Table 4. Experimental results of VGG on ImageNet100.
Strategy | Pooling | Attn. | ImageNet100 | |
---|---|---|---|---|
Acc.1 (%) | Acc.2 (%) | |||
VGG_A | max pooling | N | 71.16 | 71.67 |
VGG_B | FMAPooling | N | 71.69 | 72.98 |
VGG_C | FMMPooling | N | 70.82 | 72.09 |
VGG_D | FMAPooling | FMAttn | 76.22 | 77.08 |
VGG_E | FMAPooling | CAM | 74.01 | 74.98 |
Notes:
Acc.1: training with 155 epochs once.
Acc.2: training with 155 epochs twice.
The best results are highlighted in bold font.