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SUMMARY

The process of identifying and quantifying metabolites in complex mixtures plays a critical role in
metabolomics studies to obtain an informative interpretation of underlying biological processes. Manual
approaches are time-consuming and heavily reliant on the knowledge and assessment of nuclear mag-
netic resonance (NMR) experts. We propose a shifting-corrected regularized regression method, which
identifies and quantifies metabolites in a mixture automatically. A detailed algorithm is also proposed to
implement the proposed method. Using a novel weight function, the proposed method is able to detect and
correct peak shifting errors caused by fluctuations in experimental procedures. Simulation studies show
that the proposed method performs better with regard to the identification and quantification of metabolites
in a complex mixture. We also demonstrate real data applications of our method using experimental and
biological NMR mixtures.

Keywords: Chemical shift; NMR metabolomics; Regularized regression; Spectral data.

1. INTRODUCTION

Over the last several decades, the field of metabolomics has increasingly gained attention among postge-
nomics technologies (Dieterle and others, 2006) due to its ability to study the state of a biological system at
the molecular level. In particular, metabolites are the direct outcomes of all genomic, transcriptomic, and
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proteomic responses to environmental stimuli, stress, or genetic mutations (Fiehn, 2002). Small changes
in metabolite concentration levels might reveal crucial information that is closely related to disease sta-
tus (Gowda and others, 2008), drug resistance (Thulin and others, 2017), and the biological activity of
chemicals derived from diet and/or environment (Daviss, 2005). Therefore, metabolomics has become an
increasingly attractive approach for researchers in many scientific areas such as toxicology (Ramirez and
others, 2013), food science and nutrition (Wishart, 2008a), and medicine (Putri and others, 2013).

Nuclear magnetic resonance (NMR) spectroscopy is one of the premier analytical platforms to acquire
data in metabolomics. It is renowned for the richness of information, rapid and straightforward measure-
ments, high level of reproducibility, and minimal sample preparation (Wishart, 2008b). Each metabolite is
uniquely characterized by its own resonance signature, namely 1H NMR chemical shift fingerprint. Every
spectral peak is generated by a distinct hydrogen nucleus resonating at a particular frequency, which is
measured in parts per million (ppm) relative to a standard compound (Dona and others, 2016). For a partic-
ular metabolite, depending on its chemical structure, one or more peaks can show up at specific locations
on the chemical shift axis. At the same time, the height of every spectral peak is directly proportional to
the concentration of the corresponding metabolite in the mixture.

As an illustration, Figure 1 shows individual 1H NMR spectra of three metabolites (Figure 1(a)–(c))
under an ideal experimental condition. In each panel, the x-axis denotes the chemical shift which is
measured in ppm while the y-axis represents the relative peak intensity corresponding to each chemical
shift. Additionally, whenever a peak is mentioned, it is referred to a small symmetrical segment of the
spectrum; and the chemical shift corresponds to the center of the peak is known as a peak location.
Ideally, given a mixture spectrum composed of several metabolites as shown in Figure 1(d), one could
overlay the figure with each individual reference spectrum such as Figure 1(a)–(c)) to potentially identify
each metabolite in the mixture if the signals match. The process of identifying individual metabolites
in a complex mixture is called identification. Simultaneously, how much each metabolite contributes to
the mixture is quantified by their corresponding peak intensities in the mixture spectrum. The process
of estimating the concentration of each metabolite in the mixture is called quantification. Therefore, the
NMR fingerprint and corresponding peak intensities are keys to any approaches to identify and quantify
metabolites present in complex biological mixtures.

A conventional approach, which involves manual assignment protocols, has been previously reported
(Dona and others, 2016). The manual approach relies on experienced spectroscopists to overlay the
observed spectrum with reference spectra of pure compounds to decide which particular metabolites are
present in the mixtures, so the whole process is time-consuming, labor-intensive, and prone to biases
towards operator knowledge and expectations (Tulpan and others, 2011). Automating the process of
metabolite identification and quantification is desired, but there exists two major obstacles. First, uncon-
trollable sample perturbations are inherent to every metabolomics study, which arise from a variety of
sources such as variation in experimental factors (e.g., pH, temperature, and ionic strength), instrument
instability, and inconsistency in sample handling and preparation. As a result, NMR signals of a metabolite
may deviate from their referenced positions, which, in turn, makes it harder for any matching procedures.
Figure 1(e) illustrates such shifting errors in signal positions, where the glycine peak is shifted to the right
of its referenced location at 3.54 ppm (i.e., dashed line). Second, the number of candidate metabolites
in the database always exceeds the number of actual sources of signals in the spectra, which raises a
sparsity issue. For example, the number of metabolites detected from intact serum/plasma is in the range
of 30 or less which is far fewer than the 4229 blood metabolites in the Human Serum Metabolome (Psy-
chogios and others, 2011). The combination of the two factors makes the detection and interpretation of
metabolite-specific signals challenging in practice.

Regularized regression approaches such as Lasso, elastic net, and adaptive Lasso seem to be intuitive
choices to handle the sparsity problem because of their built-in regularization capability. However, they are
not capable of addressing peak shifting errors. Recently, high-dimensional regression with measurement
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Fig. 1. Three reference spectra of L-alanine (a), glycine (b), and 3-aminoisobutanoic acid (c) convolve a mixture
spectrum (d) in an ideal condition. Another mixture spectrum (e) has the glycine peak shifted to the right from the
referenced location (dashed line).

errors in covariates is an emerging statistical research area. For example, to deal with the measurement error
problem, Sørensen and others (2015) and Datta and Zou (2017) proposed different modifications of Lasso;
and Sørensen and others (2018) introduced methods based on the matrix uncertainty selector (Rosenbaum
and Tsybakov, 2010). However, these approaches could not be applied to the problem of shifting errors due
to two key differences. First, these works assume that the responses and covariates are correctly matched,
but the covariates are subject to additive measurement errors. However, in the discussed problem, the
observed spectral intensities of a mixture are assumed to be generated from mismatched covariates, i.e.,
the intensities of compounds with shifting errors. Second, replicates of covariate measurements or an
external validation sample are traditionally required to calibrate the models to deal with measurement
errors in covariates (Carroll and others, 2006). However, neither of them is available for the type of
NMR data being considered. In a different manner, Bayesil (Ravanbakhsh and others, 2015), Chenomx
(Chenomx, 2015), and ASICS (Tardivel and others, 2017; Lefort and others, 2019) develop their own
methodology to deal with both problems. More precisely, Bayesil partitions the sample spectrum into
disjoint regions before applying a probabilistic approach to assign a low probability to an undesirable
match and vice versa. Additionally, an automated Profiler module of a popular proprietary software,
namely Chenomx, utilizes a linear combination of Lorentzian peak shape models of reference metabolites
to reconstruct the observed mixture spectrum (Weljie and others, 2006). Uniquely, ASICS learns warping
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Fig. 2. Simulated mixture spectrum (three rightmost peaks) with added random noise (a) overlaid with the reference
counterpart M1ref (leftmost peak) of M1 in the simulation. Weight plot for the shifted peak (b) potentially relocates
the shifted peak by detecting the noncentered maximum weight. As a result, shifted peak (c) is corrected to match its
referenced peak (d).

functions to minimize the difference between the observed and reconstructed spectra before quantifying
individual metabolite concentration. However, none of the methods has yet been demonstrated to be a
gold standard in practice.

Herein, we introduce a new approach to automatically identify and quantify metabolites in complex
biological mixtures. This parsimonious proposed method is shown to be efficient by simultaneously
addressing both problems of shifting errors and the sparsity of some abundant metabolites present in
mixtures. Specifically, the method first conducts the variable selection to identify correct metabolites in a
mixture with nonzero coefficients. Second, the method performs a postselection coefficient estimation to
quantify metabolite concentration after correcting for shifting errors using an embedded novel weight func-
tion. We demonstrate the effectiveness of the proposed model using simulated data, experimental NMR
mixtures, and biological serum samples. Interesting findings are further emphasized when the method is
compared with popular regularized regression models including Lasso (Tibshirani, 1996), elastic net (Zou
and Hastie, 2005), and adaptive Lasso (Zou, 2006), and other existing fitting models including Bayesil,
Chenomx, and ASICS.

2. MODEL AND METHODOLOGY

2.1. Backgrounds

Each NMR spectrum after being preprocessed by apodization, phasing, and baseline correction can be
represented as a pair of equally spaced vector of chemical shifts typically ranging from 0 to 10 ppm and a
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same length vector of the corresponding relative intensity of the resonance. Depending on the resolution of
the instrument or the spectrum, the total number of features in a spectrum is in the order of 103–104 (Astle
and others, 2012). However, some NMR signals with low intensities might correspond with instrumental
noise, which are not reliable for identifying metabolites in a complex mixture. Thus, we define each NMR
spectrum of interest as a pair of (x, y), where y = {yi}ni=1 are the observed collection of signal intensities
such that ∀yi > c0, and x = {xi}ni=1 are the corresponding chemical shifts. Here, a positive constant c0

serves as a threshold to remove low-intensity signals that are likely to be noise while reducing the number
of features to be considered in our model. Details about the selection of c0 are described in Section 4.

2.2. Spectrum model with shifting errors

A major underlying assumption in NMR-based quantitative metabolomics is that any given mixture spec-
trum is the accumulated sum of individual metabolite spectra (Wishart, 2008b). As illustrated in Figure
1, the peaks of the mixture in Figure 1(d) are composed of the three spectra in Figure 1(a)–(c). In this
regard, the abundance of an individual metabolite is reflected by its relative peak heights. Consequently,
a spectral representation of a mixture consisting of individual metabolites can be considered as a linear
combination of spectral functions of each individual metabolite in the reference library. At a chemical
shift xi, its corresponding intensity of a true mixture spectrum in an ideal experimental condition, denoted
by y†

i can be modeled as follows:

y†
i = β0 +

p∑
j=1

βjgj(xi)+ εi, (2.1)

where i = 1, . . . , n are all indices of chemical shifts of the peaks along the mixture spectrum; p is the
number of known compounds in the reference library; gj(xi), j = 1, . . . , p is the intensity function of the
jth reference spectrum; εi represents random noise with mean zero and variance σ 2

ε ; and non-negative βj

represents the concentration of the jth metabolite in the complex mixture. Accordingly, the jth metabolite
is considered to be present in the mixture if the coefficient βj is greater than 0. By mean-centering y†

i

and gj(xi) such that
∑n

i=1 y†
i = 0 and

∑n
i=1 gj(xi) = 0, we can remove the intercept term β0 from (2.1)

(Tibshirani, 1996).
Each reference spectrum is considered as a collection of peaks with different chemical shift locations

and peak intensities. Since NMR peaks are sharp, it is common to represent each NMR peak as a Lorentzian
curve (i.e., Cauchy distribution function) (Hollas, 2004). Depending on the molecular environment and
the size of the molecule, the number of peaks in a 1H NMR spectrum can range from 1 (e.g., methanol)
to more than 47 (e.g., D-glucose). For the jth metabolite with nj (nj ≥ 1) chemical shift positions in the
reference library, its spectrum can be modeled as follows:

gj(x; lj, rj) =
nj∑

m=1

vjm
1

1+ (
x−ljm

rjm
)2

, (2.2)

where x is an input which can take any value along the chemical shift (ppm) axis; nj is a total number
of peaks of the jth metabolite; lj = (lj1, . . . , ljnj ) is a vector of all peak locations of the jth metabolite;
rj = (rj1, . . . , rjnj ) is a vector of shape parameters for each of the nj peaks, and these values are set at 0.002
to maintain the sharp shape of an NMR peak (Vu and others, 2019). For notation simplicity, we remove rj

from gj(x; lj, rj) for the rest of the paper. Finally, vj = (vj1, . . . , vjnj ) is the multiplier factor for each of the
nj peaks such that the relative ratios between peak heights are maintained. For each metabolite, we obtain
a list of peak locations and corresponding relative peak heights directly from the Human Metabolome



Shifting-corrected regularized regression 145

Database (Wishart and others, 2018). Here, a vector of multiplier factor vj is calculated by solving linear
equations of Cauchy densities evaluated at each peak location and corresponding peak heights; see Vu and
others (2019) for details. Using reference spectra generated directly from (2.2) has the advantage over
in-house spectra of pure chemical compounds in terms of minimizing some undesirable experimental
perturbations. From (2.1), the peaks of the reference spectra with βj > 0 should also be peaks among
{y†

i } of the target mixture. However, unavoidable fluctuations in sample pH, temperature, and instrument
instability can cause peaks of the mixture to shift from their referenced locations. As a result, the observed
spectrum intensities may incur location shifting errors. In this regard, the observed intensity yi at xi is
subject to a location shift such that

yi = β0 +
p∑

j=1

βjgj(xi; lj + δj)+ εi, (2.3)

where δj = (δj1, . . . , δjnj ) is a vector of shifting errors associated with referenced peak locations lj. In
other words, when a particular peak is shifted, the neighboring signals are accordingly shifted by the
same amount. Each {δjm}nj

m=1 follows a distribution F(·) with a bounded support on [−K , K] for a positive
constant K . The bounded support ensures the locality of shifting errors associated with signals in the
mixture spectrum. For a given reference spectrum, we know the parameters lj and vj in (2.2). However,
the shifting errors δj are not observable. Hence, a direct regression of yi on {gj(xi; lj + δj)}pj=1 to estimate
β = (β1, . . . , βp)

T based on the model (2.3) is not practical.
Models (2.1) and (2.3) imply a mismatch between the observed and referenced intensities (i.e., yi and

y†
i ) of the mixture. Such shifting deviations need to be corrected to ensure the consistent estimation of β

and accurate identification of the compounds present in the mixture. In Section 2.3, we propose a shifting-
corrected regularized regression estimation procedure to correct for the positional errors in the spectral
signals.

2.3. Methodology

The total number p of metabolites in the reference library used for spectral fitting is typically in the order
of 102–103 depending on the types of sample mixtures. The number of abundant metabolites actually
present in the mixtures is a small subset of the reference library. Namely, most of the coefficients of the
compounds not contributing to the mixture should ideally be zero in the regression model (2.1). Given the
sparsity feature of the problem, we apply the Least Absolute Shrinkage and Selection Operator (Lasso)
regularization to obtain a sparse estimate of the regression coefficients (Tibshirani, 1996). Recall that
β = (β1, . . . , βp)

T. If the spectra intensities {y†
i } without shifting errors can be observed, we can estimate

β by minimizing the following objective function

L†(β) = 1

2

n∑
i=1

{
y†

i − β0 −
p∑

j=1

βjgj(xi; lj)

}2

+ λ

p∑
j=1

|βj|, (2.4)

where λ is a penalty parameter. With proper selection of λ, Lasso is capable of obtaining sparse estimate
that is consistent to β (Bickel and others, 2009; Bühlmann and Van de Geer, 2011). When λ = 0, i.e.,
no penalty is applied, Lasso-type estimates are simply ordinary least square estimates. As λ increases,
more βj are shrunk to exactly zero (James and others, 2013). However, (2.4) cannot be implemented as
the intensities {y†

i } without shifting errors are not observable.
Let sik = {yi−β0−∑p

j=1 βjgj(xk ; lj)}2 be the squared distance between the observed signal intensity at xi

and the reconstructed intensity from reference spectra at xk . If the observed peak at xi is in fact generated
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from
∑p

j=1 βjgj(xk ; lj), i.e., yi = y†
k , there exists a shifting error in signal locations of δ0 = xk − xi.

Then, the residual term sik should be small. Otherwise, the value of sik should be relatively large. For each
i = 1, . . . , n, we calculate such pairwise residuals for the interval {min(1, i−d), . . . , i, . . . , max(i+d, n)},
where d is a predefined, positive constant. In practice, d may be empirically chosen and details about its
selection are discussed in Section 4. The residuals sik can be used to construct weights for each feature
pair (i, k). Let φ(z; σ0) = exp{−z2/(2σ 2

0 )} be the kernel of the normal density function with mean μ = 0
and variance σ 2

0 . Define the weight function as follows:

wik(β) = φ(sik ; σ0)∑ku
k=kl

φ(sik ; σ0)
, (2.5)

where kl = min(1, i−d), ku = max(i+d, n); σ0 serves as a tuning parameter which controls the distribution
of weights in each search window {min(1, i−d), . . . , i, . . . , max(i+d, n)}. For simplicity, we will use kl and
ku as defined above for the rest of the article. Notice that wik is a smooth and decreasing function of sik with∑ku

k=kl
wik(β) = 1 for each i = 1, . . . , n. For each search window {min(1, i−d), . . . , i, . . . , max(i+d, n)},

the weight reaches its maximum if the observed signal at xi is shifted from its reference counterparts at xk

and hence sik is the smallest. For the rest of the article, wik will be used in place of wik(β) to simplify the
notation.

Using the weights in (2.5), we propose a shifting-weighted regularized estimation approach that
minimizes the following objective function:

L(β) = 1

2
W (β)+ λ

p∑
j=1

βj subject to βj ≥ 0 for all j = 1, . . . , p, where

W (β) =
n∑

i=1

ku∑
k=kl

wik

{
yi − β0 −

p∑
j=1

βjgj(xk ; lj)

}2

.

(2.6)

Here, (2.6) is a constrained regularized optimization, where the non-negativity constraint on βj is due to
the non-negativity of metabolite concentrations in our problem. For general problems without constraints,
we may impose the penalty λ

∑p
j=1 |βj| in (2.6). Note that this optimization problem is more complex

than the classical Lasso optimization and may not be convex, since the weights wik also depend on the
regression coefficients β.

Compared to (2.4), the loss function W (β) takes into account any potential signal shifting for each
location xi by including the pairwise distance sik corresponding to each element in the search window
{min(1, i− d), . . . , i, . . . , max(i+ d, n)}. These pairwise distances are weighted by wik such that the large
sik is multiplied by a small value and vice versa, where the weight wik decays exponentially as sik increases.

Let β̂ be a minimizer of (2.6) where β̂ = (β̂1, . . . , β̂p)
T.Additionally, let A = {j : j ∈ {1, . . . , p}, β̂j > 0}

be the active set of the metabolites which are identified as present in the target mixture. We define
ŝik = {yi − β̂0 −∑

j∈A β̂jgj(xk ; lj, rj)}2, and ŵik = φ(ŝik ; σ0)
( ∑ku

k=kl
φ(ŝik ; σ0)

)−1
. At each peak location xi

of the mixture, the value arg maxk{ŵik} together with the reference peak locations around xi can be used
to estimate and correct for the shifting errors.

The tuning parameter σ0 can be considered as a weight distributor for each search window {min(1, i−
d), . . . , i, . . . , max(i+ d, n)} corresponding to xi. Smaller σ0 yields a narrower weight distribution, which
results in more weights close to 0. In this regard, an extremely small σ0 would assign the weight of 1 to
the smallest sik while the remaining weights are essentially 0. On the other hand, a large σ0 would flatten
out the weight distribution, which in turn loses the ability to detect the signal shifting. Given gj(xk ; lj) > 0
∀j, k , sik takes a value between 0 and y2

i . In general, we suggest σ0 to be between max(y2
i )/3 and max(y2

i )/6,
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i = 1, . . . , n, to maintain the smoothness in weight distribution. More discussion about the sensitivity of
σ0 on the performance of the proposed method is included in Section 4.

3. IMPLEMENTATION

In this section, we provide the computation algorithms to solve the shifting-corrected regularized
estimation (2.6) proposed in Section 2.3.

3.1. Coordinate descent

As both wik and {yi−β0−∑p
j=1 βjgj(xk ; lj)}2 in the objective function L(β) in (2.6) depend on β, it might not

be a convex function of β. However, for any fixed positive weights {wik}, W (β) is a weighted least squares
loss of the augmented paired data {(yi, xk)

ku
k=kl
}ni=1; hence, it is a convex function. Therefore, to minimize

L(β), we utilize the coordinate descent approach (Friedman and others, 2010). This optimization process
minimizes the objective function with respect to each βj at a time while fixing the weights wik and the
remaining coefficients {βh}h �=j. Specifically, the gradient of W (β) with respect to βj, given fixed weights
wik , is ∂

∂βj
W (β) = −(ρj − βjzj), where ρj = ∑n

i=1

∑ku
k=kl

wik{yi − β0 −∑p
h �=j βhgh(xk ; lh)}gj(xk ; lj), and

zj =∑n
i=1

∑ku
k=kl

wik{gj(xk ; lj)}2. Details of the derivation are provided in Section S1 of the Supplementary
material available at Biostatistics online. Since the penalty term λ

∑p
j=1 βj in (2.6) is separable in β, for

each component j, L(β) can be expressed as

L(βj; β−j) =
n∑

i=1

ku∑
k=kl

wik{yi − βjgj(xk ; lj)− C1(β0, β−j)}2 + λβj + C2(β−j),

where C1(β0, β−j) and C2(β−j) are two functions independent of βj, and β−j denotes the regression
coefficients without the jth component. Therefore, the objective function L(β) is a quadratic convex
function of βj given all other coefficients. The coordinate descent algorithm essentially minimizes a
quadratic convex function L(βj; β−j) of βj with the constraint βj ≥ 0. Since ∂

∂βj
L(βj; β−j) = ∂

∂βj
W (β)+λ =

βjzj−ρj+λ, given β−j and β0 fixed, the minimum of L(βj; β−j) over βj ≥ 0 occurs at max{0, (ρj−λ)/zj}.
Specifically, at the current estimate β̂

(u)

, we obtain the weight functions as

ŵ(u)

ik =
φ(ŝ(u)

ik ; σ0)∑ku
k=kl

φ(ŝ(u)

ik ; σ0)
, (3.7)

where ŝ(u)

ik =
{
yi − β̂

(u+1)

0 −∑j−1
h1=1 β̂

(u+1)

h1
gh1(xk ; lh1)−

∑p
h2=j β̂

(u)

h2
gh2(xk ; lh2)

}2
. Sequentially, we obtain

ρ
(u)
j =

n∑
i=1

ku∑
k=kl

ŵ(u)

ik

{
yi − β̂

(u+1)

0 −
j−1∑

h1=1

β̂
(u+1)

h1
gh1(xk ; lh1)

−
p∑

h2=j+1

β̂
(u)

h2
gh2(xk ; lh2)

}
gj(xk ; lj) and

z(u)
j =

n∑
i=1

ku∑
k=kl

ŵ(u)

ik {gj(xk ; lj)}2.

(3.8)

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxac015#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxac015#supplementary-data


148 T. VU AND OTHERS

Note that at each uth iteration the process is done for all βj’s (j = 1, . . . , p). Then, we obtain the (u+ 1)th
update of βj by

β̂
(u+1)
j = max{0, (ρ(u)

j − λ)/z(u)
j }. (3.9)

It is worth noting that if there is no non-negativity constraint on βj for all j, and the Lasso penalty λ
∑p

j=1 |βj|
is used in (2.6), the coordinate descent algorithm updates βj by the soft-thresholding operator as done by
Friedman and others (2007).

At each iteration, the algorithm updates each regression coefficient βj separately, which requires O(p)

computation steps. Meanwhile, there are n(2d + 1) weights to update for each updated βj. The total
computational complexity is O{np(2d + 1)} per iteration. Additionally, the process of looping through

all regression coefficients βj is iterated until the convergence criterion ‖β̂(u) − β̂
(u−1)‖ < 10−5 is met or

when the maximum number of iterations, which is set at 1000, is reached. Intuitively, as W (β) is a convex
function given the weights {wik}, the algorithm would converge if the initial weights are close to the ones
with the true β. While W (β) is a nonconvex function of β as {wik} changes with β, and our proposed
algorithm is not guaranteed to converge to a global optimum, we find that the results are not sensitive to the
initial values in the simulation studies and the real data analysis. The theoretical convergence properties
of the proposed method will be investigated in future work.

Let Gn×p be the reference library data matrix, where the jth column of G consists of the spectrum
{gj(xi; lj)}ni=1 of the jth metabolite in (2.2). As before, yn×1 is the n-dimensional vector representing the
spectrum of the target mixture. Given the penalty parameter λ chosen by the cross-validation (CV) criterion,
the tuning parameter σ0 in the weight function (2.5), and the search window size d, the main steps of the
proposed optimization algorithm are outlined below.

Algorithm 1 Coordinate descent algorithm to solve β in (2.6)

1: Standardize each column of Gn×p as Gc,ij = Gij−Ḡj

sdj
where sdj is the standard deviation of the jth

column of G; center y to have yc = y − ȳ;

2: u← 0; initialize β as β̂
(0) = 0p×1;

3: while (‖β̂(u) − β̂
(u−1)‖ ≥ 10−5 or # iterations ≤ 1000) do

4: for j = 1, 2 . . . , p do
5: obtain weight function ŵ(u)

ik as in (3.7);
6: compute ρ

(u)
j and z(u)

j using (3.8);

7: update β̂
(u+1)
j based on (3.9);

8: end for
9: u← u+ 1

10: end while
11: return β̂ = (β̂

(u)

1 , . . . , β̂(u)
p ) as the first-stage estimated regression coefficients.

3.2. Cross-validation

A decreasing sequence of λ values is used to calculate the corresponding prediction errors through CV.
The optimal penalty parameter λ associated with the smallest error is chosen. Similar to Lasso’s pathwise
coordinate descent (Friedman and others, 2010), the sequence of λ is generated such that its maximum
(λmax) is the minimum penalty value that all the estimated coefficients become 0. Specifically, λmax is
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computed as λmax ≥
∣∣∑n

i=1 w∗ik yigj(xk ; lj)
∣∣ where w∗ik = φ(s∗ik )∑

k φ(s∗ik )
= 1

2d+1 with s∗ik = y2
i . Then, we define

λmin = cλmax for a small positive value of c. The λ sequence of length M0 is constructed by linearly
decreasing from λmax to λmin on a log scale, where c and M0 are recommended to be 0.0001 and 50,
respectively according to Friedman and others (2010).

The constructed sequence of penalty values λ is then used for 5-fold CV as outlined in Algorithm 2.
For both the observed mixture spectrum (response) and the spectra in the reference library (covariates),
all NMR signals after thresholding with c0 are randomly partitioned into five sets. During the random
partition, it is almost certain that some signals of each peak are used for training, which is sufficient to
detect any peak shifting. Each of the five sets is used for validation while the other four sets are used for
training. For a given value of λ in the sequence, the regression coefficients are estimated using the training
set. The estimated loss W (β) in (2.6), which is obtained using the estimated coefficients, is evaluated
on the validation set. The CV loss corresponding to each λ is the average loss over the five sets; the
cross-validated penalty value is chosen as the minimizer of the CV loss. Similarly, we apply the standard
5-fold CV to choose the penalty values for Lasso, elastic net, and adaptive Lasso. The main difference is
that the three methods utilize standard least-squares loss while the proposed method uses the weighted
loss in (2.6) to account for the shifting errors.

Algorithm 2 Cross-validation
1: Create a decreasing lambda sequence λseq using λmin, λmax, and M0 as in Section 3.2
2: Initialize k0 folds;
3: Randomly partition n indices of y and G into k0 folds;
4: for λj in λseq do
5: for foldi in the k0 folds do
6: ytest = y[foldi]; Gtest = G[foldi, ]; ytrain = y[−foldi]; Gtrain = G[−foldi, ];
7: β̂ foldi

= Algorithm 1(ytrain, Gtrain, λj);

8: calculate the loss function W (β̂ foldi
) evaluated on ytest and Gtest according to (2.6);

9: end for
10: obtain the average loss W (β̂)λj across all foldi;
11: end for
12: λoptimal = arg minλj W (β̂)λj .

3.3. Concentration estimation

Let β̂ be the solution of the coordinate descent procedure in Section 3.1, and {ŵik} be the corresponding
estimated weights. To estimate the concentration of the present metabolites, we first need to correct for
the shifting errors. At each signal location xi, let x̂(max)

i = arg maxk{ŵik} be the position corresponding to
the smallest pairwise distance ŝik for i = 1, . . . , n. For each jth metabolite with β̂j > 0, we match x̂(max)

i

with its referenced peak locations {ljm}nj
m=1. The shifting error δjm associated with the mth peak of the jth

reference metabolite at xi can be estimated as

δ̂jm =
{

xi − ljm, if ljm = x̂(max)
i

0, if ljm �= x̂(max)
i

for i = 1, . . . , n, and all j ∈ A, where A = {j : j ∈ {1, . . . , p}, β̂j > 0} is the active set of the metabolites
identified in the target mixture. Let δ̂j = {δ̂jm}nj

m=1. The final estimation of the metabolites concentration
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after the adjustment to shifting errors is denoted by β̃, where β̃j = 0 if j /∈ A, and {β̃j}j∈A can be obtained
by minimizing the following objective function directly

n∑
i=1

{
yi −

∑
j∈A

βjgj(xi; lj + δ̂j)

}2

. (3.10)

Here, the non-negativity constraint is again enforced such that β̃j = 0 for j ∈ A if β̃j < 0 to ease the
interpretation of non-negative metabolite concentration. Additionally, as the concentration estimation β̃ in
(3.10) is conditional on the selection results, i.e., the estimation of β̂ in (3.9) as well as the correction for
shifting error, the inference for β̃ is more complicated than the usual post-selection Lasso estimators. In
order to study the impact of the two steps on the least square estimator β̃, one could consider the stability
selection procedure, as in Meinshausen and Bühlmann (2010). More discussion about this is described in
Section S1.3 of the Supplementary material available at Biostatistics online.

4. SIMULATION STUDIES

The evaluation criteria used to compare the performance of different methods were accuracy, sensitivity,
and specificity. Accuracy was calculated as a ratio of correctly labeled metabolites (true positives plus
true negatives) to the total number of metabolites in reference library. Similarly, sensitivity was obtained
as a fraction of the correctly identified metabolites (true positives) relative to the total number of true
metabolites. Moreover, specificity was measured by dividing the number of unidentified metabolites by
the number of metabolites not present in a mixture. The correct or incorrect metabolites in a mixture
were determined based on their corresponding postselection error-corrected least squares estimates β̃

defined in (3.10). Additionally, Figure S1 of the Supplementary material available at Biostatistics online
showed a decline in the loss function as the number of iterations increased. More precisely, the objective
function was stabilized within the first 50 iterations across simulated and real mixtures, which verified the
convergence of the proposed algorithm in practice.

Two simulation studies were conducted with a reference database of 200 compounds generated directly
from (2.2) for chemical shifts ranging from 0.9 to 9.2 ppm with an equal space of 0.001 ppm, excluding the
water suppression region between 4.6 and 4.8 ppm. The peak list for each compound lj = (lj1, . . . , ljnj ) was
then randomly selected from the available chemical shifts, with nj ranging from 1 to 10. The corresponding
peak heights were generated from the uniform distribution (0.1, 1), which were then used to calculate the
multiplier factor vj = (vj1, . . . , vjnj ) as described in Section 2.2. The shape parameter rj was fixed at 0.002
to maintain the sharp shape of an NMR peak. Each resulting spectrum was standardized such that its
maximum peak intensity was set to 1. Our simulation studies only consisted of comparisons between
the proposed methods and existing regularized regression models (i.e., Lasso, elastic net, and adaptive
Lasso) because Bayesil, Chenomx, and ASICS only handled raw 1H NMR data which were not obtainable
through simulation. The performance comparison between the proposed method and existing software
including Bayesil, Chenomx, and ASICS, was illustrated in Section 5. Due to limited space, we only
reported in detail one of the simulation studies in the main text. The additional simulation study was
discussed in Section S2 of the Supplementary material available at Biostatistics online.

A target mixture in the simulation as shown in Figure 2(a) was created by adding three individual
spectra with random noise to resemble experimental variations. More specifically, true parameters were
set up such that β1 = β2 = β3 = 1, and βj = 0 for j = 4, . . . , 200. Furthermore, positional noise,
i.e., peak shifting errors were explicitly examined by purposely shifting locations of chosen peaks. The
peak M1 in Figure 2(a) was shifted to the right from its referenced location M1ref while M2 and M3
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Table 1. Average accuracy, sensitivity, and specificity for 200 iterations in the simulation
at an increasing shifting variation from ±0.01 ppm to ±0.04 ppm across the proposed
method, Lasso, elastic net, and adaptive Lasso. Corresponding standard deviations are
recorded in parentheses

Metrics ±0.01ppm ±0.02ppm ±0.03ppm ±0.04ppm

Accuracy 0.999 (0.002) 0.998 (0.003) 0.997 (0.005) 0.995 (0.006)
Proposed method Sensitivity 0.980 (0.119) 0.990 (0.081) 0.978 (0.116) 0.950 (0.208)

Specificity 0.999 (0.002) 0.998 (0.003) 0.997 (0.004) 0.996 (0.005)

Accuracy 0.988 (0.029) 0.973 (0.040) 0.956 (0.062) 0.949 (0.065)
Lasso Sensitivity 0.748 (0.328) 0.758 (0.263) 0.760 (0.209) 0.697 (0.270)

Specificity 0.991 (0.030) 0.976 (0.041) 0.960 (0.063) 0.954 (0.067)

Accuracy 0.941 (0.089) 0.936 (0.064) 0.923 (0.061) 0.898 (0.090)
Elastic net Sensitivity 0.992 (0.052) 0.915 (0.146) 0.843 (0.167) 0.827 (0.167)

Specificity 0.940 (0.091) 0.936 (0.063) 0.924 (0.062) 0.899 (0.092)

Adaptive Lasso Accuracy 0.984 (0.043) 0.964 (0.056) 0.956 (0.059) 0.945 (0.069)
Sensitivity 0.812 (0.242) 0.793 (0.210) 0.765 (0.188) 0.757 (0.188)
Specificity 0.986 (0.044) 0.967 (0.057) 0.959 (0.061) 0.947 (0.070)

stayed unchanged. The amount of chemical shift variation was applied in an increasing fashion, i.e.,
δ11 ∼ Unif (−K , K), such that K = {0.01, 0.02, 0.03, 0.04} ppm respectively to assess the performance
of various methods. The whole process of adding random noise to a generated mixture spectrum and
shifting peak locations was repeated 200 times. Section S3.2 of the Supplementary material available at
Biostatistics online discussed in detail how the proposed method behaved as the variance of the added
noise increased.Additionally, based on the sensitivity analysis results (Tables S3–S6 of the Supplementary
material available at Biostatistics online), we set d defined in (2.5) to be the closest integer capturing the
maximum shifting variation. In other words, with equal space of 0.001 ppm between chemical shifts, d
was set to be 10, 20, 30, and 40 in correspondence with K = {0.01, 0.02, 0.03, 0.04} ppm, respectively.

Once a mixture was created, a threshold level c0 defined in Section 2.1 was obtained such that c0

was greater than 7% of the area under the mixture spectrum curve (AUC), i.e., c0 = 7%AUC (Ahmed,
2005). An extended simulation study reported in Section S3.1 of the Supplementary material available at
Biostatistics online assessed how changing c0 would affect the performance of the proposed method. We
evaluated different values of c0 (i.e., 5%, 7%, 10%, and 12% AUC) in conjunction with different d values
(i.e., 5, 10, 15, 20, and 25). Consistent results across c0 values served as an assurance to continue both
simulation studies and real data analysis using c0 = 7%AUC. Furthermore, a joint analysis for various
values of both σ0 and d defined in (2.5) was summarized in Section S3.1 of the Supplementary material
available at Biostatistics online. The results confirmed the choice of σ0 = max(y2

i )/3 for the analysis.
Table 1 recorded accuracy, sensitivity, and specificity for each method across four increasing levels

of positional perturbations, averaged over 200 iterations. As shifting variations increased from ±0.01 to
±0.04 ppm, all accuracy, sensitivity, and specificity decreased across the four methods. However, the
decreasing rates were slightly different across different metrics and methods. Specifically, sensitivity
had the fastest dropping rate (≈ 3%) compared to accuracy (≈ 0.4%) and specificity (≈ 0.3%) for the
proposed method. Lasso particularly had the lowest sensitivity across all levels of shifting errors because
of its tendency toward identifying a large number of compounds that were not truly contributing to the
mixture.
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Table 2. Average estimated metabolite concentrations for 200 iterations in the simulation at an increasing
shifting variations from±0.01 ppm to±0.04 ppm across proposed method, Lasso, elastic net, and adaptive
Lasso. Corresponding standard deviations are recorded in parentheses

Truth β̃ ±0.01ppm ±0.02ppm ±0.03ppm ±0.04ppm

1 β̃1 0.970 (0.106) 0.984 (0.067) 0.968 (0.152) 0.939 (0.228)
Proposed method 1 β̃2 0.924 (0.218) 0.953 (0.167) 0.948 (0.184) 0.940 (0.213)

1 β̃3 0.903 (0.274) 0.946 (0.201) 0.946 (0.199) 0.926 (0.251)

1 β̃1 0.017 (0.055) 0.008 (0.034) 0.007 (0.040) 0.002 (0.006)
Lasso 1 β̃2 0.725 (0.396) 0.850 (0.309) 0.925 (0.210) 0.859 (0.319)

1 β̃3 0.755 (0.389) 0.867 (0.298) 0.938 (0.194) 0.868 (0.314)

1 β̃1 0.111 (0.223) 0.064 (0.193) 0.060 (0.195) 0.032 (0.135)
Elastic net 1 β̃2 0.970 (0.030) 0.975 (0.030) 0.980 (0.023) 0.982 (0.023)

1 β̃3 0.978 (0.020) 0.981 (0.024) 0.984 (0.020) 0.986 (0.019)

1 β̃1 0.060 (0.210) 0.041 (0.180) 0.044 (0.188) 0.019 (0.123)
Adaptive Lasso 1 β̃2 0.770 (0.350) 0.873 (0.280) 0.916 (0.023) 0.911 (0.243)

1 β̃3 0.810 (0.320) 0.900 (0.240) 0.928 (0.217) 0.926 (0.217)

Table 2 reported estimated metabolite concentrations (β̃) corresponding to each level of shift
variation across the four methods. Note that the proposed method defined β̃ as the postselec-
tion error-corrected least squares estimates in (3.10). Additionally, β̃ for each of the three reg-
ularized regression models: Lasso, elastic net, and adaptive Lasso, was defined as the estimates
minimizing the corresponding loss function in Tibshirani (1996), Zou and Hastie (2005), and

Zou (2006), respectively, where, β̃Lasso = arg minβ

∑n
i=1

{
yi − ∑p

j=1 βjgj(xi; lj)

}2

+ λ
∑p

j=1 |βj|;

β̃elastic net = arg minβ

∑n
i=1

{
yi − ∑p

j=1 βjgj(xi; lj)

}2

+ λ1
∑p

j=1 |βj| + λ2
∑p

j=1 β2
j ; and β̃adaptive Lasso =

arg minβ

∑n
i=1

{
yi −∑p

j=1 βjgj(xi; lj)

}2

+ λ
∑p

j=1 ωj|βj|. As expected, the estimated coefficient for the

shifted metabolite M1, i.e., β̃1 was further away from its true concentration of 1 as the shifting errors
increased. Particularly, β̃1 decreased from 0.970 to 0.939; and from 0.017 to 0.002 for the proposed
method and Lasso, respectively. Even at the smallest amount of shifting (±0.01 ppm), Lasso quantified
the abundance of metabolite M1 with an estimate of 0.017. Compared to Lasso, elastic net and adaptive
Lasso yielded slightly better estimates for β1 of 0.111 and 0.06 respectively, yet still significantly under-
estimated the true parameter. On the other hand, the proposed method with an ability to detect and locate
any potential peak shifting through the weight function in (2.5) provided a better estimate of 0.970.

Figure 2(b) depicts the weight plot for the M1 peak with the fixed search window of size d = 10,
i.e., 0.01 ppm. In this illustration, the observed peak of M1 at 1.933 ppm is shifted from its referenced
location at M1ref (i.e., 1.924 ppm). In principle, if a given peak does not shift, its corresponding weight plot
would reach a maximum at the center while the weights for all neighboring locations diminish quickly.
In contrast, for any locations, which were not peaks (e.g., points along the baseline), the weights would
equally be distributed across all the points within the search window. As a result, such weight plots helped
identify and relocate any shifted peaks so that they match their counterparts in the reference database as
closely as possible. In the weight plot of Figure 2(b), the observed peak of M1 located at 1.933 ppm had
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the maximum weight (≈ 0.8) at 1.924 ppm. This suggests that the observed peak (M1) might have been
generated from the reference M1ref and deviated from its referenced position by 0.009 ppm. Therefore, the
reference spectrum of M1ref needs to be repositioned accordingly (Figure 2(c) and (d)) to ensure precise
estimation.

5. REAL DATA ANALYSIS

5.1. Experimental mixtures

Three experimental mixtures of different compositions of 20 amino acids, as outlined in Table S11 of the
Supplementary material available at Biostatistics online, were used for performance comparisons across
Lasso, elastic net, adaptive Lasso, Bayesil, Chenomx, and ASICS. The performances were evaluated using
an increasing size of the reference library (61, 101, and 200, respectively) based on accuracy, sensitivity,
and specificity. Based on the sensitivity analyses in Section S4 of the Supplementary material available
at Biostatistics online, we set d = 10 (defined in (2.5)) and continued fixing c0 = 7%AUC (defined in
Section 2.1) and σ0 = max(y2

i )/3 (defined in (2.5)) for the real data analysis reported herein. Overall, the
proposed method yielded the highest rate across the three metrics regardless of the library size.

As the number of candidate metabolites increased, it became easier to incorrectly claim the presence of
metabolites. Table 3 showed a slight drop in specificity for both the proposed method (from 0.90 to 0.85)
and Bayesil (from 0.66 to 0.13) in the mixture of all 20 amino acids. Interestingly, the automated profiler
feature of Chenomx and ASICS often failed to capture some metabolites that were actually present in
the mixture as shown by the number of false negatives (FN) in Table S12 of the Supplementary material
available at Biostatistics online. As a result, both Chenomx and ASICS had the lowest sensitivity (0.80
and 0.45, respectively) compared to the remaining five methods (≈ 1) as shown in Table 3 for the mixture
of 20 compounds. Unfortunately, we were not able to evaluate the impact of increasing library size from
101 to 200 on Bayesil since the maximum number of available metabolites was 93. Additionally, without
the flexibility to adjust the reference library accompanying ASICS, which was fixed at 190, the impact of
increasing library size on ASICS was not assessed.

Lasso, elastic net, and adaptive Lasso performed quite similarly in terms of producing relatively more
false positives than the proposed method, which, in turn, led to a lower specificity. For example, in the
last mixture of 20 compounds, the proposed method had a specificity of 0.85 while the three regularized
models yielded the average rate of 0.73. For instance, L-lysine which was part of mixture 3 (Table S11 of
the Supplementary material available at Biostatistics online), had one of its peaks located at 1.925 ppm.
Even a slight shift of the peak in the observed spectrum could lead to a confusion with the one peak
from acetic acid located at 1.924 ppm. Without considering shifting errors, it was not surprising to see
Lasso, elastic net, and adaptive Lasso inaccurately classified acetic acid as being present in the mixture.
Figure 3 (left) mirrored the observed and fitted spectra corresponding to the proposed method, Lasso,
elastic net, and adaptive Lasso, respectively. The zoomed-in version in Figure S3 of the Supplementary
material available at Biostatistics online depicted the false positive effects caused by the artifacts around
7.5 ppm on Lasso, elastic net, and adaptive Lasso.

The complexity level of a mixture spectrum also affected the accuracy and specificity. As the number
of metabolites included in the mixture sample increased from 7 to 20 (Table 3), the accuracy decreased
from 0.98 to 0.93 for the proposed method, from 0.93 to 0.81 for elastic net, and from 0.97 to 0.83
for Chenomx. Specificity encountered similar trends, with a drop from 0.97 to 0.85 for the proposed
method, from 0.91 to 0.73 for the elastic net, and from 0.97 to 0.77 for Chenomx. Bayesil, Chenomx, and
ASICS each used its own library of reference spectra which were collected at specific conditions (e.g.,
pH, temperature, etc.) to profile a given mixture spectrum. If the observed spectrum was collected under
experimental conditions that were quite different from those in the reference libraries, it was possible
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Table 3. Comparison of proposed method with Lasso, elastic net, adaptive Lasso, using three experi-
mental mixtures containing 6, 7, and 20 metabolites, respectively; and a library size of 61, 101, and
200 metabolites, respectively. Performance was evaluated based on average accuracy, sensitivity, and
specificity

# Met. Metrics Proposed method Lasso Elastic Net Adaptive Lasso Chenomx Bayesil ASICS

Library size 61

Accuracy 1.00 0.72 0.62 0.75 0.80 0.64 0.80
6 Sensitivity 1.00 1.00 1.00 1.00 0.67 1.00 0.57

Specificity 1.00 0.69 0.58 0.73 0.82 0.60 0.81

Accuracy 1.00 0.77 0.79 0.64 0.89 0.64 0.83
7 Sensitivity 1.00 1.00 1.00 1.00 0.71 1.00 0.33

Specificity 1.00 0.74 0.76 0.59 0.91 0.59 0.86

20 Accuracy 0.93 0.67 0.69 0.70 0.74 0.75 0.56
Sensitivity 1.00 1.00 1.00 1.00 0.80 0.95 0.45
Specificity 0.90 0.51 0.54 0.56 0.71 0.66 0.59

Library size 101

Accuracy 0.94 0.79 0.88 0.72 0.87 0.30 0.80
6 Sensitivity 1.00 1.00 1.00 1.00 0.67 1.00 0.57

Specificity 0.94 0.78 0.87 0.71 0.88 0.25 0.81

Accuracy 0.97 0.90 0.84 0.87 0.93 0.42 0.83
7 Sensitivity 1.00 1.00 1.00 1.00 0.71 1.00 0.33

Specificity 0.97 0.89 0.83 0.86 0.95 0.37 0.86

Accuracy 0.88 0.72 0.73 0.72 0.69 0.33 0.56
20 Sensitivity 1.00 1.00 1.00 1.00 0.80 0.95 0.45

Specificity 0.85 0.65 0.67 0.65 0.67 0.16 0.59

Library size 200

Accuracy 0.94 0.86 0.86 0.83 0.92 0.30 0.80
6 Sensitivity 1.00 1.00 1.00 1.00 0.67 1.00 0.57

Specificity 0.93 0.85 0.85 0.82 0.93 0.25 0.81

Accuracy 0.98 0.86 0.86 0.92 0.96 0.42 0.83
7 Sensitivity 1.00 1.00 1.00 1.00 0.71 1.00 0.33

Specificity 0.97 0.85 0.85 0.92 0.97 0.37 0.86

Accuracy 0.86 0.74 0.75 0.74 0.76 0.33 0.56
20 Sensitivity 1.00 1.00 1.00 1.00 0.80 0.95 0.45

Specificity 0.84 0.71 0.72 0.71 0.75 0.16 0.59

that the induced shift variation was outside the range that these methods considered in their algorithms.
This could consequentially cause failing to capture true metabolites (false negatives) and/or identifying
wrong metabolites (false positives). Specifically, Table S13 of the Supplementary material available at
Biostatistics online showed that Chenomx had a relatively lower number of false positives but it usually
missed two to four metabolites across the three mixtures (e.g., L-alanine, L-cysteine, L-leucine, and L-
glutamic acid). On the other hand, Bayesil only failed to identify at most one metabolite (i.e., L-aspartic
acid in the third mixture) while having a larger number of false positives (around 14-22). Finally, ASICS
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Table 4. Comparison of proposed method with Lasso, Elastic net, adaptive Lasso, Chenomx, Bayesil,
and ASICS using three serum samples from breast cancer patients (Hart and others, 2017) and a
library size of 104 metabolites. Performance was evaluated based on average accuracy, sensitivity,
and specificity over the three empirical samples (N = 3). Corresponding standard deviations are
recorded in parentheses

Metrics Proposed method Lasso Elastic Net Adaptive Lasso Chenomx Bayesil ASICS

Accuracy 0.70 (0.01) 0.65 (0.03) 0.63 (0.04) 0.66 (0.03) 0.74 (0.02) 0.46 (0.03) 0.60 (0.01)
Sensitivity 0.67 (0.03) 0.67 (0.03) 0.68 (0.00) 0.67 (0.03) 0.05 (0.04) 0.55 (0.00) 0.54 (0.03)
Specificity 0.71 (0.01) 0.65 (0.04) 0.62 (0.05) 0.66 (0.05) 0.93 (0.04) 0.43 (0.04) 0.64 (0.02)

seemed to have both problems of missing true metabolites and identifying wrong metabolites. Figure 3
(right) mirrored the observed mixture spectrum with a fitted curve generated by the proposed method,
Bayesil, Chenomx, and ASICS, respectively. More precisely, Figure S4 of the Supplementary material
available at Biostatistics online zoomed in the spectral region from 1 to 4.5 ppm with the discrepancy
between the observed and the profiled spectra to demonstrate the false positive and false negative effects
on Bayesil, Chenomx, and ASICS as compared to the proposed approach.

5.2. Biological samples

Three serum samples of breast cancer patients from Hart and others (2017), which were publicly available
on the MetaboLights database (Kale and others, 2016), were used to evaluate the practical application of
the proposed method in comparison with the six other models. Evaluation criteria still included accuracy,
sensitivity, and specificity, which were calculated using the metabolites manually identified by the authors
of the study. According to Table 4, the proposed model yielded the best overall results with regard to
identifying true metabolites in the mixtures while controlling the number of falsely identified metabolites.
Similar to experimental results in Section 5.1, the six methods except for Chenomx identified more
incorrect metabolites than the proposed approach. Specifically, the average sensitivity of our method
was 0.70, while the remaining six approaches yielded an average sensitivity of less than 0.63. Across
replications, Chenomx detected at most two metabolites out the total of 22 metabolites (<10%) present
in the mixture samples, which resulted in a low sensitivity of 0.05. Given the relatively low number of
identified compounds, Chenomix, not surprisingly, produced the highest rate of specificity of 0.93.

Interestingly, there was a consistency across all methods with regard to failing to detect some of the
metabolites that were previously identified by the authors of the original study. A signal-to-noise ratio
(SNR) was calculated using TopSpin 4.06 (Bruker, Germany) for the mixture spectra. Three missed
metabolites that included citric acid, formic acid, and phenylalanine, had a SNR less than 2. This is below
the generally accepted lower-limits for peak detection.

ASICS had some built-in steps to exclude any reference metabolites from the library if at least one of
its corresponding peaks did not show up in the observed complex spectrum. However, doing so could lead
to eliminate some potential metabolites as it was quite possible for a given metabolite to lose one or more
peaks due to experimental fluctuations (Zangger, 2015). This could potentially contributing to a large
number of false negatives as seen in Table S13 of the Supplementary material available at Biostatistics
online. Bayesil, on the other hand, did not integrate any regularization to reflect the sparsity of abundant
metabolites in a complex mixture. As a result, Bayesil tended to identify more metabolites which were
not part of the mixtures.

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxac015#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxac015#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxac015#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxac015#supplementary-data
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Fig. 3. Top panel: Each fitted curve (left) generated from the proposed method, Lasso, elastic net, and adaptive Lasso
is mirrored with the observed mixture spectrum (right). Bottom panel: Each fitted curve (left) generated from the
proposed method, Bayesil, Chenomx, and ASICS is mirrored with the observed mixture spectrum (right).
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6. CONCLUSION

Metabolite identification and quantification play an essential role in any NMR metabolomics studies and
are necessary to describe the underlying biological processes being investigated. However, manual assign-
ment approaches are time-consuming, labor-intensive, and reliant on the knowledge and assessment of
NMR experts. Many curve-fitting models with reference library support have been introduced to automate
the metabolite identification process, but none has been unanimously demonstrated to be a gold standard
approach in practice. We proposed a new approach that focused on addressing two major challenges
of metabolite identification from complex mixtures: undesirable perturbations in signal locations and
sparsity metabolites relative to reference databases. The proposed method was assessed using simulated,
experimental and biological NMR metabolomics data sets. The overall performance was based on three
metric including accuracy, sensitivity, and specificity. In addition, a comparison was made between the
newly introduced approach and Lasso, elastic net, adaptive Lasso, Chenomx, Bayesil and ASICS with an
increasing size of a reference library.

As a hybrid approach, the proposed leveraged sparsity properties from regularized models (e.g., Lasso,
elastic net, and adaptive Lasso) which allowed a selection of potential metabolites from a large reference
library. With the promising performance of our proposed method demonstrated using library size up to
200 (as shown in Table 3), this could potentially be scaled up to a relatively larger library. Additionally,
our method incorporated a search window at each observed signal to capture any peak shifting which was
then corrected for before estimating the metabolite concentration. Lastly, our approach with the modified
objective function to correct for peak shifting and regularization enforcement was easy to implement.
Though we empirically pre-selected some hyperparameters such as d, c0, and σ0, and σε , we demonstrated
in the sensitivity analyses (Tables S4–S7 of the Supplementary material available at Biostatistics online)
that these values did not affect our method performance much.

The proposed method showed the best results in capturing metabolites that were truly present in the
mixtures while keeping incorrect assignments at a relatively lower level regardless of increasing shifting
variations as demonstrated in the simulation studies. In addition, as the complexity of a mixture spectrum
increased and the number of candidate metabolites grew larger, all methods shared a common trend of
tending to identify more incorrect metabolites. In other words, the combination of the two factors resulted
in lower accuracy and specificity for all models. It was interesting to see that the automated Profiler
feature of Chenomx only assigned a small number of metabolites to the mixtures. Such conservative
assignments ensured fewer false identifications, which in turn led to a higher specificity overall. However,
Chenomx often failed at capturing some true metabolites leading to a low sensitivity. On the contrary,
Bayesil’s aggressive detection yielded a large number of false positives while identifying most of the true
positives. Consequently, Bayesil had a good sensitivity yet its specificity suffered considerably. Uniquely,
ASICS seemed to encounter both problems of missing true metabolites and identifying wrong metabolites,
resulting low sensitivity and specificity. Nonetheless, the new method still managed to maintain the best
results across all three criteria (accuracy, sensitivity, and specificity) as compared to the others.

Even though we did not theoretically quantify the inferences of the regression coefficients in this
article, we think it is possible to obtain proper confidence intervals for the coefficients, with special
attention paid to the characteristics of the NMR spectral data. Again, as the final concentration estimation
is conditional on both stages of the variable selection and covariate shifting correction, we utilize the
random subsampling approach to closely investigate the stability of each stage. Based on the detailed
results in Section 1.3 of the Supplementary material available at Biostatistics online, we observe that the
two steps are stable in terms of selecting the true metabolites with a selection probability of at least 0.9,
and estimating the covariate shifting error reasonably well. Such a stability procedure could be utilized to
quantify the variability and construct confidence intervals for the metabolite concentration. Additionally,
we could also leverage the jackknife resampling method, where each NMR peak is removed at a time

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxac015#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxac015#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxac015#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxac015#supplementary-data
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to construct the jackknife confidence intervals. With regard to the nature of our proposed algorithm, the
weights and the regression coefficients β are updated alternately at each coordinate descent step. More
specifically, when the weights are updated using a new estimate of β, the objective function may not
decrease. As a result, the objective function does not always decrease monotonically after each step; and
we have noticed this phenomenon in Figure S1 of the Supplementary material available at Biostatistics
online. Although our proposed algorithm is also not guaranteed to converge, we find that the numerical
convergence is achieved in our simulation studies and real data analyses.Additionally, we choose the initial
values β(0) = 0p×1 in our numerical analyses due to a practical reason that a majority of metabolites are
not present in a mixture (i.e., βj = 0). Alternatively, we could also experiment with multiple initializations
and select the ones which yield the smallest objective value. The theoretical convergence properties of the
proposed method is important but is beyond the scope of this article and will be investigated in our future
work.

SOFTWARE

Corresponding code of the method in the form of GNU Octave is incorporated in a
toolkit called MVAPACK (Worley and Powers, 2014), which is publicly available for aca-
demic users at http://bionmr.unl.edu/mvapack.php. The equivalent R code is available at
https://github.com/thaovu1/SCRR.

SUPPLEMENTARY MATERIAL

Supplementary material is available online at http://biostatistics.oxfordjournals.org.
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