Skip to main content
. 2022 Nov 28;8:e1166. doi: 10.7717/peerj-cs.1166

Table 3. Overview of FPGA based GCNs accelerators.

Name Main features Graph size Algorithms Baseline
AWB-GCN (Geng et al., 2020) Three load balancing techniques Large GCN PyG-CPU
Fine-grained pipelining of aggregation and combination. PyG-GPU
HyGCN
LW-GCN (Tao et al., 2021) Apply data Quantization and workload tiling Small GCN PyG-CPU
Works effectively on resource limited edge devices. GraphSAGE PyG-GPU
AWB-GCN
SPA-GCN (Sohrabizadeh, Chi & Cong, 2022) Four levels of parallelization Small GCN PyG-CPU
GCN-based graph matching. SimGNN PyG-GPU
PyG-CPU
FP-GNN (Tian et al., 2022) Support flexible execution order Large GCN PyG-GPU
Adaptive graph partition strategy GraphSAGE HyGCN
GAT BoostGCN
FPGAN (Yan, Tong & Zhi, 2020) Accelerate GAT inference Large
Shift addition unit GAT PyG-CPU
SoftMax approximation PyG-GPU
BoostGCN (Zhang, Kannan & Prasanna, 2021) Large GCN PyG-CPU
PCFA with 3-D partitioning PyG-GPU
Two types of feature update modules. DGL-CPU
Task scheduling optimization for aggregation and combination DGL-GPU
HyGCN
PyG-CPU
I-GCN (Geng et al., 2021b) Graph restructuring algorithm—islandization Large GCN PyG-GPU
Improve data locality GraphSAGE DGL-CPU
Avoiding redundant aggregation GIN DGL-GPU
HyGCN
AWB-GCN
GCN
BlockGNN (Zhou et al., 2021) CirCore architecture for matrices computation Large GCN HyGCN
Performance and resource model GraphSAGE
Reduce the computational complexity of GNNs GAT
G-GCN
GCN
GIN
FlowGNN (Sarkar et al., 2022) Generic GNN acceleration framework Large GAT PyG-CPU
Developed by using high-level synthesis (HLS) PNA PyG-GPU
DGN I-GCN
VN