Skip to main content
. 2022 Nov 21;8:e1161. doi: 10.7717/peerj-cs.1161

Table 4. Experimental results of VGG on ImageNet100.

Strategy Pooling Attn. ImageNet100
Acc.1 (%) Acc.2 (%)
VGG_A max pooling N 71.16 71.67
VGG_B FMAPooling N 71.69 72.98
VGG_C FMMPooling N 70.82 72.09
VGG_D FMAPooling FMAttn 76.22 77.08
VGG_E FMAPooling CAM 74.01 74.98

Notes:

Acc.1: training with 155 epochs once.

Acc.2: training with 155 epochs twice.

The best results are highlighted in bold font.