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Identifying novel regulators of placental development
using time-series transcriptome data
Ha TH Vu1,2 , Haninder Kaur1, Kelby R Kies1,2, Rebekah R Starks1,2, Geetu Tuteja1,2

The placenta serves as a connection between the mother and the
fetus during pregnancy, providing the fetus with oxygen, nutri-
ents, and growth hormones. However, the regulatory mechanisms
and dynamic gene interaction networks underlying early pla-
cental development are understudied. Here, we generated RNA-
sequencing data frommouse fetal placenta at embryonic days 7.5,
8.5, and 9.5 to identify genes with timepoint-specific expression,
then inferred gene interaction networks to analyze highly con-
nected network modules. We determined that timepoint-specific
gene network modules were associated with distinct devel-
opmental processes, and with similar expression profiles to
specific human placental cell populations. From each module,
we identified hub genes and their direct neighboring genes,
which were predicted to govern placental functions. We con-
firmed that four novel candidate regulators identified through
our analyses regulate cell migration in the HTR-8/SVneo cell
line. Overall, we predicted several novel regulators of pla-
cental development expressed in specific placental cell types
using network analysis of bulk RNA-sequencing data. Our
findings and analysis approaches will be valuable for future
studies investigating the transcriptional landscape of early
development.
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Introduction

The placenta is a transient organ that has critical roles during
pregnancy, such as the transportation of oxygen and nutrients to
the fetus, waste elimination, and the secretion of growth hor-
mones. Placental defects are associated with devastating com-
plications including preeclampsia and fetal growth restriction,
which can lead to maternal or fetal mortality (1, 2). Therefore, it is
fundamental to understand the mechanisms of placental
development.

Because of ethical considerations and the opportunity for ge-
netic manipulation, mouse models are frequently used when

investigating early placental development. Like humans, mice have
a hemochorial placenta (3), meaning that maternal blood directly
comes in contact with the chorion. Although there are certain
differences between the mouse and human placenta (3, 4), they do
express common genes during gestation, including common reg-
ulators and signaling pathways involved in placental development
(4, 5, 6, 7). For example, Ascl2/ASCL2 and Tfap2c/TFAP2C are required
for the trophoblast (TB) cell lineage in both mouse and human
models (8, 9, 10). Another example is the HIF signaling pathway,
which regulates TB differentiation in both mouse and human
placenta (4).

Mouse placental development begins around embryonic day (e)
3.5 when the trophectoderm (TE) layer forms (5). The TE differen-
tiates into different TB populations at e4.5, which eventually leads
to the formation of the ectoplacental cone (EPC) (11). Between e7.5
and e9.5, the establishment of blood flow to the fetus begins, and
highly dynamic changes in placental cell composition occur. At e7.5,
the EPC is comprised of TB cells (3), organized into the inner and
peripheral populations, with the inner cells actively proliferating
and differentiating, whereas the outer cells can be invasive and
interact with the decidua (11). Around e8.5, chorioallantoic at-
tachment occurs, during which the chorion layer joins with the
allantois (12). As a result, the e8.5 mouse fetal placenta includes
cells from the EPC, chorion, and allantois (13). From e9.5 onward,
the mouse fetal placenta is composed of distinct layers: the
trophoblast giant cell (TGC) layer, the junctional zone (spongio-
trophoblast and glycogen TB cells), and the labyrinth zone
(chorion TB cells, syncytiotrophoblast [SCT] I and II cells, fetal
endothelium, and spiral artery TGCs) (14, 15). Within the labyrinth
layer, there is a dense network of vasculature where nutrients and
oxygen are transported and exchanged. Although the structure of
the placenta is not identical between mouse and human, certain
mouse placental cell types are thought to be equivalent to human
placental cell types (4). For example, parietal TGCs and glycogen
TBs have been described as equivalent to human extravillous
trophoblasts (EVTs) (4). Mouse TGCs are not as invasive as human
EVTs (4), and they have different levels of polyploidy and copy-
number variation (16); however, both EVTs and TGCs are able to
degrade extracellular matrix to enable TB migration into the
decidua (17).
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Several individual regulators of the processes active between
e7.5 and e9.5 have been identified, as reviewed in previously
published articles (5, 18, 19, 20, 21). In addition, it is important to
determine how these regulators potentially interact with other
genes as networks. To identify novel regulators or infer gene
interactions underlying developmental processes, unbiased
whole-genome transcriptomic data can be used. Previous
studies that used transcriptomics in the developing mouse
placenta were either focused on analysis of one timepoint or
focused on analysis of multiple -omics data (22, 23, 24, 25).
Other studies of gene expression in human placenta across
trimesters did not infer full gene interaction networks and
instead focused on transcription factors (TFs) (16, 26). Single-
cell analysis has been used to investigate cell type–specific
gene expression in the placenta; however, these studies do not
predict regulators underlying specific placental development
processes (27, 28).

Here, we generated RNA-sequencing (RNA-seq) data from
mouse fetal placental tissues at e7.5, e8.5, and e9.5. We then
carried out clustering, differential expression, and network
analyses to infer gene interactions and predict novel regulators
of placental development. We further demonstrated that our
network constructions could be used to infer cell populations in
the mouse placenta at the three timepoints. Finally, we con-
ducted in vitro validation experiments and confirmed that

several genes we identified have a role in regulating TB cell
migration.

Results

Genes associated with distinct placental processes show
timepoint-specific expression

We generated and analyzed transcriptomic data from fetal pla-
cental tissues at e7.5, e8.5, and e9.5 to identify genes regulating
distinct processes during placental development. Based on the
stages of placental development and the cell types present at each
stage, we predicted that genes with highest expression at e7.5
would be involved in TB proliferation or differentiation; genes with
highest expression at e8.5 would have a role in chorioallantoic
attachment; and genes with highest expression at e9.5 would have a
role in the establishment of nutrient transport. Indeed, we ob-
served that previously identified regulators of TB proliferation and
differentiation (e.g., ASCL2 (8, 29), GJB5 (30)), chorioallantoic at-
tachment (e.g., CCNF (31), ITGA4 (32)), and nutrient transport (e.g.,
GJB2 (33), IGF2 (34)) showed timepoint-specific patterns that
matched with our predictions (Fig 1A). Next, we performed hier-
archical clustering to determine whether protein-coding transcripts

Figure 1. Genes associated with distinct placental processes show timepoint-specific expression.
(A) Boxplots of scaled mean expression (in transcripts per million, TPM) of marker genes showing timepoint-specific patterns. Ascl2 and Gjb5, expected to peak at e7.5,
markers of trophoblast proliferation and differentiation (8, 30); Ccnf and Itga4, expected to peak at e8.5, markers of chorioallantoic attachment (31, 32); and Gjb2 and Igf2,
expected to peak at e9.5, markers of nutrient transport (33, 34). (B) Line charts of scaled mean raw counts of transcripts in hierarchical clusters showing group median
expression levels peak at each timepoint. (C) Bar plots showing that timepoint-associated hierarchical clusters captured most genes underlying distinct placental
processes. Markers of timepoint-associated placental processes were obtained from previously published review articles (5, 18, 19, 20, 21). Green, markers in hierarchical
cluster with amedian expression level highest at e7.5; blue, markers in hierarchical cluster with amedian expression level highest at e8.5; dark red, markers in hierarchical
cluster with a median expression level highest at e9.5; and gray, markers in no hierarchical clusters.
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would cluster into groups that displayed timepoint-specific ex-
pression. From this analysis, we obtained three groups of transcripts
in which themedian expression was highest at e7.5 (8,242 transcripts,
equivalent to 5,566 genes), e8.5 (8,091 transcripts, equivalent to 5,536
genes), and e9.5 (7,238 transcripts, equivalent to 5,347 genes) (Fig 1B
and Table S1). Hereafter, these groups are referred to as hierarchical
clusters.

To evaluate the computational robustness and biological sig-
nificance of the hierarchical clusters, we carried out additional
analyses. First, we used three different algorithms: K-means
clustering, self-organizing maps, and spectral clustering, to validate
the trends of the expression levels in hierarchical groups, and the
number of transcript groups (k = 3, 4, and 5). Only with k = 3 did we
obtain groups with median expression-level trends consistent in all
four algorithms (Fig S1). Moreover, with k = 3, the maximum percent
of agreement (see the Materials and Methods section) between
hierarchical clusters and clusters obtained using each of the dif-
ferent algorithms was 70.34–87.26% (Fig S1), whereas the maximum
percent of agreement between hierarchical clusters and clusters
obtained from other algorithms decreases to between 55.67 and
65.72% with k = 4, and between 54.81 and 59.19% with k = 5.

Second, we compared our hierarchical group data with previ-
ously published mouse and human placental microarray time
course data from Soncin et al (7). Despite the technical differences
between the datasets, we observed a consensus that our e7.5 hi-
erarchical cluster had the highest percent of overlap compared with
the Soncin et al gene groups that are down-regulated over time, and
that our e9.5 hierarchical cluster had the highest percent of overlap
compared with the Soncin et al gene groups that either have highest
expression at e9.5–e12.5 or are up-regulated over time (Table S1).

Lastly, we determined how the genes in each cluster relate to
processes of placental development. From previously published
review articles (5, 18, 19, 20, 21), we acquired gene sets associated
with distinct processes, namely, EPC and/or spongiotrophoblast
maintenance (expected to be most active at e7.5, when the EPC is
still in a highly proliferative state (11)); TGC differentiation (expected
to be more active at e7.5 because the mouse placenta at e8.5 and
e9.5 includes more differentiated TB subtypes (3, 13, 14, 15)); cho-
rioallantoic attachment (expected to be most active at e8.5 (12));
and labyrinth branching, vascularization, and SCT differentiation
(expected to be most active at e9.5, after these processes have
initiated (21)) (Table S1). Indeed, we observed that the e7.5 hier-
archical cluster captured the most genes in the EPC and spon-
giotrophoblast maintenance and TGC differentiation groups; the
e8.5 hierarchical cluster included the most genes in the chorio-
allantoic attachment group; and the e9.5 hierarchical cluster in-
cluded the most genes in the labyrinth branching, vascularization,
and SCT differentiation group (Fig 1C and Table S1). Together, these
data demonstrate that hierarchical clustering can be used to obtain
transcript groups that are associated with relevant biological
processes at each timepoint, but is not sufficient to fully distinguish
processes that may have varied activity levels throughout time.

To this end, and because hierarchical clustering is sensitive to
small perturbations in the datasets (35), we carried out differential
expression analysis (DEA) and identified transcripts and genes with
the strongest changes over time (Fig S2 and Table S2). After
combining results from hierarchical clustering and DEA, we defined

timepoint-specific gene groups (see the Materials and Methods
section for gene group definitions; Fig S2) and obtained 922 e7.5-
specific genes, 915 e8.5-specific genes, and 1952 e9.5-specific genes
(Table S3). Gene ontology (GO) analysis showed that the timepoint-
specific gene groups were enriched for highly relevant biological
processes such as “TGC differentiation” (e7.5-specific genes),
“labyrinthine layer development” (e8.5- and e9.5-specific genes),
“blood vessel development” (e7.5- and e9.5-specific genes), and
“response to nutrient” (e9.5-specific genes) (Table S3).

It is possible that timepoint-specific groups share genes that
have timepoint-specific transcripts. Indeed, we identified 37 genes
shared between e7.5 and e8.5, five genes shared between e7.5 and
e9.5, and 109 genes shared between e8.5 and e9.5 (Table S3). We
found that genes only present at one timepoint (timepoint-unique
genes) were generally enriched for similar terms as the full group of
timepoint-specific genes (Table S3). However, terms related to the
development of the labyrinth layer such as “labyrinthine layer
morphogenesis” and “labyrinthine layer blood vessel develop-
ment” were only enriched when using all e8.5-specific genes but
not when using e8.5 timepoint-unique genes. Moreover, we found
that, unlike genes shared between e9.5 and e7.5, genes shared
between e9.5 and e8.5 were enriched for processes such as “blood
vessel development” and “insulin receptor signaling pathway.” This
observation may indicate that different transcripts of the same
genes could be expressed at different timepoints for the contin-
uation of certain biological processes.

Network analysis reveals potential regulators of developmental
processes in the placenta

To predict interactions among timepoint-specific genes and subset
timepoint-specific genes into regulatory modules, we used the
STRING database (36) and GENIE3 (37) (see the Materials and
Methods section). With the two approaches of network inference,
we were able to predict networks of genes by means of previously
published experimental results and text-mining of available
publications (STRING), and de novo computational analysis with
random forest–based methods (GENIE3). We then carried out
network subclustering with the GLay algorithm (38) (see the Ma-
terials and Methods section) and identified four network modules
at e7.5, six at e8.5, and eight at e9.5 (Table S4 and Fig S3). To de-
termine whether the networks were associated with distinct pro-
cesses of placental development, we used GO enrichment analysis.

Compared with e8.5 and e9.5 networks, e7.5 networks had a
higher rank or fold change and were significantly enriched for the
GO terms “inflammatory response” (e7.5_1_STRING: −log10[q-value] =
22.82 and e7.5_2_GENIE3: −log10[q-value] = 3.95) and “female
pregnancy” (e7.5_2_GENIE3: −log10[q-value] = 4.1) (Fig 2A and
Table S5). The term “morphogenesis of a branching structure,”
which can be expected after chorioallantoic attachment around
e8.5, was not enriched at e7.5, but was enriched in multiple e8.5 and
e9.5 networks (e8.5_1_STRING: −log10[q-value] = 1.73, e8.5_2_GENIE3:
−log10[q-value] = 1.72, e9.5_1_STRING: −log10[q-value] = 4.01,
e9.5_1_GENIE3: −log10[q-value] = 1.54, e9.5_2_STRING: −log10
[q-value] = 14.33, and e9.5_2_GENIE3: −log10[q-value] = 2.2). After
chorioallantoic attachment is complete, nutrient transport is being
established. Accordingly, we observed the following enrichments:
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“endothelial cell proliferation” (highest ranked in e9.5_2_STRING:
−log10[q-value] = 15.91); “lipid biosynthetic process” (only significant
after e7.5, highest ranked in e9.5_3_STRING: −log10[q-value] = 17.63);
“cholesterol metabolic process” (only significant after e7.5, highest
ranked in e9.5_2_GENIE3: −log10[q-value] = 2.76 and e9.5_3_STRING:
−log10[q-value] = 7.79); and “response to insulin” (only significant
after e7.5, highest ranked in e9.5_1_GENIE3: −log10[q-value] = 1.67).
“Placental development,” “vasculature development,” and cell
migration–related terms (“positive regulation of cell migration” and
“epithelium migration”) are observed in networks at all timepoints,
although these terms are not consistently ranked in all networks.
Using randomization tests, we observed most of these GO terms (10
of 11 terms) were significantly enriched when using the network
genes but not random gene sets (significance level of 0.05; the term
“vasculature development” having P-value = 0.0549 and 0.0575 with
subnetworks e9.5_1_GENIE3 and e9.5_3_GENIE3, respectively) (see
the Materials and Methods section; Fig S3). This analysis demon-
strates that the network genes were highly relevant to the biological
functions of interest. Moreover, the observed GO terms strongly
aligned with the processes enriched when using the full lists of
timepoint-specific genes (Table S3), indicating the representative
characteristics of the network genes. Although the current analysis
focuses on the biological processes related to placental

development, there are other terms significantly enriched, which
can be found in Table S5. In summary, we identified 18 subnetworks
across three timepoints for downstream analyses, some of which
were enriched, according to GO analysis and randomization tests,
for specific terms relating to placental development (Fig 2A).

We predicted that hub genes, defined to be nodes with high
degree, closeness, and shortest path betweenness centrality in the
networks (see the Materials and Methods section), could be po-
tential regulators of developmental processes in the placenta. We
first determined whether the hub genes from each network with
enriched GO terms described in the previous paragraph were di-
rectly annotated or possibly related to placental functions using
the Mouse Genome Informatics (MGI) database (39) (see the Ma-
terials and Methods section; Tables 1 and S6). Briefly, genes an-
notated under any GO or MGI phenotype terms related to placenta,
TB cells, TE, and the chorion layer are considered as having a
“known” role in the placenta. Genes annotated under terms related
to embryo are considered as having a “possible” role in the pla-
centa, because embryonic lethal mouse knockout lines frequently
have placentation defects, and because defects in placental de-
velopment can be associated with the development of other em-
bryonic tissues (64, 65, 66). Hereafter, such genes are referred to as
“known/possible genes”. In the e7.5 networks, there were 17 hub

Table 1. Hub genes associated with each network.

Timepoint Network Number of hub genes Hub genes

e7.5
e7.5_1_STRING 7 Mmp9, Ptprc, Tlr2, Cd68, Ctss, Cybb, Itgb2

e7.5_2_GENIE3 10 Nr2f2 (40), Hmox1 (41), Prdm1 (42), Ctbp2 (43), Irx1, Frk, Siah2,
Satb1, Trim8, Irf9

e8.5

e8.5_1_STRING 11 Akt1 (44), Mapk14 (45), Mapk1 (46), Adam10, Creb1, Apob,
Cdh2, Cttn, Hsp90aa1, Apoe, Casp3

e8.5_2_GENIE3 17
Erf (47), Setd2 (48), Msx2, Dvl3, Dnmt1, Dnmt3b, Lin28a, Chek1,
Dnajc2, Vgll1, Gpbp1l1, Jade1, Myef2, Nfxl1, Rbmx, Rhox4e,
Cenpf

e9.5

e9.5_1_STRING 7 Fbxl19, Smurf1, Ubc, Wnt5a, Ube2d1, Mgrn1, Nedd4

e9.5_1_GENIE3 34

Rb1 (49), Yap1 (50), Esx1 (51),Ncoa3, Ski, Pitx1, Zfx, Peg3, Ash1l,
Arid1b, Arrb1, Prmt2, Tulp1, Vgll4, Creg1, Foxo3,Hif1an, Apbb1,
2700081O15Rik, Ankrd2, Bbx, Cdk5, Hdac6, Mllt3, Calcoco1,
Cavin1, Cenpb, Cited4, Dtx1, Fam129b, Hcfc2, Mlxip, Phf8,
Tsc22d1

e9.5_2_STRING 15 Cdh1 (52), Fn1 (53), Igf2 (54), Tgfb1 (55), Vegfa (56), Egfr (57),
Col1a1, Csf1, Timp1, Igf1, App, Spp1, Itpkb, Qsox1, Gas6

e9.5_2_GENIE3 27

E2f8 (58), Vegfa (56), Tead2 (59), Ets1, Orc2, Sox18, Klf3,Mrtfb,
Trip6, Cbx7, Prnp, Arhgef5, Pias1, Pias3, Rasd1, Txnip, Zfp362,
Plagl1, 5730507C01Rik, BC004004, Bhlhe40, Ctdsp1, Grhl1, Ell2,
Phf2, Fam83g, Rhox12

e9.5_3_STRING 5 Gaa, Lpcat1, Olr1, Cd59a, Stom

e9.5_3_GENIE3 29

Tead1 (59), Smad4 (60), Smad5 (61), Foxf1 (62), Cebpb, Jun,
Hes1, Tead3, Cbx4, Cdk2, Dapk3, Gata1, Hsbp1, Ncor2, Dpf3,
Limd1, Loxl2, Pcgf5, Elmsan1,Hexim1, Lhx2, Sin3b,Mta3, Jade1,
Rbm15b, Rhox4g, Rhox6, Rhox9, Tcf25

e9.5_4_STRING 10 Lpar3 (63), Gna12, Gnas, Acta2, Gcgr, Pik3r3, Rhoc, Rhog, Rhoj,
Adcy4

Colored genes are ones that have annotated or possible roles in placental development (see the Materials and Methods section); green, e7.5-specific genes;
blue, e8.5-specific genes; and brown, e9.5-specific genes. Genes in bold are hub genes in one network inference method and nodes in the other method’s
networks.

Novel regulators of the placenta using network analysis Vu et al. https://doi.org/10.26508/lsa.202201788 vol 6 | no 2 | e202201788 4 of 17

https://doi.org/10.26508/lsa.202201788


genes in which six genes were known/possible. The number of hub
genes that are labeled as known/possible is statistically significant
when comparing to random gene sets selected from the e7.5
timepoint-specific group (Fig S3). In the e8.5 and e9.5 networks, 17 of
28 and 48 of 127 hub genes were known/possible, respectively.
Similar to e7.5, the number of hub genes labeled as known/possible
in both e8.5 and e9.5 networks was statistically significant when
comparing to random gene sets selected from the corresponding
timepoint-specific groups (Fig S3). These results indicate that the
gene sets we identified are significantly associated with relevant
phenotypes in the mouse.

In the network e7.5_1_STRING, we identified seven hub genes
(Table 1), one of which (Mmp9) was considered as possibly related
to placental development according to the MGI database. Although
Mmp9was not annotated directly to placenta using our definition of
a placenta term on the MGI database, it has been shown to be
required for proper implantation, TB differentiation, and invasion
(67). In the network e7.5_2_GENIE3 (Fig 2B), 10 hub genes were
identified, five of which were annotated as regulating or having
possible roles in placental development in the MGI database. Four
of the genes are required for TB proliferation, differentiation, mi-
gration, or invasion, namely, NR2F2 (40), PRDM1 (42), HMOX1 (41), and

Figure 2. Network analysis identifies gene modules with relevant functions and reveals potential regulators of placental development.
(A) Gene ontology (GO) analysis of networks demonstrates the association of gene sets with placental development processes. Only selected terms are shown. Dot
colors correspond to ranks of the terms in each analysis; dot sizes correspond to −log10(q-value). A GO term is considered enriched if its q-value ≤ 0.05, fold change ≥ 2, and
the number of observed genes ≥ 5. For full GO enrichment analysis, see Table S5. (B) Network analysis highlights potential regulators of placental development. (A) Only a
subset of networks with enriched terms from (A) are shown. Diamond shape, hub genes with known roles in placenta; hexagon, hub genes with possible roles in
placenta; and rounded square, hubs without related annotation. Color: the darker the color is, the higher the node’s degree centrality is. For visualization of all other
subnetworks, see Fig S3.
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CTBP2 (43) (Tables 1 and S6). Other hub genes could be novel
regulators of placental functions. One example is Frk, a hub gene of
the e7.5_2_GENIE3 network, which has been suggested to inhibit cell
migration and invasion in human glioma (68) and retinal carcinoma
cells (69), but has not been studied in early placental development.
Although the networks inferred by the two methods did not share
any hub genes, hub genes identified with one method could be
members of the other method’s networks. These hub genes are
Mmp9 (e7.5_1_STRING), Frk,Hmox1, andNr2f2 (e7.5_2_GENIE3) (Table
1). This observation strengthens the potential roles of the Frk gene
in placental development.

At e8.5, hub genes included both novel and known genes in
placental development or chorioallantoic attachment. For example,
in the network e8.5_1_STRING, 11 hub genes were identified, eight of
which were known/possibly associated with placental development
according to the MGI database. For example, the genes AKT1, MAPK1,
and MAPK14 have a role in placental vascularization (44, 45, 46)
(Tables 1 and S6). For the network e8.5_2_GENIE3 (Fig 2B), there were
17 hub genes identified (Tables 1 and S6), with nine genes having
known or possible functions. E8.5_2_GENIE3 network’s hub genes
include genes that are not known/possible, but have been studied in
the context of placental development such as VGLL1 (7). Hub genes
identified with one method and present in the other method’s
networks are Hsp90aa1, Akt1, and Mapk14 (e8.5_1_STRING), and Dvl3
and Msx2 (e8.5_2_GENIE3) (Table 1). An example of a novel gene is
Jade1 (hub node of e8.5_2_GENIE3), which has been found to have
high expression in extraembryonic ectoderm and TB cells and hence
may play roles in placental vascularization by interacting with VHL
(70), but has not been tested functionally in placental tissues.

From the e9.5 networks, we identified 127 hub genes of which 48
have known/possible functions in placental development in the
MGI database (Tables 1 and S6). For instance, in e9.5_1_GENIE3,
e9.5_2_STRING, and e9.5_4_STRING, hub genes that regulate laby-
rinth layer development include EGFR (57) and RB1 (49), and hub
genes that regulate placental vasculature development include FN1
(53) and VEGFA (71). Hub genes identified with one method and
present in the other method’s networks include important genes
such as Rb1 (49), Yap1 (50) (e9.5_1_GENIE3), and Vegfa
(e9.5_2_STRING) (Table 1). Notably, Vegfa is the only hub gene
identified with both network inference methods. There are also hub
genes known to be important for placental nutrient transport such
as Igf2 (34), and other genes that could be novel regulators. For
example, LHX2 is part of the mTOR signaling pathway in osteo-
sarcoma (72), but has yet to be studied in placenta although the
mTOR signaling pathway is known to be involved in nutrient
transport in the placenta (73).

In summary, we have identified hub genes in networks at each
timepoint. Analyzing the annotations of hub genes using the MGI
database demonstrated that the hub genes are biologically rele-
vant to mouse development and will be strong candidates for
future investigation.

Timepoint-specific genes can be associated with cell-specific
expression profiles of human placenta

To determine whether timepoint-specific genes could capture
different placental cell populations, we carried out deconvolution

analysis with LinSeed (74) and inferred the cell-type profiles. Briefly,
LinSeed takes advantage of the mutual linearity relationships
between cell-specific genes and their corresponding cells to infer
the topological structures underlying cell populations of tissues.
This approach would enable us to use bulk RNA-seq data to predict
proportions of cell types in the mouse placenta without prior
knowledge of cell-type markers or matching single-cell datasets. As
input to LinSeed, we used the 5,000 most highly expressed genes
across all timepoints (expression in TPM), from which 1,413 genes
were found to be statistically significant for the inference models
and thus used to conduct the deconvolution analysis (see the
Materials and Methods section; Fig S4). As a result, we observed five
cell groups, which captured 99% of the variance in the placenta
tissue samples (Fig S4). Among these groups, e7.5 samples had the
highest proportion of cell group 3, e8.5 samples had the highest
proportion of cell group 2, and e9.5 samples had the highest
proportion of cell group 5 (Fig 3A, left panel; Table S7). Cell group 1
and cell group 4 did not have consistent cell proportions across
biological replicates of a single timepoint. The identification of
these cell groups could have resulted from noise introduced by
both biological variation and technical variation, which is chal-
lenging to overcome when using a small sample size or analyzing
without prior knowledge of the deconvolution analysis. Therefore,
we focused on cell groups 3, 2, and 5. We identified 100 markers (see
the Materials and Methods section) for cell group 3, 100 markers for
cell group 2, and 41 markers for cell group 5. Interestingly, 95 of the
100 markers of cell group 3 are e7.5-specific genes, 45 of the 100
markers of cell group 2 are e8.5-specific genes, and 40 of the 41
markers of cell group 5 are e9.5-specific genes (Fig 3A, right panel;
Table S7). This indicates that the independent timepoint-specific
gene analysis we performed in the previous section could represent
gene profiles of distinct cell populations.

To this end, we used the PlacentaCellEnrich web tool to annotate
timepoint-specific genes with human placental cell types (75). At all
timepoints, we observed enrichment suggesting the presence of TB
cells. Specifically, the e7.5-specific genes not only were most sig-
nificantly enriched for genes with EVT-specific expression (log2
[fold] = 1.75, −log10[adj. P-value] = 4.18), but also had enrichment for
SCT (log2[fold] = 1.1, −log10[adj. P-value] = 2.09), the e8.5-specific
group was only enriched for genes that had villous cytotrophoblast
(VCT)–specific expression (log2[fold] = 1.51, −log10[adj. P-value] =
2.36), and the e9.5-specific group had the highest enrichment for
genes with fetal fibroblast–specific expression (log2[fold] = 2.04,
−log10[adj. P-value] = 22.04) (Figs 3B and S5). We note that the e9.5-
specific group had enrichment for genes with cell type–specific
expression in multiple cells, including endothelial cells (log2[fold] =
2.02, −log10[adj. P-value] = 18.66), VCT (log2[fold] = 1.5, −log10[adj. P-
value] = 7.38), SCT (log2[fold] = 1.23, −log10[adj. P-value] = 6.93), and
EVT (log2[fold] = 1.05, −log10[adj. P-value] = 3.05) (Figs 3B and S5).
Together, this demonstrates that our analysis is picking up on the
diverse cell populations present at e9.5 compared with e7.5.

Motivated by the fact that cell-specific expression profiles for
multiple human placental cell types are enriched at e7.5 and e9.5,
we hypothesized that the gene network modules at each timepoint
could capture specific cell populations. Indeed, PlacentaCellEnrich
analysis of e7.5_2_GENIE3 network genes was significantly enriched
for genes with EVT-specific expression (log2[fold] = 2.32, −log10[adj.
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P-value] = 1.67) (Figs 3C and S5), but no longer with genes that have
SCT-specific expression. Both E8.5_1_STRING and e8.5_2_GENIE3
were enriched for genes with VCT-specific expression (log2[fold] =
2.35 and 3, −log10[adj. P-value] = 1.43 and 5.41, respectively). In
addition to VCT-specific expression, e8.5_2_GENIE3 had enrichment

for genes that had SCT-specific expression (log2[fold] = 2.19, −log10
[adj. P-value] = 2.93) (Figs 3C and S5). At e9.5, genes in the networks
e9.5_1_GENIE3 and e9.5_3_STRING showed strong enrichment for
TB-specific expression, such as in SCT and VCT. On the contrary,
e9.5_2_GENIE3, e9.5_2_STRING, e9.5_3_GENIE3, and e9.5_4_STRING had

Figure 3. Timepoint-specific gene groups can be associated with human placenta cell–specific expression profiles.
(A) Deconvolution analysis using LinSeed showed five cell groups, three of which had highest proportions in e7.5 samples (group 3), e8.5 samples (group 2), and e9.5
samples (group 5). Also using LinSeed, we identified markers of each cell group and observed a high number of genes in common with timepoint-specific genes (cell
group 3 with e7.5-specific genes, cell group 2 with e8.5-specific genes, and cell group 5 with e9.5-specific genes). Left panel: line charts showing cell proportions in each
sample; right panel: bar plots showing the number of cell markers in each timepoint-specific gene group. (B) Bar plots showing that timepoint-specific genes share
similar profiles to these of human placental cell populations. Enrichment analysis was carried out with PlacentaCellEnrich using first trimester human placenta single-
cell RNA-seq data to determine gene groups with cell type–specific expression. A significant enrichment has adj. P-value ≤ 0.05, fold change ≥ 2, and the number of
observed genes ≥ 5. The lightness of the colors corresponds to adj. P-value; the lighter colors, 0.005 < adj. P-value ≤ 0.05; and the darker colors, adj. P-value ≤ 0.005. Only
enrichments for cells of fetal origin are shown. Full enrichment results (including both maternal and fetal cells) are shown in Fig S5. (C) Bar plots showing that network
genes share similar profiles of specific human placental cell populations. (B) Enrichment analysis was carried out with PlacentaCellEnrich as in (B) and placenta ontology.
Gray, adj. P-value > 0.05; the lighter colors, 0.005 < adj. P-value ≤ 0.05; and the darker colors, adj. P-value ≤ 0.005. For PlacentaCellEnrich, three fetal cell types with the
lowest adj. P-values are shown. For placenta ontology, selected enrichments are shown. Full enrichment results (including both maternal and fetal cells and for every
network) of PlacentaCellEnrich are shown in Fig S5. Full enrichment results (for every network) of placenta ontology are in Table S8. Abbreviations: SCT, syncytiotrophoblast; HB,
Hofbauer cells; EVT, extravillous trophoblast; VCT, villous cytotrophoblast; EndoF, fetal endothelium; fFB1, fetal fibroblast cluster 1; fFB2, fetal fibroblast cluster 2; EVT > side
population, GSE57834_extravillous_trophoblast_UP_side_population (genes up-regulated in EVT compared with side population—original data from GSE57834); EVT > CT,
GSE57834_extravillous_trophoblast_UP_cytotrophoblast (genes up-regulated in EVT compared with cytotrophoblast—original data from GSE57834); EGFR+ VCT > ITGA2+ TB
niche, GSE106852_EGFR+_UP_ITGA2+ (genes up-regulated in EGFR+ villous cytotrophoblast compared with ITGA2+ proliferative trophoblast niche—original data from
GSE106852); and EGFR+ VCT > HLA-G+ EVCT, GSE80996_EGFR+_villous_cytotrophoblast_UP_HLA_G+_proximal_column_extravillous_cytotrophoblast (genes up-regulated in
EGFR+ villous cytotrophoblast compared with HLA-G+ proximal column extravillous cytotrophoblast, original data from GSE80996).
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strong enrichment for fetal fibroblast and endothelium-specific ex-
pression profiles (Figs 3C and S5). Importantly, randomization tests
showed that the enrichment of cell type–specific genes was only
significant in these subnetworks but not in random gene sets selected
from corresponding timepoint-hierarchical groups (Fig S6), which
highlights the biological relevance of the gene network modules.

For genes in networks e7.5_1_STRING, e9.5_1_STRING, and
e9.5_3_GENIE3, we did not observe any enrichment for fetal pla-
cental cells, possibly because not all genes in the networks are
annotated in the first trimester dataset (28) used when calculating
cell enrichments in PlacentaCellEnrich. Therefore, we also used
placenta ontology (76), which carries out enrichment tests based on
different datasets than those used in PlacentaCellEnrich. With
e7.5_1_STRING, in agreement with previous analyses on e7.5-
specific genes or genes in the e7.5_2_GENIE3 network, we ob-
served annotations related to EVT cells being enriched, such as “EVT
> side population” (log2[fold] = 1.99 and false discovery rate [FDR] =
0.027) and “EVT > CT” (log2[fold] = 1.96 and FDR = 0.028) (Table S8).
With e9.5_1_STRING, the term “EGFR+ VCT > ITGA2+ TB niche” was
enriched (log2[fold] = 1.89 and FDR = 0.023), meaning there are a
significant number of genes in this network that were up-regulated
in EGFR+ VCT compared with the ITGA2+ proliferative TB niche in the
first trimester placenta. Similarly, with e9.5_3_GENIE3, we found the
term “EGFR+ VCT > HLA-G+ EVCT” enriched (log2[fold] = 1.5 and FDR =
0.043), which means there are a significant number of genes in this
network that were up-regulated in EGFR+ VCT compared with HGL-A+
proximal column extravillous cytotrophoblast in the first trimester
placenta. In the other networks, placenta ontology enrichment re-
sults generally agreed with PlacentaCellEnrich (Table S8). Together,
the PlacentaCellEnrich and placenta ontology analyses provide ev-
idence that network analysis can be used to identify genes more
likely associated with specific placental cell types.

In summary, we have demonstrated that the identification of
timepoint-specific gene groups and densely connected network
modules can be used to infer the cellular composition of bulk RNA-
seq samples. We used independent human datasets from different
sources to annotate the cell types in each timepoint’s sample. As a
result, from the bulk RNA-seq data we were able to observe that at
e7.5 and e8.5, there were a high proportion of different TB pop-
ulations, whereas at e9.5, the placental tissues consisted of multiple
cell types such as TB, endothelial, and fibroblast cells.

Gene knockdown provides further evidence for a role of network
genes in the placenta

As described in the Network analysis reveals potential regulators of
developmental processes in the placenta section, we identified hub
nodes, and as a result also obtained genes directly connected to
the hub nodes (Table S6). Many of the genes (23 genes at e7.5 and
208 genes at e9.5) had drastic expression changes over time (having
at least one transcript with fold change ≥ 5 between e7.5 and e9.5)
(Table S9), which may be more likely to have regulatory roles specific
to processes or cell types associated with each timepoint. However,
there were several hub genes and genes directly connected to the
hub nodes that were differentially expressed (DE) but had lower fold
changes and showed high expression across all timepoints. We
predict these highly expressed genes to be generally important for TB

function and processes such as cell migration, a term that was
associated with multiple timepoint-specific networks (Fig 2A).

To investigate this further, we performed gene knockdown and
migration assays for four candidate genes from four different
networks in the HTR-8/SVneo cell line, an established model for
studying TB migration (55, 77, 78). From the lists of hub genes and
their directly connected nodes (Table S6), we obtained genes that
met the following criteria: having expression levels > 5 TPM in the
mouse placenta transcriptome data we generated, having ex-
pression levels > 5 FPKM (Fragments Per Kilobase of transcript per
Million of mapped reads) in human TB cell lines (79) and having
expression levels > 20 TPM in the HTR-8/SVneo cell line (23) (Table
S6). From this list, we selected four genes:Mtdh and Siah2 (from the
e7.5_1_STRING and e7.5_2_GENIE3 network, respectively), Hnrnpk
(from the e8.5_2_GENIE3), andNcor2 (from the e9.5_3_GENIE3), all of
which were nodes in networks annotated as TB subtypes (see the
Timepoint-specific genes can be associated with cell-specific ex-
pression profiles of human placenta section).

For each of the four genes, we transfected two different siRNAs,
and all eight siRNAs resulted in high knockdown efficiencies
(74–93%; Fig 4A). Each pair of siRNAs similarly reduced target protein
levels (Fig S7). Next, we performed cell migration assays and visually
observed a reduction in cell migration capacity for all four genes
(Figs 4B and S7). To determine whether the observed reduction in
cell migration was statistically significant, we further quantified the
integrated cell densities (Fig 4C and Table S10). For SIAH2 and
HNRNPK, integrated densities of cells were significantly decreased
upon knockdown with both siRNAs using a P-value ≤ 0.05. Spe-
cifically, for SIAH2, the densities reduced by 98.57% ± 0.42% (mean ±
SE) and 83.87% ± 12.1% with siRNA #1 and siRNA #2, respectively. For
HNRNPK, the densities reduced by 99.55% ± 0.09% with siRNA #1 and
98.68% ± 0.2% with siRNA #2. For MTDH and NCOR2, the reductions
were significant for one siRNA (MTDH, siRNA #2, 98.55% ± 0.86%;
NCOR2, siRNA #1, 98.11% ± 0.09%), and were fair for the other siRNA,
possibly because of the variable results between biological rep-
licates (MTDH, siRNA #1, 55.28% ± 17.22%; NCOR2, siRNA #2, 81.27% ±
14.04%). When comparing the number of cells 48 h post-
transfection for cells treated with target gene siRNA to cells
treated with negative control siRNA, we determined that none of the
target gene siRNA treatments resulted in significant changes in cell
counts. We do note that SIAH2 siRNA #1 has some decrease in cell
counts (P-value = 0.081), and NCOR2 siRNA #1 and NCOR2 siRNA #2
have some increase in cell counts (P-value = 0.081 and P-value =
0.077) compared with negative control–treated samples (Fig S7).
This provides evidence that, in general, the reduction in cell mi-
gration capacity was likely not due to the target gene impacting the
rate of cell death. Overall, these results confirm that network
analysis and gene filtering based on defined criteria can identify
genes important for TB function.

Discussion

Placental development involves multiple processes that are active
duringdifferent stages of gestation. Using transcriptomic data generated
from mouse placenta at e7.5, e8.5, and e9.5, we identified timepoint-
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specific gene groups that can be used for gene network inferences and
analyses, and for cell population annotations. Importantly, we were able
to infer cell populations at different timepoints without known marker
genes or reference datasets from the same species. The cell proportion
inferences were necessary to bypass the confounding factors from cell
heterogeneity, and thus predict more accurate novel regulators of cell-
specific processes such as TB cell migration. This computational
pipeline could be used to infer and analyze gene networks
governing the development of placenta at other timepoints or to
study developmental processes in other tissues.

Combining hierarchical clustering with DEA, we were able to
identify gene groups using an unsupervised approach. It has
also been shown that for times-series analyses with fewer than
eight timepoints, pairwise DEA combined with additional
methods identifies a more robust set of genes (80). Alterna-
tively, model-based clustering using RNA-seq profiles (81)
could also be useful for gene group identification. However, it is
still important to evaluate the robustness and functional
relevance of the fitted models by carrying out additional
downstream analyses.

Figure 4. Gene knockdown (KD) of selected network genes showing reduction in cell migration capacity.
Panels correspond to four genes, SIAH2,MTDH, HNRNPK, and NCOR2. Each condition, negative control (NC), siRNA #1, and siRNA #2, had three biological replicates. Error
bars show SD. (A) Bar plots showing that gene expression was significantly reduced after KD compared with NC. GAPDH was used for normalization of all four genes’
expression (ΔCT). Percent KD was calculated with the ΔΔCT method. Values shown were normalized to the NC siRNAs. The y-axis shows ΔΔCT value. Details of KD
efficiencies, siRNAs, and primer sequences can be found in Tables S10 and S11. (*) indicates P-value < 0.05 (one-sided Wilcoxon rank sum test, n = 3). (B) Representative
images of migration assays. Left, NC samples; middle, siRNA #1 samples; right, siRNA #2 samples. Scale bar: 500 µm. (C) Bar plots showing significant reduction in the
integrated density of cells after KD compared with NC samples. The y-axis shows integrated densities of cells in NC samples, samples KD with siRNA #1 of each gene, and
samples KD with siRNA #2 of each gene. Details of integrated densities can be found in Table S10. (*) indicates P-value < 0.05 (one-sided Wilcoxon rank sum test, n = 3).
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We carried out DEA across the three timepoints on both the
transcript and the gene level. These analyses revealed that a gene
may have transcripts that are DE at different timepoints. For ex-
ample, IGF2, a placental nutrient transport marker (82), has dif-
ferent transcripts grouped to e8.5 and e9.5 (Table S1). This
observation also aligned with a recent study, which showed in 6–10
and 11–23 wk of human placenta, DE genes, transcripts, or differ-
ential transcript usage could all assist in the understanding of
placental development (83). Therefore, in future studies, investi-
gating roles of both genes and their transcripts could give a more
complete functional profile at each timepoint. Moreover, our re-
sults, together with previous studies in human placenta (16, 26, 83),
suggest that time-series transcriptomic analyses could be a useful
approach to identify genes governing the development of the
placenta. It will be beneficial to integrate these time-series
datasets to determine species-specific biomarkers of placental
development.

We identified hub genes and their immediate neighboring
genes, which could regulate placental development and con-
firmed the roles of four novel genes in regulating cell migration
in the HTR-8/SVneo cell line. These genes were selected pri-
marily based on the network analyses, but also based on ex-
pression data from human cells to account for possible
differences between mouse and human placental gene ex-
pression. Previous studies suggested these four candidates are
functionally important in mouse. MTDH has been suggested to
regulate cell proliferation in mouse fetal development (84). The
Siah gene family is important for several functions (85). Of
relevance to the placenta, SIAH2 is an important regulator of
HIF1α during hypoxia both in vitro and in vivo (86). Moreover,
although Siah2 null mice exhibited normal phenotypes, com-
bined knockouts of Siah2 and Siah1a showed enhanced lethality
rates, suggesting the two genes have overlapping modulating
roles (87). Hnrnpk-/- mice were embryonic lethal, and Hnrnpk+/-

mice had dysfunctions in neonatal survival and development
(88). Ncor2-/- mice were embryonic lethal before e16.5 because
of heart defects (89). According to the International Mouse
Phenotyping Consortium database (90), Ncor2 null mice also
showed abnormal placental morphology at e15.5. However, none
of these genes have been studied in the context of TB migration.
We observed that although all siRNAs were able to decrease cell
migration capacity, there was variability in the amount of de-
crease, even when comparing two siRNAs targeting the same
gene. This observation did not seem to be associated with
differences in transcript or protein knockdown levels and could
be due to different off-target effects for different siRNAs.
Moreover, we observed that cell counts generally were not
decreased upon target gene knockdown compared with negative
control knockdown. However, more detailed analysis and
process-specific assays are needed. For example, future studies
assessing each gene’s role in cell adhesion, cell–cell fusion, cell
proliferation, and cell apoptosis can be done to better under-
stand their roles in placental development. We also acknowl-
edge the HTR-8/SVneo cell line bears certain differences to TB
cells such as in their miRNA expression profiles (91). Therefore,
to determine the exact roles of these genes in the placenta,
future experiments in human TB stem cells derived with the

Okae protocol (79) or gene knockout experiments in vivo are
necessary.

Interestingly, all four genes have been shown to have roles in
cancer cells: SIAH2 was shown to promote cell invasiveness in
human gastric cancer cells by interacting with ETS2 and TWIST1 (92);
MTDH regulates proliferation and migration of esophageal squa-
mous cell carcinoma cells (93); the absence of HNRNPK reduces cell
proliferation, migration, and invasion ability in human gastric
cancer cells (94); and repression of NCOR2 and ZBTB7A increased
cell migration in lung adenocarcinoma cells (95). This result further
supports previous studies that show the comparability between
placental cell migration and invasion, and tumor cell migration and
invasion (76, 96), although specific genes may have different im-
pacts on migration/invasion capacity such as with the NCOR2 gene.

In our analyses, we observed that timepoint-specific genes and
their networks represented expression profiles for specific pla-
cental cell populations at the three timepoints. In particular,
analysis of e7.5-specific and e8.5-specific genes and networks
showed that placental tissues at e7.5 and e8.5 contain different
populations of TB cells, whereas e9.5-specific genes and networks
showed multiple cell types including TB, endothelial, and fibroblast
cells. The significant overlap between e7.5-specific genes and genes
of EVT cells yielded an interesting suggestion that the TB cell
populations in e7.5 mouse placenta may share similarity in gene
profiles to human EVT, although mouse TB and human EVT have
certain differences such as their invasiveness levels (4) and levels
of polyploidy and copy-number variation (16). Examples of EVT
genes present in the e7.5-specific gene group include FSTL3 (down-
regulation decreased TB migration and invasion in the JAR cell line
(97)), ADM (increased TB migration and invasion in the JAR and the
HTR-8/SVneo cell line (98)), and ASCL2 (regulates TB differentiation
(8)). Moreover, hub genes could be used to identify potential novel
markers for the cell types corresponding to their subnetworks. For
example, hub genes of subnetworks enriched for SCT-specific genes
such as Dvl3 (e8.5_2_GENIE3) and Olr1 (e9.5_3_STRING) are not
established SCT marker genes, but are in fact DE in SCT compared
with human trophoblast stem cells, EVT (99) or endovascular TB
(100). In general, combining network analysis with existing gene
expression data from single-cell or pure-cell populations will allow
identification of novel cell-specific marker genes to help future
studies focused on different TB populations.

Although it is true that data at single-cell (sc) resolution are
necessary to gain more insight into cell populations in heteroge-
neous tissues, these results showed strong evidence that bulk
RNA-seq data could be used to infer the cell-type composition. In
addition, scRNA-seq assays could be noisier than bulk RNA-seq
because of various technical aspects such as the amount of starting
materials, cell size, cell cycle, and batch effects (101, 102), which are
difficult to correct (103). Therefore, bulk RNA-seq, ideally in con-
junction with scRNA-seq, is beneficial for the study of biological
processes that involve multiple cell types. Nevertheless, we ac-
knowledge that our deconvolution analysis and cell-type anno-
tations were limited because of the absence ofmatching scRNA-seq
data, data from pure-cell populations, or extensive cell marker lists.
As these types of information become more available, deconvo-
lution analysis can be used to identify species-specific cell types or
correct for confounding effects before DEA (104).
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In our network analysis, we observed that the GO term “in-
flammatory response” was enriched in e7.5_1_STRING (q-value =
1.52 × 10−23), e7.5_2_GENIE3 (q-value = 0.00012), and e9.5_2_STRING
(q-value = 4.17 × 10−10) (Table S5). The inflammatory process could
be happening in the placenta during e7.5 to e9.5 when TB cells
actively invade the decidua (65) and create a pro-inflammatory
environment (105). Another possibility is contamination from de-
cidual cells, which could be detected when combining bulk and
scRNA-seq (106). This further demonstrates the benefits of bulk and
scRNA-seq data integration.

Upon conclusion of this study, we have shown that in the mouse
placenta at e7.5, e8.5, and e9.5, genes with timepoint-specific ex-
pression patterns can be associated with distinct processes and
cell types. The genes identified by timepoint-specific gene network
analysis could be interesting candidates for future studies focused
on the understanding of placental development and placenta-
associated pregnancy disorders.

Materials and Methods

RNA-seq library preparation and sequencing

Placental tissue was collected from timed-pregnant CD-1 mice
(Charles River Labs) following the guidelines and protocol approved
by Iowa State University Institutional Animal Care and Use Com-
mittee, protocol number 18–350. Placenta samples were collected
as previously described (22, 107) at e7.5, e8.5, and e9.5, and the age of
the embryo was determined by following the embryonic devel-
opment guidelines (108). Briefly, tissues from the EPC and chorion
were separated from the decidua, yolk sac, umbilical cord, and
embryo, and then collected. For e7.5, 12 EPCs were collected and
pooled into one replicate, as described in (24). For e8.5, five pla-
centas were collected per replicate, and for e9.5, one placenta was
collected per replicate. Each timepoint had a total of six biological
replicates.

Tissues were processed for RNA isolation immediately after
collection using the PureLink RNA micro scale kit (12183016; Thermo
Fisher Scientific). RNA concentration and RIN values weremeasured
using the RNA 6000 Nano assay kit on the Agilent 2100 Bioanalyzer
(GTF Facility, ISU), and all samples had a RIN score ≥ 7.7 (Table S11).
Further processing of the samples, and library preparation and
sequencing were performed by the DNA facility at Iowa State
University. Libraries were sequenced using the Illumina HiSeq 3000
with single-end 50 base pair reads. The pooled library sample was
run over two sequencing lanes (technical replicates for each
sample).

RNA-seq data processing

The quality and adapter content were assessed using FastQC
(version 0.11.7) (109). Low-quality reads and adapters were trimmed
with Trimmomatic (version 0.39) (110).

Technical replicates were then merged, and the reads were
pseudo-aligned and quantified (in TPM) using Kallisto (version
0.43.1; l = 200, s = 30, b = 100) (111). Transcript sequences on

autosomal and sex chromosomes of the mouse genome
(GRCm38.p6) from Ensembl release 98 (112) were used to build the
Kallisto index.

For further quality control, we carried out hierarchical clustering
and principal component analysis of samples. First, from the
transcripts with raw counts ≥ 20 in ≥ 6 samples, we obtained the top
50% most variable transcripts, then centered and scaled their
expression. Next, we implemented hierarchical clustering with the
hclust() function in R (package stats (113), version 3.6.3), using the
agglomerative approach with the Euclidean distance and complete
linkage. To implement principal component analysis, we used the
prcomp() function in R (package stats, version 3.6.3). We observed
samples of each timepoint cluster close to each other and away
from other timepoints. Outlier samples, which did not cluster with
their respective timepoint groups, were removed before carrying
out downstream analyses (Fig S8).

Cluster analysis

Before performing all clustering procedures, transcripts with low
raw counts (mean raw counts < 20 in all timepoints) were filtered
out, and expression data (in TPM) were scaled and recentered.
Hierarchical clustering, k-means clustering, self-organizing map,
and spectral clustering were performed on the top 75% of most
variable protein-coding transcripts (23,571 transcripts in total).

We implemented hierarchical clustering with the hclust()
function in R (package stats (113), version 3.6.3), using the ag-
glomerative approach with the Euclidean distance and complete
linkage. The resulting dendrogram was cut at the second highest
level to obtain three clusters. To test the robustness of the clus-
tering assignments, we also carried out clustering with the number
of clusters as 4 and 5.

K-means clustering was carried out using the R function
kmeans() (centers = 3, 4, and 5; other parameters: default; package
stats, version 3.6.3).

Self-organizing map clustering was performed with the R
function som() with rectangular 3 × 1, 4 × 1, and 5 × 1 grid (other
parameters: default; package kohonen (114), version 3.0.10).

To implement spectral clustering, we used the following func-
tions in R: computeGaussianSimilarity() (Σ = 1) to compute similarity
matrix, and spectralClustering() (K = 3, 4, and 5; other parameters:
default; package RclusTool (115), version 0.91.3) to cluster.

The percent agreement between cluster assignments of different
methods was quantified as (number of transcripts in common
between two clusters)/(total number of transcripts in two clusters)
× 100.

To determine how the genes in each cluster relate to specific
processes of placental development, we obtained gene lists from
previously published review articles (5, 18, 19, 20, 21), then calcu-
lated the percentage of markers in hierarchical clusters as (number
of markers in a cluster)/(total number of markers of the process) ×
100.

DEA

DEA at transcript and gene levels was carried out with Sleuth
(version 0.30.0) (116) using the likelihood-ratio test (default basic
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filtering) and the P-value aggregation process (117). Fold change of a
transcript was calculated using its average raw TPM across all
samples. A transcript was considered DE if it had a fold change ≥ 1.5
and a q-value ≤ 0.05. A gene was considered DE if its q-value was ≤
0.05 and had at least one protein-coding DE transcript. For lists of
DE protein-coding transcripts that had at least one DE gene, and
lists of DE genes with at least one DE protein-coding transcripts, see
Table S2.

Definition of timepoint-specific genes

Timepoint-specific gene groups are defined as the following:

(i) e8.5-specific transcripts: transcripts in e8.5 hierarchical cluster,
are up-regulated at e8.5 (compared with e7.5), or are up-
regulated at e8.5 (compared with e9.5). E8.5-specific genes
are ones associated with e8.5-specific transcripts.

(ii) e7.5-specific transcripts: transcripts in e7.5 hierarchical cluster,
are up-regulated at e7.5 (compared with e9.5), and are not in
the e8.5-specific group. E7.5-specific genes are ones associated
with e7.5-specific transcripts.

(iii) e9.5-specific transcripts: transcripts in e9.5 hierarchical cluster,
are up-regulated at e9.5 (compared with e7.5), and are not in
the e8.5-specific group. E9.5-specific genes are ones associated
with e9.5-specific transcripts.

Network construction and analysis

The STRING database (version 11.0b) (36) was used to build
protein–protein interaction networks at each timepoint. Edges from
evidence channels: experiments, databases, text-mining, and co-
expression with a confidence score ≥ 0.55, were chosen for further
analyses.

Gene regulatory networks at each timepoint were constructed
with GENIE3 (version 1.16.0) (37). At each timepoint, as inputs for
GENIE3, timepoint-specific transcripts with average TPM at the
timepoint ≥ 5 were aggregated to obtain gene counts with the R
package tximport (version 1.14.2; countsFromAbundance = length-
ScaledTPM) (118). Genes that encode TFs and co-TFs, downloaded
from AnimalTFDB (version 3.0) (119), were treated as candidate
regulators. Then, edges with weight < the 90th percentile were
filtered out.

Largest connected components of the networks were analyzed
using Cytoscape (version 3.7.2) (120). All networks were treated as
undirected, and network subclustering was performed using the
GLay plug-in (default parameters) (38). Networks with ≥ 100 nodes
were used for further analyses. Hub genes were defined as nodes
that have degree, betweenness, and closeness centralities in the
10th percentile of their networks.

A gene was determined to have an annotated role in placental
development if it was annotated under all GO and MGI phenotype
terms related to placenta, TB cells, TE, and chorion layer. A gene was
categorized as having possible roles in placental development if it
was annotated under all GO and MGI phenotype terms related to
embryo. GO terms, MGI phenotype terms, and gene annotations
were downloaded from MGI (http://www.informatics.jax.org/)
(version 6.19) (39). For lists of terms used, see Table S6.

Randomization tests were carried out to determine whether the
number of known/possible hub genes at a timepoint is significant.
For each timepoint, from the respective timepoint-specific groups,
10,000 gene sets of the same number as the hub gene numbers
were sampled. Then, the number of known/possible genes in each
set was counted. A P-value was calculated as the number of times a
random gene set has ≥ known/possible genes than the observed
number, divided by 10,000.

GO analyses

To determine the relevant functions of the gene lists, we used GO
analysis. clusterProfiler (version 4.0.5) (121) was used, with the
mouse annotation from the org.Mm.eg.db R package (version 3.13.0)
(122), the maximum size of genes = 1,000, and a q-value cut-off =
0.05. Next, a fold change for each term was calculated as
GeneRatio/BgRatio. A GO term was considered enriched when its
q-value ≤ 0.05, fold change ≥ 2, and the number of observed genes ≥
5. Hypergeometric test was used for enrichment following the
suggestions in Rivals et al (123).

Randomization analysis was carried out to determine whether a
GO term is statistically significant for a subnetwork’s genes. For
each subnetwork, from the respective timepoint-hierarchical
groups, 10,000 gene sets with the same size as the subnetwork
were sampled. For each of the random sets, the q-value of a specific
term with ClusterProfiler (same settings as above) was obtained.
Then, the P-value of the randomization test was calculated as the
number of random gene sets with q-values lower than the q-value
of that term in the original subnetwork, divided by 10,000.

Deconvolution analysis

To infer the proportion of cell types across timepoints, we carried
out deconvolution analysis using the R package LinSeed (version
0.99.2) (74). Gene abundance (in TPM) used as inputs for the analysis
was obtained using tximport (version 1.14.2; countsFromAbundance =
lengthScaledTPM) (118). Then, we used the top 5,000 most expressed
genes across timepoints, and sampled 100,000 times to test for the
significance of the genes to be used for deconvolution analysis. A
significant gene was one with P-value ≤ 0.05. The number of cell
groups was determined after examining the singular value decom-
position plot, generated with the svdPlot() function in LinSeed. Cell
markers were defined as the top 100 genes closest to the cell group’s
corner, and closer to the corner than any other corners.

Placenta cell enrichment and placenta ontology analyses

The PlacentaCellEnrich web tool (75) and placenta ontology (76)
were used to infer the relevant cell types using gene lists. For
PlacentaCellEnrich, cell type–specific groups were based on single-
cell transcriptome data of the first trimester human maternal–fetal
interface from Vento-Tormo et al (28). An enrichment was con-
sidered significant if its adj. P-value is ≤ 0.05, fold change ≥ 2, and
the number of associated genes found is ≥ 5. For placenta ontology,
we obtained placenta ontology GMT file from Naismith et al and
uploaded the file to the WEB-based GEne SeT AnaLysis Toolkit
(www.webgestalt.org) (124) as a functional database. An ontology
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with FDR ≤ 0.05, fold change ≥ 2, and the number of observed genes
≥ 5 was considered enriched. To avoid duplication while sampling,
only genes with one-to-one pairwise orthology were considered for
the enrichment tests.

Randomization analysis was carried out to determine whether
the enrichment of human first trimester placenta cell type–specific
genes is statistically significant for a subnetwork’s gene. For each
subnetwork, from the respective timepoint-hierarchical groups,
10,000 gene sets with the same size as the subnetwork were
sampled. For each of the random sets, the adjusted P-value of a
specific cell-type enrichment with PlacentaCellEnrich (same set-
tings as above) was obtained. Then, the P-value of the randomi-
zation test was calculated as the number of random gene sets with
adjusted P-values lower than the adjusted P-value of that cell type
in the original subnetwork, divided by 10,000.

In vitro validation experiments

Cell culture
HTR-8/SVneo (CRL3271; ATCC) were cultured as recommended by
ATCC and as done by others (125). Briefly, cells were grown in RPMI-
1640 media (302001; ATCC) supplemented with 5% FBS (97068-085;
VWR) without antibiotics. Cells were split every 3–4 d, at 80–90%
confluency.

siRNA knockdown
HTR-8/SVneo cells were transfected with two different siRNAs for
each target gene knockdown (KD). Cells were split at 80% con-
fluency, and siRNA transfection was performed in six-well plates;
150,000 cells/well were seeded (23). After 24 h, cells were trans-
fected with 30 nM siRNA using RNAiMAX 3000 (13778150; Thermo
Fisher Scientific). Media were replaced after 24 h of transfection,
and then, cells were collected after 48 h of transfection, counted
using the TC20 Automated Cell Counter (Bio-Rad), and seeded for
migration assays. The remaining cells were pelleted to isolate RNA
using the Invitrogen RNA mini kit (12183018A; Thermo Fisher Sci-
entific). The RNA concentration was determined using a NanoDrop,
and 200 ng of the RNA was reverse-transcribed to cDNA (4368814;
Thermo Fisher Scientific). KD efficiencies were checked by qRT-PCR
using primers listed in Table S11. GAPDHwas used for normalization
of all four genes’ expression (ΔCT). Percent KD was calculated with
the ΔΔCT method. siRNA and primer information can be found in
Table S11.

Migration assays
Migration assays were performed using Costar inserts (3464; Corning).
The inserts were placed in a 24-well plate, and 75,000 cells in serum-
free RPMI media (30-2001; ATCC) were directly seeded in the top
chamber of the insert. The bottom chamber was filled with 600 µl of
RPMI media supplemented with 10% FBS as a chemoattractant. The
cells were allowed to migrate for 24 h at 37°C. The cells on the bottom
of the inserts were fixed in 4% PFA (AAJ61899AK; Thermo Fisher Sci-
entific) for 5min and thenwashed for 1min with PBS twice. The cells in
the top chamber were scraped off using a wet Q-tip (22029488; Thermo
Fisher Scientific), and the cells on the bottom of the inserts were
stained with hematoxylin (23245677; Thermo Fisher Scientific) for 24 h.
The inserts were washed twice in distilled water. The membrane was

cut using a scalpel (1484002; Thermo Fisher Scientific) andmounted on
a clean glass slide in VectaMount Mounting Medium (NC9354983;
Thermo Fisher Scientific). The cells were observed under a dissection
microscope and imaged at 12.5× magnification. The images were an-
alyzed using the ImageJ tool, and the integrated density was obtained
for each image.

Western blot
After siRNA KD, whole-cell lysate (4× Laemmli protein sample buffer,
1610747; Bio-Rad) or cytoplasmic extract (NE-PER Extraction Kit,
78833; Thermo Fisher Scientific) was resolved using SDS–PAGE and
transferred to the nitrocellulose membrane (1620113; Bio-Rad)
using the Trans-Blot Turbo transfer system (1704150; Bio-Rad).
After protein transfer, membranes were blocked and probed with
antibodies as listed in Table S11.

Statistical analysis
Experiments were performed with three replicates per condition
(negative control or knockdown) per gene. P-values were calculated
with the one-sided Wilcoxon rank sum test to test for a significant
decrease in cell migration, and the two-sided Wilcoxon rank sum
test for cell count comparisons.

Data Availability

All code for the analyses is available at https://github.com/Tuteja-
Lab/PlacentaRNA-seq. All raw and processed data are available for
download on NCBI Gene Expression Omnibus Repository, accession
number: GSE202243.

Supplementary Information

Supplementary Information is available at https://doi.org/10.26508/lsa.
202201788
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