Skip to main content
. 2022 Nov 25;8:e1127. doi: 10.7717/peerj-cs.1127

Table 7. Performance metrics.

Expt. Model Accuracy Precision Recall F1-score Training time
I Linear SVC 0.82 0.76 0.77 0.76 3 min 5 s
Support vector 0.85 0.75 0.82 0.77 10 min 44 s
Decision tree 0.72 0.64 0.64 0.64 9.43 s
Random forest 0.84 0.69 0.85 0.73 19.3 s
Logistic regression 0.84 0.78 0.78 0.78 10.7 s
Multi-layer perceptron 0.86 0.80 0.82 0.81 2 min 14 s
DistilBERT 0.84 0.82 0.76 0.78 1 min 43 s
II Linear SVC 0.83 0.79 0.77 0.78 1 min 43 s
Support vector 0.85 0.80 0.80 0.80 13.4 s
Decision tree 0.71 0.62 0.61 0.62 1.52 s
Random forest 0.83 0.69 0.84 0.72 5.47 s
Logistic regression 0.81 0.79 0.75 0.77 0.53 s
Multi-layer perceptron 0.85 0.78 0.8 0.79 15.8 s
III Linear SVC 0.83 0.80 0.77 0.78 6.01 s
Support vector 0.87 0.82 0.83 0.82 10.5 s
Decision tree 0.74 0.64 0.65 0.65 4.2 s
Random forest 0.82 0.67 0.83 0.70 16.8 s
Logistic regression 0.82 0.80 0.76 0.77 0.33 s
Multi-layer perceptron 0.86 0.78 0.82 0.80 8.79 s