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ABSTRACT Protein interiors contain void space that can bind small gas molecules. Determination of gas pathways and ki-
netics in proteins has been an intriguing and challenging task. Here, we combined computational methods and the hyperpolar-
ized xenon-129 chemical exchange saturation transfer (hyper-CEST) NMR technique to investigate xenon (Xe) exchange
kinetics in maltose-binding protein (MBP). A salt bridge �9 Å from the Xe-binding site formed upon maltose binding and slowed
the Xe exchange rate, leading to a hyper-CEST 129Xe signal from maltose-bound MBP. Xe dissociation occurred faster than
dissociation of the salt bridge, as shown by 13C NMR spectroscopy and variable-B1 hyper-CEST experiments. ‘‘Xe flooding’’ mo-
lecular dynamics simulations identified a surface hydrophobic site, V23, that has good Xe binding affinity. Mutations at this site
confirmed its role as a secondary exchange pathway in modulating Xe diffusion. This shows the possibility for site-specifically
controlling xenon protein-solvent exchange. Analysis of the available MBP structures suggests a biological role of MBP’s large
hydrophobic cavity to accommodate structural changes associated with ligand binding and protein-protein interactions.
SIGNIFICANCE It is possible to program the 129Xe NMR signal in maltose-binding protein by engineering two sites—a
salt bridge (normally stabilized by maltose binding) and a surface hydrophobic site, V23—which are each separated by
1 nm from a central xenon-binding cavity. The ability to control the linear flow of xenon in a protein has applications for
magnetic resonance sensors employing hyperpolarized Xe-129 and is relevant to understanding naturally occurring gas-
binding proteins.
INTRODUCTION

Proteins are porous materials with internal cavities of
various size and duration. Calculation of high-resolution
protein crystal structures found that the packing fraction of
protein cores is only 4 z 0.56, significantly lower than
the ideal packing fraction of solid spheres (4 z 0.74 for
face-centered cubic crystals) (1). This reveals that the inte-
riors of most natural proteins contain considerable empty
space between amino acids. These ‘‘packing defects’’ play
an important role in controlling protein dynamics and func-
tions, especially in the case of gas-binding proteins. Internal
hydrophobic cavities and pores define pathways for small
gas molecules and allow efficient diffusion to the protein
active site. For example, X-ray crystallography and
photodissociation experiments confirmed that myoglobin
possesses multiple preexisting internal cavities that are
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involved in oxygen diffusion and reactivity (2). Computa-
tional methods also provide insights into gas pathways that
are difficult to probe by experiments (3). Hydrogenases are
another class of proteins where kinetics of gas diffusion is
of great interest owing to their bioenergetic metabolism
involving H2 conversion (4). One challenge in studying gas
diffusion in hydrogenase is that H2 is invisible in X-ray crys-
tallography and difficult to model accurately by computa-
tional methods. Heavy noble gases such as xenon and
krypton are therefore frequently used as a surrogate for small
gaseous molecules such as H2 (5,6) and CO (7,8) to probe
protein interiors and gas dynamics given their comparable
molecular size (4.3 Å diameter for xenon [Xe], 4.0 Å for
krypton [Kr], and 3.4–3.8 Å for H2) (9,10). Analysis on
the basis of krypton-pressurized crystal structures and mo-
lecular dynamics (MD) simulations predicted possible tun-
nels for both H2 and the inhibitor O2 (5,11–13). However,
gas diffusion rates were still unknown without input from
experimental approaches, such as protein film voltammetry
and isotope exchange assays (14). Moreover, gas delivery
in proteins is important in various biological processes that
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are fundamental to all life, including carbon and nitrogen
fixation and noble gas narcosis (15–20). Investigation of
gas migration pathways largely relied on computational
methods, but kinetic information and the mechanisms of
gas exchange remain poorly studied. Knowing the kinetics
of gas exchange processes in proteins is useful for decipher-
ing catalytic or inhibitory mechanisms and advancing
biotechnology applications.

Interestingly, large internal cavities and channels are found
not only in gas-reactive proteins and gas vesicle nanostruc-
tures (21,22) but also in many other monomeric proteins
whose functions are completely unrelated to gas permeability
and interactions, such as periplasmic binding proteins, T4
lysozyme, and TEM-1 b-lactamase (23–29). These proteins
can host Xe using a large hydrophobic cavity, thus allowing
the spin-1/2 nucleus, 129Xe, to serve as a biocompatible probe
for the study of protein-protein interactions (30) and small-
molecule sensing (23,24). For example, maltose-binding
protein (MBP) in its wild-type form has a cavity volume of
75–95 Å3 (26), which is surprising because an intramolecular
cavity of this large size is rarely found in naturally occurring
proteins (31) and void space is usually associated with pro-
tein instability despite the high stability of MBP. The use
of 129Xe NMR spectroscopy enabled detection of the protein
cavity and conformational changes in MBP (32). In combina-
tion with X-ray crystallography and heteronuclear single-
quantum coherence spectroscopy, an Xe-binding cavity was
identified in the N domain, and Xe binding affinity was esti-
mated (Ka � 20 5 10 M�1) (26). Using hyperpolarized
129Xe chemical exchange saturation transfer (hyper-CEST)
(33), our laboratory observed a distinctive chemical shift
for 129Xe bound to maltose-saturated MBP, shifted �90
ppm downfield relative to free aqueous 129Xe (23). However,
it remains unexplained how the maltose-bound state, instead
of the maltose-free state, produces the unique 129Xe signal.
This prompted us to investigate the structural basis for Xe-
MBP interactions, which could guide future design of novel
Xe-based biosensors.

In this paper, we employ MD simulations to find Xe ex-
change pathways in MBP and the hyper-CEST technique
to characterize Xe dissociation rate. Maltose exchange ki-
netics and mutations made to a surface hydrophobic site
provide insights into additional Xe exchange mechanisms.
Cavity volume analysis reveals the possible biological role
of the large hydrophobic pocket.
MATERIALS AND METHODS

MD simulations

MD simulations were performed with NAMD 2.14 software (34) using the

Bridges-2 Regular Memory system at the Pittsburgh Supercomputing Cen-

ter (35,36). Initial structures were obtained by adding a Xe atom to MBP

crystal structures (PDB: 1LLS for maltose-free form (26) and PDB:

1ANF for maltose-bound form (37)). Each protein was solvated in a

TIP3P water box (38), and 150 mM NaCl was used to neutralize total
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charge. Each system was minimized with 1,000 steps, after which the sys-

tem was equilibrated at a temperature of 300 K and a pressure of 1 atm us-

ing the Langevin thermostat and barostat methods. The CHARMM36 force

field was used to perform all MD simulations (39). The Xe atom was treated

with only nonbonded interactions (40). Periodic boundary conditions were

employed, and the SHAKE algorithm was applied to constrain the lengths

of all bonds that involve a hydrogen (41). At least a 43 ns MD trajectory was

obtained from each simulation. Salt-bridge distances and root-mean-square

deviation data were calculated using VMD 1.9.3. (42).
Cavity volume and tunnel analysis

Cavity volume was calculated using the Fpocket algorithm (43), which de-

tects protein cavity based on Voronoi tessellation. Input structures were ob-

tained from PDB. Tunnel analysis was carried out on MD trajectories of

MBP using Caver 3.0 software (44).
Site-directed mutagenesis

K15D, D14K/K15D, V23A, and V23L mutations were introduced to the

pET His6 MBP TEV LIC cloning vector, a gift from Scott Gradia acquired

via Addgene (#29656), using the forward and reverse primers listed in

Table S1. The mutated plasmids were amplified in NEB 5a competent

E. coli cells (New England Biolabs, Ipswich, MA, USA) and purified

using a miniprep kit (Qiagen, Germantown, MD, USA). All mutated se-

quences were verified at the University of Pennsylvania DNA Sequencing

Facility.
Protein expression and purification

Preparation of MBP mutants uses the same procedures as wild-type MBP,

which has been described before (23). Briefly, the plasmid encoding the

MBP sequence was transformed into E. coli BL21(DE3)-competent cells

(New England Biolabs), which were then grown in 1 L lysogeny broth me-

dia supplemented with 50 mg/mL kanamycin. Protein expression was

induced by addition of 1 mM isopropyl-b-D-thiogalactoside, followed by

overnight incubation at 25�C. Cell lysis was carried out using hen egg white
lysozyme (Alfa Aesar, Ward Hill, MA, USA) in 20 mM sodium phosphate

(pH 7.4) in the presence of benzonase nuclease (Sigma-Aldrich, Burlington,

MA, USA). The lysate was subjected to fast protein liquid chromatography.

Pure protein was eluted from HisTrap HP Ni column (Cytiva, Marlborough,

MA, USA) and HiLoad 16/600 Superdex 75 pg column (GE Life Sciences,

Chicago, IL, USA). Protein concentrations were determined from the absor-

bance at 280 nm using the extinction coefficient 67,840 M�1 cm�1, as

calculated by PROTPRAM (45).
129Xe hyper-CEST NMR

HP 129Xe was generated using the spin-exchange optical pumping method

(46) with a home-built 129Xe polarizer based on the IGI.Xe.2000 commer-

cial model by GE. A Shark 65 W tunable ultranarrow band diode laser

(OptiGrate, Oviedo, FL, USA) set to 794.770 nm was used for optical

pumping of Rb vapor. A gas mixture of 88% helium, 10% nitrogen, and

2% natural abundance Xe (Linde Group, Bridgewater, NJ, USA) was

used as the hyperpolarizer input. 129Xe hyperpolarization level was roughly

10%–15%. For each data point in the hyper-CEST z-spectra, hyperpolarized

(hp) 129Xe was bubbled into the NMR tube through capillaries for 20 s, fol-

lowed by a 3 s delay to allow the bubbles to collapse. A d-SNOB saturation

pulse was used. The pulse length was tpulse ¼ 3.80 ms, number of pulses

was npulse ¼ 600, and saturation time was Τsat ¼ 2.28 s. NMR experiments

were performed using a Bruker BioDRX 500 MHz NMR spectrometer and

10 mm PABBO probe at 300 K. A 90� hard pulse of this probe has a

pulse length of 22 ms. Protein samples were 80 mM in PBS (pH 7.4),
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with 0.1% (v/v) Pluronic L81 (Aldrich) added to mitigate foaming. All re-

sults were averaged over at least three trials.
129Xe exchange rate determination by variable-B1

measurements

Estimation of koff,Xe is based on an approximation to the full hyper-CEST

solution (47). As described previously (48), the Xe dissociation rate koff,Xe
can be obtained by measuring the CEST effect with various saturation

strengths, B1. Exponential Lorentzian fits were applied to model the

CEST peaks of protein-bound and free 129Xe. A simplified expression for

hyper-CEST is

CEST ¼ 1 � e� lt;

where l ¼ fkoff ðgB1Þ2
ðgB1Þ2þkoff

2 and koff represents the
129Xe dissociation rate. Rear-

rangement of the above equations gives

ln� 1ð1 � CESTÞ ¼ � koff
tf

� 1

ðgB1Þ2
� 1

tfkoff
:

Therefore, the linear plot of ln�1(1-CEST) versus (gB1)
�2 gives koff,Xe ¼

(slope/y-intercept)1/2. Protein samples were prepared at 80 mM concentra-

tion in PBS (pH 7.4) with 0.1% (v/v) Pluronic L81. Each z-spectrum was

averaged over at least three trials.
13C NMR spectroscopy

0.6 mM protein was mixed with 2 mMD-maltose in PBS (pH 7.4) with 10%

D2O. Data collection was performed on a Bruker NEO600 NMR spectrom-

eter. Sample temperature was 300 K. Maltose dissociation rate, koff, maltose,

was estimated based on the line shape of 13C signal of the bound maltose.

The apparent transverse relaxation of the bound signal results from both

intrinsic relaxation and chemical exchange. As a rough estimation, intrinsic

relaxation can be neglected given the broad width of the bound signal.

Therefore, koff, maltose z 1/T2* ¼ p � w1/2.(49).
Fluorescence spectroscopy

For fluorescence quenching of MBP mutants, 1 mM protein was prepared in

PBS buffer for measurement. A stock of 100 mMmaltose in PBS buffer was

added to the protein solution to a final concentration of 1 mM. The excita-

tion wavelength was 280 nm, and fluorescence emission was recorded over

a range of 300 to 420 nm. All measurements were obtained at 298 K using a

Varian Cary Eclipse fluorescence spectrophotometer.
FIGURE 1 Donor-to-acceptor distance between K15 and E111 in

maltose-free open MBP (gray) and maltose-bound closed MBP (red). To

see this figure in color, go online.
RESULTS

Salt bridge K15-E111 controls Xe exchange

The different 129Xe hyper-CEST response in the presence
and absence of maltose indicates a difference in either the
Xe binding environment or exchange kinetics. In order to
characterize the differences in dynamics, we performed
MDsimulations onMBP in both themaltose-bound ‘‘closed’’
conformation and maltose-free ‘‘open’’ conformation, initi-
ated with a single Xe atom in the well-defined Xe-binding
cavity (23). In the closed conformation, the salt bridge
K15-E111 forms an H-bond network with hydroxyl groups
of maltose, whereas the same side chains show no interac-
tions in the open conformation (Fig. 1). Interestingly, the
Xe-binding pocket resides underneath this salt bridge at a dis-
tance of �9 Å (Fig. 2), which leads us to postulate that the
K15-E111 salt bridge forms a barrier between the bound
Xe atom and solvent. Superposition of the cavity-containing
N domains of both MBP conformations shows almost iden-
tical structure, with an average root-mean-square deviation
of only 0.33 Å, indicative of no change in the Xe binding
environment in different conformations of MBP. In addition
to protein dynamics, we also analyzed Xe trajectories.
Notably, in the closed state, Xe is constrained by the protein
matrix during the 43 ns simulation with a root-mean-square
fluctuation of 1.6 Å, only �38% of the van der Waals diam-
eter of Xe. In contrast, during the same simulation length of
the open state, Xe can escape from the initial hydrophobic
cavity through the crevice between K15 and E111 and finally
become completely solvated. Caver tunnel analysis estimates
the average width of this crevice to be at least 2.25 0.3 Å in
the open state and 1.85 0.4 Å in the closed state during the
entire simulation length (50). Despite this narrow bottleneck,
Xe can pass the tunnel probably due to transient rearrange-
ment of its surrounding amino acids. Further analysis re-
vealed the most frequently involved bottleneck residues
include I11, K15, and L262.

We set out to test experimentally our hypothesis about the
effect of the K15-E111 salt bridge on Xe motion. To this
end, we attempted to destroy the salt-bridge interaction
with a K15D mutation and then restore it with a second mu-
tation, D14K. Salt-bridge analysis using MD trajectories of
both mutants showed distinct results. Even though both mu-
tants can bind maltose as observed in MD simulations and
fluorescence quenching experiments (Fig. S1), the salt
bridge exists only in the D14K/K15D double mutant, with
Biophysical Journal 121, 4635–4643, December 6, 2022 4637



FIGURE 2 Cartoon representation of closed MBP with a bound Xe atom

(red sphere). Maltose is shown as white sticks, and side chains of K15 and

E111 are shown as blue sticks. To see this figure in color, go online.
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an occupancy of 87% (Fig. S2). As a result, K15D protein
exhibits no bound 129Xe NMR signal, similar to the open
state, whereas D14K/K15D is able to restore the bound
129Xe NMR signal at þ80 ppm (Fig. 3). Our results
confirmed the important role of this proximal salt bridge
in controlling Xe exchange.
FIGURE 3 Hyper-CEST z-spectra of wild-type MBP (red), K15D (blue),

and D14K/K15D (green) in presence of 1 mM maltose. 80 mM protein was

dissolved in PBS (pH 7.4) at 298 K. Wild-type MBP gives a hyper-CEST

signal at þ90 ppm, referenced to the free 129Xe in PBS. The K15D mutant

completely lost its 129Xe@protein signal due to faster Xe exchange, while

D14K/K15D was able to restore the hyper-CEST signal atþ80 ppm. To see

this figure in color, go online.
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Alternative Xe exchange pathways

It remains unresolved whether the Xe egress pathway in the
closed MBP structure is the same salt-bridge site because it
is possible that other pathways that are minor in the open
MBP structure could become significant upon closure of
the K15-E111 salt bridge. If there are no alternative path-
ways, the rate of Xe exchange should be comparable to or
slower than the dynamics of salt-bridge formation, which
in turn depends on maltose dissociation rate. Therefore,
we characterized the maltose dissociation rate using
[1-13C]-labeled maltose and the Xe dissociation rate via var-
iable-B1 hyper-CEST method (47,48). From the line fitting
and peak-width analysis (koff � p � w1/2) of the 13C
NMR signal of bound maltose, we can estimate the maltose
off rate, koff, maltose, to be 1.2 � 102 s�1 for b-maltose and
1.3 � 102 s�1 for a-maltose (Fig. 4). This value agrees
with the result of the stopped-flow fluorescence measure-
ment (51) and is larger than other reported values by one or-
der of magnitude (52–54). This is probably because 13C
NMR signal reflects the H-bonding of the hydroxyl group
directly attached to 1-13C and intrinsic fluorescence is
affected by the local environment of nearby tryptophan,
whereas other techniques measured the rate of overall pro-
tein conformational change. In this aspect, our result better
represents the local dynamics of the salt bridge as the hy-
droxyl group of 1-13C forms a direct H-bond with the K15
side chain. Next, we estimated the 129Xe dissociation rate
via the variable-B1 hyper-CEST method (47,48). A series
of z-spectra using varying saturation pulse strengths was
acquired, and the bound 129Xe signal was analyzed to obtain
a Xe dissociation rate, koff,Xe ¼ (8.6 5 2.1) � 102 s�1

(Fig. 4, b and c). The fact that koff,Xe is roughly four times
greater than koff, maltose suggests that alternative Xe path-
ways contribute significantly to gas diffusion in the closed
MBP structure.

Tunnel prediction using the hard sphere model may not
correctly identify all Xe exchange pathways since tunnel
hydrophobicity is not considered. Also, evidence for alter-
native pathways might be hidden in the single-Xe simula-
tions due to insufficient sampling. Therefore, the ‘‘Xe
flooding’’ approach, in which Xe atoms were initially placed
in the surrounding solvent, was applied, and the concentra-
tion of Xe was artificially increased to�150 mM to enhance
Xe diffusion through the protein. (This is equivalent to
nearly 30 atm Xe at room temperature (55). Using this
computational method, we identified several protein surface
sites that associate with Xe exchange due to transient Xe af-
finity, defined by the average number of bound Xe atoms, n,
at each residue of the protein (Fig. 5 a). These sites include
V23, F92, and the hinge region of MBP, all of which consist
of nonpolar residues. Meanwhile, Xe has relatively low af-
finity (n< 0.05) toward the K15-E111 region, while maltose
is stably bound during the simulation. F92 and the hinge
region residues were not taken into further consideration



FIGURE 4 (a) 13C NMR spectrum of 2 mM [1-13C]-maltose and 0.6 mMMBP in PBS (pH 7.4). From high frequency to low frequency are free b-maltose

(d ¼ 96.00 ppm), bound b-maltose (d ¼ 95.03 ppm), free a-maltose (d ¼ 92.13 ppm), and bound a-maltose (d ¼ 90.66 ppm). The peak width (full width at

half maximum) is 37.7 Hz for bound b-maltose and 40.4 Hz for bound a-maltose. (b) Hyper-CEST z-spectra of wild-type MBP taken in a series of saturation

pulse strengths from 30 to 77 mT at 300 K. (c) Linear fitting of ln�1(1-CEST) versus (gB1)
�2 yields the slope ¼ (�1.1 5 0.1) � 105 s�2, y-intercept ¼

�0.15 5 0.09, and koff,Xe ¼ (slope/y-intercept)1/2 ¼ (8.6 5 2.1) � 102 s�1. To see this figure in color, go online.
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because of their long distance (>18 Å) from the Xe cavity.
Importantly, the solvent-exposed residue V23 is only�10 Å
from the Xe binding pocket with a relatively high Xe affinity
(n¼ 1.0) (Fig. 5 b). Xe accumulation at this site and its close
proximity to the cavity may lead to a considerable rate of Xe
exchange through V23. In order to examine the contribution
of the V23 pathway, we mutated V23 to the smaller alanine
and the bulkier leucine and performed variable-B1 measure-
ments. Both mutations caused less than 5 ppm difference in
chemical shift of the bound 129Xe NMR signal, meaning
that the Xe binding pocket was minimally perturbed. More-
over, V23A and V23L mutations do not affect maltose-
MBP interactions or salt-bridge dynamics, as confirmed
by 13C NMR spectroscopy (Figs. S3 and S4). Consequently,
the Xe dissociation rate, koff,Xe, increased to (1.2 5
0.5) � 103 s�1 with V23A mutation (Fig. S5) and decreased
to (5.4 5 0.3) � 102 s�1 with the introduction of V23L
(Fig. S6). We then inspected the ‘‘Xe flooding’’ MD trajec-
tories of V23A and V23L proteins. Surprisingly, V23L no
longer exhibits high Xe affinity (n ¼ 0.4) at this site,
although other affinity sites are mostly unchanged, whereas
V23A still has a similar affinity (n ¼ 0.8) compared with
wild-type (Fig. S7). These results confirm that V23 is one
of the exchange pathways, which can be explained by a hy-
drophobic cryptic site between the V23 side chain and the
aliphatic part of K26.
Analysis of cavity size in different states of MBP

In addition to gas exchange rate and pathways in MBP, there
is also curiosity regarding the origin of gas binding. Xe bind-
ing to MBP’s unusually large internal cavity serves no
obvious function, and it is unclear about its biological role
in different states of MBP. It has been well characterized
Biophysical Journal 121, 4635–4643, December 6, 2022 4639



FIGURE 5 (a) Average number of Xe atoms

bound to each residue of MBP during the ‘‘Xe flood-

ing’’ simulation. Xe affinity for the protein surface is

represented by peaks, which indicate the number of

bound Xe atoms. (b) Visualization of Xe affinity

sites on MBP surface. Interior Xe binding site is de-

picted as the red sphere. Xe exchange pathway

switches from the site of K15-E111 salt bridge to

surface hydrophobic site V23 upon formation of

the K15-E111 salt bridge. To see this figure in color,

go online.

TABLE 1 Cavity analysis of MBP in different structures.

Description PDB code

Cavity

size, Å3

Unliganded MBP 1OMP 97

Maltose bound 1ANF 101

Maltotriose bound 3MBP 92

Maltotetraose bound 4MBP 121

Unliganded MBP in complex with MalFGK2 4KI0 87

Maltotetraose bound, in complex with MalFGK2 4KHZ 58
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by crystallography that MBP interacts with a variety of
binding substrates, including maltodextrins of various
lengths and other oligosaccharides, in different conforma-
tions (37,56,57), as well as the maltose transporter complex,
MalFGK2 (58). Cavity volume was then calculated using
Fpocket (43) based on the crystal structures of MBP in com-
plex with various biomolecules. The largest cavity found in
each structure corresponds to the same site as the Xe pocket.
As listed in Table 1, the unliganded MBP harbors a cavity of
97 Å3, very similar to the cavity volume found in Xe-occu-
pied cryptophane-A and its derivatives (85–89 Å3) (59).
Binding of maltooligosaccharides causes only minor volume
change (10%–20%). However, the cavity shrinks by 40%
when maltodextrin-bound MBP interacts with MalFGK2,
which cannot be explainedmerely by crystal packing effects.
Instead, the extensive protein-protein interaction probably
requiresMBP to arrange itself into amore compact structure.
4640 Biophysical Journal 121, 4635–4643, December 6, 2022
DISCUSSION

Our previous work has discussed the possibility of different
Xe exchange rates in open and closed MBP conformations,
but the structural basis was elusive, and no kinetic informa-
tion was obtained (23). The current study reveals that the
salt bridge K15-E111 is pivotal to Xe exchange rate by
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combining computational analysis and hyper-CEST experi-
ments. In the maltose-bound closed conformation, this salt
bridge helps to constrain Xe in the hydrophobic cavity, re-
sulting in a koff,Xe of (8.6 5 2.1) � 102 s�1. However, in
the absence of the K15-E111 salt bridge, MBP in the open
conformation can release Xe at a much faster rate. Xe
escape from the protein cavity adopts a strategy similar to
the ‘‘breathing motion’’ of gas tunnels in myoglobin.
Although the bottleneck of the Xe tunnel is only about
half of its van der Waals diameter, the dynamics of the
bottleneck are highly dependent on the salt bridge, as K15
participates in the formation of a bottleneck. Transient rear-
rangement of the local environment promoted by the lack of
the salt-bridge interaction allows faster Xe diffusion.
Notably, the bound maltose is barely involved in the bottle-
neck, suggesting that the salt bridge itself, instead of the
bound maltose, determines Xe exchange. This conclusion
may be applied to study the rate-determining step of general
gas-protein interactions. According to the quantitative hy-
per-CEST model (47,60), the CEST signal is optimal
when Xe dissociation rate koff,Xe is close to the saturation
pulse strength. Considering the broad peak width of protein
hyper-CEST signal and the potential heating effect from
strong pulses, the saturation pulse strength gB1 used in hy-
per-CEST experiments is usually limited to �5 � 102 Hz
(B1,max z 77 mT using dSNOB pulses). Therefore, the
koff,Xe in the closed conformation is nearly optimal to allow
efficient depolarization of 129Xe, giving a strong hyper-
CEST signal of the maltose-MBP-bound 129Xe. The fast
off rate, koff,Xe, in the open conformation reaches the
‘‘weak saturation’’ condition, leading to inadequate depolar-
ization of the fast exchanging 129Xe by the same pulse
strength. Consequently, the bound 129Xe signal can only
be observed in the presence of maltose even though the
Xe-binding cavity remains the same without maltose. We
also showed that the 129Xe CEST signal could be manipu-
lated by programming the salt bridge. Switching off the
salt bridge by K15D mutation can completely turn off the
bound 129Xe signal, whereas a reconstructed salt bridge
D14K-K15D was able to restore the bound 129Xe NMR
signal.

It is conceivable that the salt bridge can be functionalized
by rational protein engineering. Metal coordination and
organic-covalent interactions can form a switchable and
controllable bridge at this site to regulate 129Xe exchange
and generate different 129Xe NMR responses, which holds
great promise for 129Xe NMR/magnetic resonance imaging
applications, such as genetically encoded metal biosensors
and light/electro-controlled contrast agents. Design and
characterization of novel MBP-based 129Xe NMR biosen-
sors will be elaborated in future publications.

Formation of the K15-E111 salt bridge blocks the fastest
Xe exchange pathway with an opening rate of �102 s�1, as
estimated by NMR line shape analysis. This method mea-
sures ligand exchange at a millisecond-to-second scale
with reasonable approximations, and 1-13C-labeled maltose
represents the local dynamics of the K15-E111 salt bridge.
Xe residence time (1/koff,Xe¼ 1.25 0.3� 10�3 s) is shorter
than the salt-bridge lifetime (�10�2 s), and prior studies
showed that the conformational transition rate of maltose-
bound MBP is even slower (�1 s), suggesting that Xe can
dissociate without opening the K15-E111 salt bridge or
switching protein conformation. Our ‘‘Xe flooding’’ simula-
tion found that Xe has relatively high affinity for several hy-
drophobic sites on the protein surface but almost no affinity
toward the polar environment of the K15-E111 salt bridge
and maltose-binding site. In addition, solvent water and
salt ions may form a shell at the maltose-binding site via
H-bonding and electrostatic interactions, preventing Xe ac-
cess and egress through this site. On the other hand, surface
hydrophobic residues such as V23 can increase local Xe
concentration by providing a transient binding site and
help to desolvate Xe atoms. Similar surface aggregation of
inert gas molecules near hydrophobic regions was also
observed in pepsin (61). As a result, surface hydrophobic
residues reduce the energy barrier for Xe migration, thus
enhancing exchange between solvent and a proximal Xe-
binding cavity. This action may be analogous to the ‘‘breath-
ing motion’’ as well (62). Our variable-B1 experiments
confirmed that V23 impacts the Xe dissociation rate without
affecting the Xe-binding cavity and salt bridge. Importantly,
the V23L mutation can inhibit Xe exchange, probably by
decreasing local Xe concentration at the surface hydropho-
bic site. If we hypothetically inhibited all hydrophobic Xe
pathways, the low limit of Xe exchange rate can approxi-
mate the dynamics of salt-bridge opening. Because the
optimal saturation power is found to be O2 times the Xe
dissociation rate (60), a narrower and stronger hyper-
CEST signal will be observed with a slower Xe exchange.
It is meaningful to constrain Xe in protein to a greater extent
because protein-bound 129Xe is usually in rapid exchange
and its chemical shift is not directly observable in a simple
129Xe NMR measurement. It has been reported that koff,Xe
values in myoglobin and hemoglobin are on the order of
104–105 s�1 (63). MBP in its closed conformation has a
significantly slower koff,Xe by more than one order of magni-
tude, which is still not slow enough to give a directly detect-
able 129Xe NMR signal. Identification and reshaping gas
pathways in these proteins could potentially afford pro-
tein-based biosensors that are useful in direct-detection
129Xe NMR/magnetic resonance imaging applications.

Investigation of Xe-MBP interactions not only improves
our understanding of gas exchange but also raises interesting
questions as to the origin of the large packing defect in
MBP, which fundamentally determines gas-protein interac-
tions. An internal cavity is often considered to destabilize pro-
tein (64,65), but our prior study found that the cavity-filling
mutationV293L inunligandedMBPdoes not increase its ther-
mal stability (melting temperature [Tm]¼ 53.9�C5 0.7�C for
wild-type and 53.8�C 5 0.8�C for V293L) (23). Hence, the
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internal cavity volumemay not correlatewith protein stability.
More interestingly, although ligand binding to MBP does not
change the cavity as evidenced by MD simulations and vol-
ume analysis (Table 1), filling the cavity in maltose-bound
MBP has a destabilizing effect (Tm ¼ 61.0�C 5 0.8�C for
wild-type and 59.5�C 5 0.9�C for V293L), suggesting that
the cavity may facilitate ligand binding. Presumably, void
space strengthens salt-bridge and H-bond interactions, e.g.,
K15-E111, due to its low dielectric constant and separation
fromsolvent. Furthermore, theNdomain ofMBP can undergo
considerable compression when interacting with the trans-
membrane complex MalFGK2 as the cavity becomes 40%
smaller. This supports the functions of the cavity in providing
structural flexibility to engage with MalFGK2 and prepare for
the release of maltodextrins. Also, compression of the cavity
maybedetectable using hyper-CESTandpush 129Xechemical
shift further downfield because it has been noted that smaller
cavities in proteins are correlated with larger downfield
129Xe NMR shifts (26).

In summary, we have demonstrated the structural details
behind the turn on 129Xe hyper-CEST signal in MBP and
verified the role of the K15-E111 salt bridge in regulating
Xe exchange. Dissociation rate of Xe in maltose-bound
MBP exceeds the opening rate of the salt bridge, which
led to the discovery that Xe exchange can also occur near
a surface hydrophobic site, V23. Finally, we discuss the
role of the hydrophobic cavity in strengthening ligand bind-
ing and protein-protein interactions and its flexibility in
different states of the protein. These findings will foster
future development and applications of 129Xe-based bio-
reporters and contrast agents and provide general insights
into mechanisms of gas-protein interactions.
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