Table 2.
The difference between various deep learning models.
| Models | Groups | AUC (95%CI) | Accuracy | Sensitivity | Specificity |
|---|---|---|---|---|---|
| Resnet18 | Training | 0.980 (0.969-0.991) | 0.937 | 0.956 | 0.930 |
| Internal validation | 0.981 (0.963-0.998) | 0.924 | 0.925 | 0.948 | |
| External validation | 0.935 (0.888-0.983) | 0.839 | 0.957 | 0.814 | |
| Resnet34 | Training | 0.979 (0.970-0.989) | 0.916 | 0.995 | 0.873 |
| Internal validation | 0.974 (0.954-0.995) | 0.916 | 0.925 | 0.935 | |
| External validation | 0.877 (0.808-0.946) | 0.796 | 1.000 | 0.710 | |
| Resnet50 | Training | 0.988 (0.981-0.994) | 0.941 | 0.961 | 0.924 |
| Internal validation | 0.977 (0.946-1.000) | 0.962 | 0.962 | 0.961 | |
| External validation | 0.939 (0.894-0.984) | 0.860 | 1.000 | 0.800 | |
| Resnet101 | Training | 0.975 (0.960-0.990) | 0.946 | 0.966 | 0.949 |
| Internal validation | 0.992 (0.984-1.000) | 0.946 | 1.000 | 0.897 | |
| External validation | 0.968 (0.935-1.000) | 0.914 | 1.000 | 0.929 | |
| Resnet152 | Training | 0.982 (0.971-0.992) | 0.946 | 0.928 | 0.958 |
| Internal validation | 0.981 (0.963-0.999) | 0.931 | 0.944 | 0.948 | |
| External validation | 0.950 (0.911-0.990) | 0.828 | 1.000 | 0.857 | |
| Densenet121 | Training | 0.996 (0.994-0.999) | 0.965 | 0.995 | 0.952 |
| Internal validation | 0.985 (0.963-1.000) | 0.962 | 0.925 | 1.000 | |
| External validation | 0.903 (0.837-0.969) | 0.806 | 0.913 | 0.829 | |
| Densenet201 | Training | 0.995 (0.992-0.998) | 0.967 | 0.966 | 0.971 |
| Internal validation | 0.985 (0.963-1.000) | 0.969 | 0.962 | 0.974 | |
| External validation | 0.953 (0.914-0.993) | 0.860 | 0.957 | 0.829 | |
| Inception v3 | Training | 0.986 (0.977-0.995) | 0.944 | 0.961 | 0.949 |
| Internal validation | 0.987 (0.973-1.000) | 0.946 | 0.944 | 0.961 | |
| External validation | 0.929 (0.873-0.985) | 0.839 | 0.826 | 0.929 |
AUC, area under the receiver operating characteristic curve; 95%CI, 95% confidence intervals.