Skip to main content
. 2022 Nov 21;8:e1161. doi: 10.7717/peerj-cs.1161

Table 7. ResNet configuration for ImageNet100 (He et al., 2016).

Layer Output size Network configuration
conv1 224×224 3×3, 64, stride 1
conv2 _x 224×224 [3×3,323×3,32]×2
224×224 None/FMAttn/CAM
conv3 _x 112×112 [3×3,643×3,64]×2
112×112 None/FMAttn/CAM
conv4 _x 56×56 [3×3,643×3,64]×2
56×56 None/FMAttn/CAM
conv5 _x 28×28 [3×3,1283×3,128]×2
28×28 None/FMAttn/CAM
conv6 _x 14×14 [3×3,1283×3,128]×2
14×14 None/FMAttn/CAM
4×4 Adaptive average pooling
1×1 FC-100

Notes:

The first block of convN _x is followed by a downsample layer, except for conv2 _x.

The first convolutional layer of conv3_x and conv4_x has a stride of 2. The rest are all 1.

Each convolutional layer is followed by a BN layer and ReLU layer.

[ m×m,n]: Convolution kernel size m×m, n channels.

Output size: width×height.