP8 and ALS2CR12 at 2q33.1

and HLA-F at 6p22.1 showed a stronger association with

breast cancer risk in Asian-ancestry women than in Euro-

pean-ancestry women. The CASP8 gene plays a central

role in extrinsic apoptosis44 and has been reported to be

associated with breast cancer risk in previous TWASs

among European-ancestry women.39,40–42

To identify the most likely target genes in the locus in

which multiple genes were found to be associated with

breast cancer risk in TWASs, we performed fine-mapping

analyses using FOCUS.45 In total, we identified 69 genes

showing significant posterior inclusion probability and

thus included them in the credible target gene sets

(Table S14). In addition, we identified 50 genes that were

colocalized with both GWASs and eQTL signals from coloc-

alization analyses using COLOC46 (Table S15), including

28 genes included in the credible target gene sets from

TWAS fine-mapping analyses.

We performed pathway analyses to identify biological

pathways that may play a role in breast cancer etiology.

Of the 137 genes identified in our TWASs in association

with breast cancer risk, 76 located in 53 genomic regions

are protein-coding genes. In 47 regions, we were able to

identify 53 genes as putative target genes with supporting



Table 3. Genes identified in TWASs in novel loci in association with breast cancer risk

Locia Gene Gene type Z score p R2b

Overall

1p11.2 NBPF8 Pseudogene 7.05 1.76 3 10�12 0.23

1p11.2 PFN1P2 Pseudogene 9.22 2.87 3 10�20 0.22

3p21.31 RNF123 Protein coding 4.63 3.62 3 10�6 0.26

5p15.31 NSUN2 Protein coding �4.89 1.01 3 10�6 0.37

10q26.13 EEF1AKMT2 Protein coding �4.70 2.63 3 10�6 0.34

15q15.1 SRP14-DT LincRNA �4.80 1.55 3 10�6 0.29

15q15.3 STRCP1 Pseudogene �4.66 3.18 3 10�6 0.12

17p12 MAP2K4 Protein coding 4.99 6.06 3 10�7 0.02

19q13.12 ZNF793-AS1 Antisense RNA �4.94 7.64 3 10�7 0.10

20q11.22 CPNE1 Protein coding �4.68 2.88 3 10�6 0.38

20q13.33c RGS19 Protein coding 4.64 3.47 3 10�6 0.07

ER-positive

6p22.1 H4C12 Protein coding 5.01 5.54 3 10�7 0.07

11q13.2 RHOD Protein coding 4.78 1.73 3 10�6 0.19

5q13.2c GUSBP14 Pseudogene 5.08 3.73 3 10�7 0.08

aUnless otherwise specified, results are based on TWAS analyses using cross-ancestry GWAS data.
bPrediction performance derived using GTEx data.
cGenes identified from association analysis using European-ancestry GWAS data.
evidence from either fine-mapping analyses (n ¼ 25), co-

localization analyses (n ¼ 10), or both (n ¼ 18). Addition-

ally, for the remaining 152 loci, in which no target genes

were identified in TWASs, we selected 89 protein-coding

genes previously reported as putative target genes47 and

79 protein-coding genes located nearby the lead variants

identified in our GWAS. In total, 221 putative risk genes

for breast cancer were included in our pathway analysis

(supplemental methods and Table S16). We identified mul-

tiple signaling pathways that were significantly associated

with breast cancer risk at FDR<0.05, including p53, cGMP-

PKG, TNF, and MAPK signaling pathways, as well as path-

ways of DNA-binding transcription activator activity and

cell cycle phase transition48–50 (Table S17).
Discussion

We conducted a large GWAS and TWAS of breast cancer,

including 386,696 women of Asian and European ancestry.

In total, 222 genetic risk loci and 137 genes were identified

by GWAS and TWAS, respectively, in association with

breast cancer risk after adjusting for multiple comparisons.

Our pathway analyses identified multiple biological

pathways that have been implicated in the development

of breast and other cancers. For example, CACNA1A,

DUSP4, FGFR2, MAP2K4, MAP3K1, MYC, NF1, PLA2G6,

TAB2, TGFBR2, and TP53 are involved in mitogen-acti-

vated protein kinase (MAPK) signaling pathway.48,51

ATG10, CDKAL1, KLF4, MAF8, and MAP3K1 are regulated
The American Jour
by the activation of KRAS.51 KRAS is a proto-oncogene

from the RAS family and a part of the RAS/MAPK pathway.

Although the RAS signaling pathway is commonly acti-

vated in breast cancer, somatic mutations of RAS are not

common in individuals with breast cancer.52 Our findings

indicate that the germline alternation of genes involved in

the RAS signaling pathway could play a role in the develop-

ment and progression of breast cancer.

Although the p53 pathway is often altered in breast can-

cer tissues, particularly those from ER-negative and triple-

negative cancer, germline mutations of TP53 are detected

only in less than 1% of individuals with breast cancer.53

In this study, we found that 15 genes (CASP8, CCND1,

CCNE1, CDKN1A, CHEK2, MDM4, INHBB, KLF4, MXD1,

PHLDA3, PIDD1, TNNI1, TP53, ZFP36L1, ZNF365) are

involved in the p53 signaling pathway,48,51 providing sup-

port that germline alterations of this pathway could play a

more significant etiologic role than what is appreciated

based on analyzing TP53 alone. Intriguingly, the MDM4

and CCNE1 are located at risk loci with a stronger associa-

tion with ER-negative than ER-positive breast cancer. Our

TWAS also found that the expression of MDM4 was exclu-

sively associated with an increased risk of ER-negative

breast cancer. These findings suggest that the p53 signaling

pathway plays an important role in the risk of breast can-

cer, especially ER-negative breast cancer.

By increasing the sample size and incorporating tran-

scriptome data, we were able to identify 30 novel associa-

tions in loci and genes that are located >1 Mb away from

any of the previously reported breast cancer risk variants.
nal of Human Genetics 109, 2185–2195, December 1, 2022 2191



Table 4. TWAS-identified breast cancer risk genes showing a significantly different association by estrogen receptor status

Loci Gene Gene type

ER-Positive ER-Negative

p for ER heterogeneityZ score P Z score p

1p11.2 SRGAP2C Protein coding �9.45 3.32010�21 �1.47 0.14 6.99010�5

1p11.2 H3P4 Pseudogene 8.89 6.05010�19 1.10 0.27 1.72010�4

1p11.2 RP11-343N15.2a LincRNA �8.74 2.27010�18 �1.00 0.32 3.35010�5

1p11.2 EMBP1 Pseudogene �8.38 5.23010�17 �0.27 0.78 9.32010�6

1p36.13 KLHDC7A Protein coding �7.10 1.27010�12 0.10 0.92 5.79010�6

1p36.22 DFFA Protein coding 4.37 1.26010�5 7.60 2.96010�14 9.54010�5

1q22 GBAP1 Pseudogene �6.66 2.73010�11 0.59 0.56 2.54010�5

1q22 THBS3 Protein coding 5.72 1.07010�8 �0.89 0.38 8.72010�5

1q32.1 PTPRVP Pseudogene �1.50 0.14 6.67 2.52010�11 1.36010�10

2q35 TNP1 Protein coding 5.85 5.04010�9 �0.37 0.71 5.44010�5

5p12 MRPS30-DT Antisense RNA 16.38 2.48010�60 �0.15 0.88 4.20010�21

5q11.2 CTD-2310F14.1a Antisense RNA 14.50 1.17010�47 3.73 1.90010�4 4.24010�7

8p23.3 SEPT14P8 Pseudogene �2.29 0.02 �6.00 1.98010�9 2.53010�4

19p13.11 ABHD8 Protein coding �0.51 0.61 9.64 5.25010�22 2.39010�15

19p13.11 ANKLE1 Protein coding �0.24 0.81 6.74 1.62010�11 8.17010�9

aRP11-343N15.2 (ENSG00000231429) and CTD-2310F14.1 (ENSG00000271828) do not have gene symbols in HUGO yet.
The discovery of these novel associations further expanded

our understanding of the genetic and biological mecha-

nism of breast cancer development. For example, the

lead variant at the novel risk locus 6p21.2 is located at

the intronic region of CDKN1A. CDKN1A regulates cell-cy-

cle progression as a cyclin-dependent kinase inhibitor32

and plays an important role in both PI3K/AKT signaling

pathway and p53 pathway.51

MAP2K4 at 17p12 is a novel target gene identified by our

TWAS. This gene encodes a member of the mitogen-acti-

vated protein kinase and it is involved in multiple

signaling pathways, including MAPK pathway, EGF

pathway, FAS signaling pathway,51 and PI3K/AKT signaling

pathway.54 In addition, our TWAS identified 39 protein-

coding genes that are located in known risk loci but have

not yet been reported in previous TWAS. Of them,

MDM4, PLA2G6, and RIT1 are involved in the p53

pathway, RAS/MAPK pathway, and PI3K/AKT pathway,

respectively. These newly identified putative breast cancer

risk genes could be potential targets for therapies.

Given the much larger sample size for GWASs conducted

in European descendants compared to those conducted in

East Asians, many of the associations were driven by data

from European-ancestry GWASs. Increasing the sample

size for GWASs of non-European populations will be valu-

able to fully uncover the genetic basis for breast cancer. In

our TWAS, we built gene prediction models using Euro-

pean-ancestry samples from GTEx. Given the difference in

genetic architectures between Asian and European descen-

dants, some of these models may not perform well in

TWASs in Asian populations, affecting the detection of sig-
2192 The American Journal of Human Genetics 109, 2185–2195, Dec
nificant association signals, particularly in regions where

significant ancestral differences exist. Using Asian-specific

gene prediction models in future studies should help to

identify additional genes associated with breast cancer risk.

In summary, in this largeGWAS and TWAS for breast can-

cer, we uncovered a large number of genetic variants associ-

ated with breast cancer risk and identified potential target

genes for this common cancer. We discovered significant

differences for many of these variants and genes in associa-

tion with breast cancer risk by ER status and ancestry. We

identified multiple signaling pathways that play an etio-

logic role in breast cancer risk and propose that germline al-

terations in TP53, RAS, and MAPK pathways may play a

more significant role in the etiology of breast cancer than

what is currently appreciated. Our study provides substan-

tial insights into the genetics and biology of breast cancer.
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