Skip to main content
. 2022 Nov 30;12:1065934. doi: 10.3389/fonc.2022.1065934

Table 2.

The difference between various deep learning models.

Models Groups AUC (95%CI) Accuracy Sensitivity Specificity
Resnet18 Training 0.980 (0.969-0.991) 0.937 0.956 0.930
Internal validation 0.981 (0.963-0.998) 0.924 0.925 0.948
External validation 0.935 (0.888-0.983) 0.839 0.957 0.814
Resnet34 Training 0.979 (0.970-0.989) 0.916 0.995 0.873
Internal validation 0.974 (0.954-0.995) 0.916 0.925 0.935
External validation 0.877 (0.808-0.946) 0.796 1.000 0.710
Resnet50 Training 0.988 (0.981-0.994) 0.941 0.961 0.924
Internal validation 0.977 (0.946-1.000) 0.962 0.962 0.961
External validation 0.939 (0.894-0.984) 0.860 1.000 0.800
Resnet101 Training 0.975 (0.960-0.990) 0.946 0.966 0.949
Internal validation 0.992 (0.984-1.000) 0.946 1.000 0.897
External validation 0.968 (0.935-1.000) 0.914 1.000 0.929
Resnet152 Training 0.982 (0.971-0.992) 0.946 0.928 0.958
Internal validation 0.981 (0.963-0.999) 0.931 0.944 0.948
External validation 0.950 (0.911-0.990) 0.828 1.000 0.857
Densenet121 Training 0.996 (0.994-0.999) 0.965 0.995 0.952
Internal validation 0.985 (0.963-1.000) 0.962 0.925 1.000
External validation 0.903 (0.837-0.969) 0.806 0.913 0.829
Densenet201 Training 0.995 (0.992-0.998) 0.967 0.966 0.971
Internal validation 0.985 (0.963-1.000) 0.969 0.962 0.974
External validation 0.953 (0.914-0.993) 0.860 0.957 0.829
Inception v3 Training 0.986 (0.977-0.995) 0.944 0.961 0.949
Internal validation 0.987 (0.973-1.000) 0.946 0.944 0.961
External validation 0.929 (0.873-0.985) 0.839 0.826 0.929

AUC, area under the receiver operating characteristic curve; 95%CI, 95% confidence intervals.