Skip to main content
. 2022 Nov 30;13:1053329. doi: 10.3389/fpls.2022.1053329

Table 5.

Training results of Faster R-CNN (precision represents the ratio between the number of correctly detected weeds and predicted weeds of a certain type).

Species Recall (%) Precision (%) F1 Average precision (%)
Alligatorweed 97.14 47.44 0.64 90.31
Asiatic smartweed 90.85 20.00 0.33 62.92
Bidens pilosa 100.00 76.00 0.86 99.26
Black nightshade 97.85 48.15 0.65 95.59
Ceylon spinach 100.00 80.00 0.89 99.69
Chinese knotweed 94.00 29.94 0.45 84.24
Common dayflower 100.00 66.67 0.8 98.95
Indian aster 94.37 33.33 0.49 85.18
Mock strawberry 98.99 30.06 0.46 73.50
Shepherd purse 100.00 71.74 0.84 98.32
Viola 100.00 48.10 0.65 97.13
Velvetleaf 100.00 78.38 0.88 99.70
Barnyard grass 96.36 53.54 0.69 92.80
Billygoat weed 100.00 63.72 0.78 97.73
Cocklebur 100.00 62.73 0.77 98.43
Crabgrass 93.33 39.55 0.56 81.53
Field thistle 100.00 65.17 0.79 98.66
Goosefoots 93.65 60.82 0.74 93.49
Green foxtail 96.30 41.60 0.58 94.62
Horseweed 91.30 63.64 0.75 88.55
Pigweed 96.51 59.29 0.73 93.54
Plantain 97.22 60.87 0.75 97.42
Purslane 98.15 44.54 0.61 97.42
Sedge 96.72 64.84 0.78 95.37
White smartweed 99.02 63.52 0.77 95.48

Recall manifests the proportion of targets for a class of weeds in the sample that were correctly predicted. F1 is defined as the average of the harmonization of precision and recall, and average precision demonstrates the detection effect of the detection network on a certain category of targets.