Table 7. Performance metrics.
| Expt. | Model | Accuracy | Precision | Recall | F1-score | Training time |
|---|---|---|---|---|---|---|
| I | Linear SVC | 0.82 | 0.76 | 0.77 | 0.76 | 3 min 5 s |
| Support vector | 0.85 | 0.75 | 0.82 | 0.77 | 10 min 44 s | |
| Decision tree | 0.72 | 0.64 | 0.64 | 0.64 | 9.43 s | |
| Random forest | 0.84 | 0.69 | 0.85 | 0.73 | 19.3 s | |
| Logistic regression | 0.84 | 0.78 | 0.78 | 0.78 | 10.7 s | |
| Multi-layer perceptron | 0.86 | 0.80 | 0.82 | 0.81 | 2 min 14 s | |
| DistilBERT | 0.84 | 0.82 | 0.76 | 0.78 | 1 min 43 s | |
| II | Linear SVC | 0.83 | 0.79 | 0.77 | 0.78 | 1 min 43 s |
| Support vector | 0.85 | 0.80 | 0.80 | 0.80 | 13.4 s | |
| Decision tree | 0.71 | 0.62 | 0.61 | 0.62 | 1.52 s | |
| Random forest | 0.83 | 0.69 | 0.84 | 0.72 | 5.47 s | |
| Logistic regression | 0.81 | 0.79 | 0.75 | 0.77 | 0.53 s | |
| Multi-layer perceptron | 0.85 | 0.78 | 0.8 | 0.79 | 15.8 s | |
| III | Linear SVC | 0.83 | 0.80 | 0.77 | 0.78 | 6.01 s |
| Support vector | 0.87 | 0.82 | 0.83 | 0.82 | 10.5 s | |
| Decision tree | 0.74 | 0.64 | 0.65 | 0.65 | 4.2 s | |
| Random forest | 0.82 | 0.67 | 0.83 | 0.70 | 16.8 s | |
| Logistic regression | 0.82 | 0.80 | 0.76 | 0.77 | 0.33 s | |
| Multi-layer perceptron | 0.86 | 0.78 | 0.82 | 0.80 | 8.79 s |