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Abstract 

Background:  The application of clinical mNGS for diagnosing respiratory infections improves etiology diagnosis, 
however at the same time, it brings new challenges as an unbiased sequencing method informing all identified 
microbiomes in the specimen.

Methods:  Strategy evaluation and metagenomic analysis were performed for the mNGS data generated between 
March 2017 and October 2019. Diagnostic strengths of four specimen types were assessed to pinpoint the more 
appropriate type for mNGS diagnosis of respiratory infections. Microbiome complexity was revealed between patient 
cohorts and infection types. A bioinformatic pipeline resembling diagnosis results was built based upon multiple 
bioinformatic parameters.

Results:  The positive predictive values (PPVs) for mNGS diagnosing of non-mycobacterium, Nontuberculous Mycobac-
teria (NTM), and Aspergillus were obviously higher in bronchoalveolar lavage fluid (BALF) demonstrating the potency 
of BALF in mNGS diagnosis. Lung tissues and sputum were acceptable for diagnosis of the Mycobacterium tuberculosis 
(MTB) infections. Interestingly, significant taxonomy differences were identified in sufficient BALF specimens, and 
unique bacteriome and virome compositions were found in the BALF specimens of tumor patients. Our pipeline 
showed comparative diagnostic strength with the clinical microbiological diagnosis.

Conclusions:  To achieve reliable mNGS diagnosis result, BALF specimens for suspicious common infections, and lung 
tissues and sputum for doubtful MTB infections are recommended to avoid the false results given by the complexed 
respiratory microbiomes. Our developed bioinformatic pipeline successful helps mNGS data interpretation and 
reduces manual corrections for etiology diagnosis.
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Background
Respiratory tract infection (RTI) covers a broad range 
of symptoms, and can cause millions of deaths world-
wide [1]. Although lists of common pathogens (such 
as Streptococcus pneumoniae, Staphylococcus aureus, 
Klebsiella pneumoniae, Haemophilus influenzae, and 
anaerobes) have been reported as causing typical pneu-
monia, practically, a broader spectrum of microorgan-
isms can infect the human respiratory system and cause 
unexpected RTI especially in the immunocompromised 
patients [2].

Recently, metagenomic next-generation sequenc-
ing (mNGS) was developed and shows its superiority 
in terms of unbiased microbial detection for the RTIs 
[3, 4]. Clinical practice can benefit from the respira-
tory mNGS testing mainly from the following aspects: 
(1) detection of unexpected pathogens such as rare 
fungi in chronic pneumonia [5], (2) rapid identification 
of fastidious pathogen, such as Chlamydia psittaci, in 
acute and severe pneumonia supporting the termina-
tion of unnecessary administration of broad-spectrum 
antibiotics [6], (3) rapid identification of slow-growing 
pathogens such as the mycobacteria and improving the 
effect of clinical precautions to prevent tuberculosis 
transmission; (4) identification of clinically non-culti-
vable virus allowing the improvement of antimicrobial 
stewardship programs; (5) comprehensive detection of 
multiple pathogens in pneumonia in the immunocom-
promised [7], (6)screening opportunistic pathogens 
before non-antimicrobial treatment (e.g., glucocorti-
coid inhalation), and ruling out infection in inflam-
matory airway diseases [8]. Our former study, mainly 
focusing on lung infections, has demonstrated that, for 
cases where the microbial identification result from the 
conventional methods was inconclusive, mNGS leaded 
to 61% cases of diagnosis modifications and 58% of the 
cases of treatment adjustments [9]. Besides, comparing 
to the conventional culturing method, the sensitivity of 
mNGS is less affected by antibiotic exposure [10]. All 
the above advantages are clinically important for the 
diagnosis of the complicated respiratory diseases.

However, the output of mNGS data is like a pandora 
box, consisting of a complexity of microorganisms. 
The etiology is often mixed with contaminants and 
clinically insignificant colonizers, which provides chal-
lenges for the catchall data interpretation. Moreover, 
the respiratory tracts, one of the most complex sites in 
human body, is not a sterile body compartment, and 
harbors varieties of site-specific microbes in hosts of 
both health and disease conditions [11]. Thus, the res-
piratory tract microbiome contains both commensals 
and pathogens making differential diagnosis the most 

difficult. As such, distinguishing legitimate pathogens 
from the normal microbiome is the central challenge of 
mNGS-based diagnosis for RTIs. In another way, stud-
ies integrating pathogen detection and microbiome 
characterization by mNGS should be carried out to 
boost the understanding of respiratory diseases [2–4]. 
Only a few studies report mNGS-based microbiome 
characterizations [12, 13]. Limitations remain in under-
standing the detected spectrum of bacteriome, virome 
and mycobiome of different airway samples in respira-
tory diseases [14]. Moreover, the respiratory microbi-
ome of patients under different immune status have not 
been fully characterized, although it has been known 
that transplant patients have higher virome diversities, 
with both non-pathogenic and pathogenic viruses co-
existing in a high degree [15]. The microbiome is sup-
posed to affect populations of different immune status 
disproportionately.

On the other hand, multiple respiratory specimen 
types [nasopharyngeal aspirate, oropharyngeal swab, 
sputum, bronchoalveolar lavage fluid (BALF), pleural 
effusion, biopsy lung tissue, etc.] represent different air-
way conditions, which demand for different standards 
of mNGS data interpretation [16]. Our previous study 
reveals that appropriate choosing of respiratory speci-
mens and data interpretation based on pathogen types 
of common bacteria (non-mycobacterium), mycobacte-
rium and fungi can reinforce mNGS data interpretation 
[9]. In addition, bioinformatics-associated thresholds 
should be carefully implemented for different speci-
men types to differentiate the identified organisms into 
the etiologic agents, potential pathogens, contaminants 
and/or commensals [17]. All in all, by choosing of suit-
able specimen types and building-up of the mNGS data 
interpretation standards for RTI diagnosis are worth 
thinking deeply [18].

Based on the above research gaps, this study was car-
ried out to compare the mNGS diagnosis values using 
four respiratory specimen types, and characterize the 
respiratory microbiome compositions based on the 
most suitable specimen type. Additionally, specimen-
specific and pathogen-type-specific standards for 
mNGS data interpretation were implemented and the 
feasibility of the threshold-based data interpretation 
pipeline was evaluated.

Methods
Patient enrollment and study design
A total of 1592 airway mNGS data were retrospectively 
collected from March, 2017 to October, 2019 at Zhong-
shan Hospital, Shanghai, China. After data screening 
through chart reviewing and record checking, a sum 
of 1261 respiratory specimens from 943 patients were 
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finally enrolled for the following analysis. The diagno-
sis records were obtained upon patient discharge, and 
were regarded as the reference against which the mNGS 
results were compared. The diagnosis was comprehen-
sively made according to the standard clinical and micro-
biological criteria for RTI diagnosis based on patients’ 
symptoms and microbiology laboratory test results of 
culturing, pathological examination, serology testing, and 
polymerase chain reaction (PCR) reactions. The diagno-
sis information was also the basis for the patient’s medi-
cal treatments, and thus was used for reference standard.

The study design was shown in the flowchart of Fig. 1. 
Briefly, patients were classified into three groups: a) 
RTI-C+M, clinically diagnosed infectious disease with 
microbiology evidence; b) RTI-C, clinically diagnosed 
infectious disease without microbiology evidence, c) 
non-RTI, non-infectious respiratory disease. The RTI and 
non-RTI groups were assigned according to the standard 
clinical and microbiological criteria for RTI diagnosis 
(Additional file  1: Table  S1). The RTI groups were fur-
ther divided into the RTI-C+M (with supportive labora-
tory results) and RTI-C (without conclusive microbiology 
testing result) groups. Relevant and appropriate patients 

from the above three groups were selected for the follow-
ing comparative analysis between four specimen types 
(sputum, BALF, lung tissue, and pleural fluid) in terms of 
diagnostic performance, microbiome characterization, 
and pipeline building.

Clinical metagenomic sequencing
Our mNGS data were obtained from a rapid on-site 
mNGS platform in the hospital, where specimens were 
delivered to the lab bench almost immediately from 
the bedside. The high-quality reads were aligned to the 
human reference genome (hg19) via Burrows-Wheeler 
Alignment to remove the human-derived sequences. 
The remaining sequences were then mapped to current 
RefSeq database, which was downloaded from National 
Center Biotechnology Information (NCBI, ftp://​ftp.​ncbi.​
nlm.​nih.​gov/​genom​es/). The database used for this study 
contained 3446 bacterial species (including 127 myco-
bacterial species), 4152 viral taxa, 206 fungi, and 140 par-
asites associated with human diseases.

Fig. 1  Study design. n numbers of specimens. *BALF bronchoalveolar lavage fluid

ftp://ftp.ncbi.nlm.nih.gov/genomes/
ftp://ftp.ncbi.nlm.nih.gov/genomes/
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Pathogen identification using mNGS data
Interpretation of the mNGS data largely relied on the 
findings of our previous study and the cumulative clini-
cal experiences [9]. The bioinformatic parameters of rela-
tive abundance rate [RAR = (MRN*106/genome size)/ 
∑(MRN*106/genome size)], and mapping reads num-
ber (MRN) were chosen to interpret the mNGS data of 
this study. The RAR parameter balanced the sequenc-
ing depths and the genome sizes of the detected species, 
and could thus well present the microbe biomasses in 
each specimen. More importantly, to efficiently identify 
the causative pathogen among the microbial communi-
ties, different types of pathogens should be considered 
in different ways. Priorities should be given to the micro-
organisms with higher pathogenic potentials and lower 
colonization or contamination possibilities (Table 1).

Statistical analysis
The 2 × 2 contingency tables were derived to determine 
the positive predictive value (PPV) and the negative 
predictive value (NPV). The alpha and beta diversities 
were drawn by R packages of vegan and ggplot2. Non-
parametric Kruskal–Wallis test was performed for 
between-group comparisons with more than two groups. 
Wilcoxon signed-rank test was used to calculate the P 
values of the paired groups. Bonferroni correction was 
used for the multiple statistical tests. Permutational mul-
tivariate analysis of variance (PERMANOVA) analysis 
was used to test the effects of patient characteristics on 
the beta diversity of microbial communities. To analyze 

the differences between groups, linear discriminant anal-
ysis (LDA) effect size (LEfSe) was performed. The cor-
relation between population types and the mapped virus 
reads was analyzed by logistic regression.

Results
Comparison of four respiratory specimen types in etiologic 
diagnosis
Positive/negative predictive values in RTI‑C + M and non‑RTI 
populations
A total of 1261 respiratory specimens from 943 patients 
were involved. The demographic characteristics was in 
Additional file 1: Table S1. The 405 RTI-C + M and 233 
non-RTI cases were accessed with positive predictive 
value (PPV) and negative predictive value (NPV) (Fig. 2a, 
b). Four specimen types were evaluated separately in the 
identification of non-mycobacterium bacteria (n = 111), 
(2) mycobacterium (n = 206), and (3) fungi (n = 113). 
The overall PPV and NPV values were 73.7% and 92.1%, 
respectively. PPVs for the diagnosis of bacteria (both 
non-mycobacterium and mycobacterium) outcompeted 
the PPVs for fungi (Fig. 2a). In terms of non-mycobacte-
ria identification, although a lower PPV was observed in 
pleural fluid specimens, no significant difference existed 
between them (25.0% versus 61.5% in sputum, 66.7% in 
BALF, and 50.0% in lungs). The whole PPV for mycobac-
terial infections was 57.3%, with no significant difference 
among the four specimen types (P = 0.070). The PPV for 
fungal infection diagnosis was only 25.7%, and it was sig-
nificantly lower in sputum, comparing with BALF, lung 

Table 1  Microbe types for mNGS data interpretation

NTM non-tuberculous mycobacteria was considered separately due to the low biomass of mycobacterium [19], and the demand of distinguishing pathogenic NTM 
species from environmental NTM species [20]

Microbe type Bioinformatic 
parameter

Positive threshold Borderline positive threshold Examples

Commensal RAR​  > 30% or fourfold greater than any 
other microbes

15–30% or 2–fourfold greater 
than any other microbes

Prevotella, Veillonella, and Candida

Putative pathogen RAR​  > 10% 5–10% Acinetobacter baumannii, 
Enterobacteriaceae, Enterococcus, 
Staphylococcus

Absolute pathogen MRN  > 1 either the species or genus level / Mycobacterium tuberculosis (MTB), 
Cryptococcus, and Pneumocystis 
japonicum (PJP)

Virus MRN  > 6 / /

NTM* RAR​ top 10 in the bacterial genus level / /

Fig. 2  Evaluation of the mNGS performance in four respiratory specimen types and multiple pathogen categories. a PPVs for RTI-C + M and 
non-RTI cases. b NPVs for RTI-C + M and non-RTI cases. c Positive rates between clinical conventional tests and mNGS in etiology diagnosis (RTI and 
non-RTI groups); orange, higher rates; teal, lower rates. d NTM RAR difference in three specimen types (RTI-C + M cases). e Typical cases of RTI-C + M 
NTM cases with three specimen types. f Aspergillus niger RAR difference in three specimen types (RTI-C + M cases). g Typical case of RTI-C + M 
Aspergillus niger with four specimen types. BALF, bronchoalveolar lavage fluid; G-, Gram-negative; G + , Gram-positive.

(See figure on next page.)



Page 5 of 14Miao et al. Respiratory Research          (2022) 23:345 	

Fig. 2  (See legend on previous page.)
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tissue and pleural fluid (10.2% versus 35.5%, 42.9% and 
20.0%). Regarding to the NPVs, the values were all higher 
than 80% with apparently no significant difference among 
the four specimen types (Fig. 2b).

Comparison of diagnosis positive rates in the RTI groups
As the mNGS sensitivity may be underestimated by PPV 
values of the RTI-C + M population, additional analysis 
using the positive rates of both the RTI-C + M and RTI-C 
groups were carried out (Fig. 2c). The pathogen catego-
ries were classified according to either the conventional 
microbial testing and/or the mNGS results. Interestingly, 
to detect mycobacterium, mNGS was superior in detect-
ing MTB than conventional tests, while was inferior in 
detecting NTM. Limited efficiencies for Cryptococcus 
identification were also observed.

Pathogen abundance comparisons in paired specimens
As relatively poor performance of mNGS in detecting 
NTM and fungi were observed, paired specimens with 
clinical diagnosis of NTM and Aspergillus were selected 
for further analysis (Fig.  2d–g). A total of 10 pairs of 
NTM cases got both BALF and sputum specimens tested 
for mNGS, and higher RARs of NTM were observed 
in BALF (100%) (Fig.  2d). However, a similar trend was 
not observed in the nine pairs of BALF and lung tissues. 
Three pairs (33.3%) showed higher NTM RAR in BALF, 
four (44.4%) showed higher NTM burden in lung tissues, 
and two pairs were equal (22.2%). To be more specific, 
two typical cases (P061 and P466) with paired specimens 
were chosen and the microbe composition patterns were 
shown in Fig. 2e. Clearly, BALF specimens of both NTM 
cases contained higher proportions of NTM at both the 
genus and the species levels. By contrast, sputum (eas-
ily affected by oral colonization flora) and lung tissue 
specimens (easily contaminated by the biopsy procedures 
and the lung microbiome) complicated the mNGS data 
interpretation. Eight pairs of Aspergillus niger cases with 
both BALF and sputum specimens, as well as four pairs 
of BALF and lung tissue specimens were also compared 
(Fig.  2f ). Again, relatively higher etiology burdens were 
observed in the BALF specimens rather than sputum 
(87.5% versus 12.5%) and lung tissues (100% versus 0%). 
The typical case of P065 with four types of specimens was 
shown in Fig. 2g. The mNGS test using BALF specimen 
performed the best.

Respiratory microbiome revealed by mNGS
Distinctive microbiomes in respiratory specimen types
Microbiome comparison was performed for the iden-
tified bacteria in 1261 specimens. Shannon index was 

significantly higher in lung tissues, suggesting a more 
diverged microbiome in lung (Kruskal–Wallis test, 
P < 0.001) (Fig.  3a). The principal coordinates analy-
sis (PCoA) of beta diversity indicated distinguished 
patterns of microbial diversity of each specimen type 
(PERMANOVA, P < 0.001) (Fig.  3b). Taxonomic dif-
ferences and species richness were identified by LEfSe 
(LDA score > 3, P < 0.05) (Fig.  3c). Bacteria distribu-
tion in sputum was unique. Although some Streptococ-
cus, Neisseria, and Hemophilus species were present 
in sputum, the richest species were Veillonella and 
Rothis, which resembled the oral microbial commu-
nities instead of respiratory pathogens. Bacteria in 
lung and pleural fluid were similar, consisting species 
from environmental contaminations such as Ralsto-
nia, Burkholderia, and Acidovorax. Interestingly, the 
species distribution in BALF covered almost all spe-
cies in the other specimen types, including both of the 
oral flora and contaminants during the performance of 
bronchoscopy.

Distinguishable microbiome in infection types
We further asked whether the BALF-specific bacte-
rial distribution differed over infection types, and the 
control population (C, n = 79, patients without RTI 
nor immune disorder). To this end, we categorized the 
infection types into RTIs caused by (i) non-mycobacte-
rium (bal-RTI-non-mycob, n = 19), (ii) mycobacterium 
(bal-RTI-mycob, n = 52), and (iii) fungi (bal-RTI-fungi, 
n = 20). Likewise, PERMANOVA showed significant 
differences between the four types (Additional file  1: 
Table S2). PCoA showed apparent differences between 
them (Fig. 4a). LEfSe showed Nocardia brasiliensis with 
a higher-than-four LDA score in bal-RTI-non-mycob; 
three mycobacterium species, i.e., MTB, M. africa-
num, and M. orygis in bal-RTI-mycob (LDA score > 3, 
P < 0.05); Streptococcus, Neisseria, Prevotella, Gemella, 
etc. in bal-RTI-fungi (LDA score > 3, P < 0.05); and 
the widest range of bacteria in the control population 
(Fig.  4b). LefSe further identified unique organisms at 
the species level in patients with MTB and NTM infec-
tions (Fig.  4c). As expected, MTB (LDA score = 4.13, 
P < 0.001) and M. abscessus (MAB, LDA score = 4.28, 
P < 0.05) achieved the highest scores in each group. 
More interestingly, in the MTB infection group, a broad 
spectrum of NTM species were identified with LDA 
scores higher than three.

Noteworthy microbiome in patient cohorts
Considering the clinical traits of the enrolled patients, 
we divided the 1261 cases into four cohorts, i.e., (1) 
immunocompetent patients with RTIs (RTI, n = 740), 
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Fig. 3  Respiratory microbiome revealed by mNGS in four types of specimens (n = 1261). a Alpha diversity of the microbes. b Beta diversity based 
PCoA plot using the Bray–Curtis distance metrics of bacteria. c Heatmap of the bacteria abundance and LEfSe analysis to rank the discriminating 
specimen-specific species (LDA score > 3, P < 0.05)
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(2) immunocompromised patients with tumor, rheu-
matic disease or transplantation (IMD, n = 154), (3) 
immunocompromised patients with RTI (RTI-IMD, 
n = 288), and (4) the immunocompetent control 
patients without RTI (C, n = 79) (Additional file  1: 
Table  S1). PERMANOVA showed significant spe-
cies differences between populations, especially in 
the liquid specimens of BALF and pleural fluid (Addi-
tional file  1: Table  S3). PCoA plots were also drawn 
for the pairwise comparison between populations, 

and apparent differences between IMD versus C and 
IMD versus RTI-IMD were found in liquid specimens 
(Fig.  5a). Due to the small sample size of the pleural 
fluid specimens (n = 150) comparing to BALF (n = 387), 
microbiota of BALF specimens was then investigated 
for the IMD patients [(i) with tumors (bal-IMD-TU, 
n = 37), (ii) with rheumatic diseases (bal-IMD-RH, 
n = 8), (iii) with transplant (bal-IMD-TR, n = 1)], and 
the control cohort (n = 24) (Additional file 1: Fig. S1a). 
PERMANOVA again confirmed significant difference 

Fig. 4  BALF microbe distribution between infection types. a PCoA of microbes in patients diagnosed with RTIs versus the control cohort. b LEfSe 
analysis to rank the discriminating species in three infection types and the control group (LDA score > 3, P < 0.05). c LEfSe analysis to rank the 
discriminating microbes in NTM and MTB infections (LDA score > 3, P < 0.05)
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between bal-IMD-TU and C (P < 0.05) (Additional 
file  1: Table  S4). LEfSe showed in tumor patients, the 
cases were dominated by 13 species of Veillonella, 
Streptococcus, and Neisseria, etc. (LDA score > 3, 
P < 0.05) (Fig. 5b).

Virome and its distribution in the immunocompromised 
patients
The identification of bacteria distribution significantly dif-
fered by populations made us think about the situation of 
virome in humans. A large proportion of human herpes-
virus (HHV) ranging from type 1 to type 7 was identified 
in the mNGS data, with HHV-4 (also called Epstein-Barr 
virus, EBV), HHV-7, HHV-1 (also called herpes simplex 
virus type 1, HSV-1), and HHV-5 (also called cytomeg-
alovirus, CMV) being the most predominant (16.6%, 7.5%, 
7.2%, and 7.0%, respectively) (Fig.  5c). To associate the 
patient populations with reads of the top six viruses, logis-
tic regression analysis was performed (Additional file  1: 
Table  S5). Three out of the four populations were domi-
nated by EBV, however, the EBV reads increase was only 
positively associated with the possibility of being tumor 
patients (P = 0.023, OR = 1.399, 95% CI 1.047–1.871) 
(Fig.  5d). Interestingly, the coefficient estimate of HHV-1 
(HSV-1) in tumor population was − 0.554, indicating the 
amount of HHV-1 (HSV-1) reads was negatively correlated 
with tumor patients (P = 0.032, OR = 0.575, 95% CI 0.346–
0.954). Higher proportions of CMV, HHV-7, human par-
vovirus B19 (PVB19), and torque teno virus (TTV) were 
observed in transplant patients, however, no significant 
correlation was found.

Building and evaluation of the bioinformatic pipeline 
for pathogen identification
In order to effectively identify pathogens and reduce the 
need for manual corrections in the mNGS workflow, an 
algorithm for pathogen identification with multiple param-
eters [StandarDized Strictly Mapping Read Numbers at 
species/genus levels (SDSMRN), mycobacterium MRN, 
RAR, and coverage fold (CF)] was developed (Table 2). The 
standardization referred to the conversion of data into the 
number of sequences per 200,000 reads. The parameters 
involved in the optimal threshold combination were deter-
mined as follows: (1) The receiver operator characteristic 
(ROC) curves were plotted for the threshold combinations. 

(2) The optimal threshold points corresponding to the 
maximum values of the sensitivity and specificity [the larg-
est area under curve (AUC)] in the ROC curves based on 
the highest Youden index were selected.

A total of 636 cases (403 RTI-C + M/positive cases and 
233 non-RTI/negative cases) were involved (Additional 
file 1: Table S1). The cases were randomly separated into a 
training group (for optimal threshold determination) and a 
validation group (for performance assessment). To be more 
specific, 172:170 cases were involved for the non-mycobac-
terium, 221:218 for the mycobacterium, and 194:152 for 
the fungi. Taking the clinical diagnosis records the refer-
ence, the parameters for each specimen types were deter-
mined, and the PPV and NPV values of the validation set 
in pathogen identification were calculated (Table  2). The 
overall pipeline performance was comparable to the clini-
cal mNGS (PPV/NPV, 51.6%/79.4% versus 73.1%/92.1%), 
albeit less sensitive. Better PPV/NPV values for non-myco-
bacterium identification using BALF (50%/80% versus 
overall 50%/76%) and pleural fluid (50%/91% versus over-
all 50%/76%), mycobacterium identification in lung tissue 
(71%/81% versus overall 61%/76%), and fungal identifica-
tion using pleural fluid (50%/91% versus overall 32%/84%) 
were observed in the validation group.

Discussion
The inherent complexity of respiratory specimens pre-
sents unusual challenges to mNGS data interpretation, as 
colonizers, contaminants and clinically insignificant organ-
isms may confound the identification of true pathogens. 
In order to optimize the mNGS diagnosis for RTIs, based 
on our experience of clinical practice, the key issue was to 
find the most suitable specimen type. So, here in this study, 
we compared specimens of sputum, BALF, lung tissue and 
pleural fluid simultaneously in terms of pathogen identi-
fication. Moreover, subgroupings of infection types and 
patient cohorts were incorporated into consideration for 
microbiome characterization and mNGS data interpreta-
tion standardization in this metagenomic study.

In general, the supremacy of BALF for pathogen 
identification with high PPV values has been observed 
[11]. One of the possible explanations, as revealed by 
our representative cases in Fig.  2e, g, is that BALF is 
less affected by the non-pathogenetic microbes from 
the upper airways such as Candida and Veillonella in 

(See figure on next page.)
Fig. 5  Bacteria and virus distribution between patient cohorts and specimens. a PCoA of microbiome in patients diagnosed with immune 
disorders (IMD, n = 154) versus the control patients (C, n = 79), and the IMD patients versus RTI-IMD patients (n = 288). b LEfSe analysis to rank the 
discriminating specimen-specific microbes in patients with tumors (bal-IMD-TU, n = 37), and the control group (C, n = 24) (LDA score > 3, P < 0.05). 
c Virus distribution and the corresponding RARs. d Top six virus species among four types of patient cohorts (n = 1182). The P values in the logic 
regression analysis were shown: *, P ≤ 0.05
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Fig. 5  (See legend on previous page.)
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sputum, and contains higher pathogen loads as shown 
by Fig. 2d, f [7]. Also, this is the first study revealing the 
microbial composition in BALF covers almost the full 
spectrum of microbes detected in the other specimens 
(Fig. 3c). Differences between BALF and the other spec-
imens in its background microbial community have 
been identified, and the microbial composition between 
specimens is noninterchangeable. The background 

microbiome in BALF is possibly resulting from the oral 
commensals (sputum-like), local microbiota (lung tis-
sue and pleura fluid), and the bronchoscopy contami-
nants (Fig. 2e, g). All in all, this study demonstrates that 
the good efficiency of BALF in mNGS testing in two 
aspects. The first is that the pathogen abundance in 
BALF is high and is less affected by the common flora, 
and the second is the microbe spectrum detected in 

Table 2  Evaluation of the pathogen identification pipeline

BALF bronchoalveolar lavage fluid

SDSMRN StandarDized Strictly Mapping Read Numbers

RAR​ relative abundance rate

CF coverage fold

MRN mapped read number

Bold values are the results of the ‘All’s

Thresholds mNGS Diagnosis

SDSMRN RAR​ CF  +  −

Non-mycobacterium
All NPV = 76%  +  26 26

PPV = 50% − 44 143
Sputum 4000 65 3 NPV = 66%  +  18 14

PPV = 56% − 26 50

BALF 4500 60 6 NPV = 80%  +  6 6

PPV = 50% − 11 45

Lung tissue 6000 55 4 NPV = 85%  +  1 5

PPV = 17% − 5 28

Pleural fluid 1000 35 8 NPV = 91%  +  1 1

PPV = 50% − 2 20

Mycobacterium
All NPV = 76%  +  45 29

PPV = 61% − 51 166
Sputum MRN = 3 NPV = 69%  +  14 11

PPV = 56% − 28 62

BALF MRN = 3 NPV = 79%  +  17 11

PPV = 61% − 15 58

Lung tissue MRN = 13 NPV = 81%  +  10 4

PPV = 71% − 4 23

Pleural fluid MRN = 2 NPV = 85%  +  4 3

PPV = 57% − 4 23

Fungi
All NPV = 85%  +  19 44

PPV = 30% − 37 212
Sputum 400 85 7.5 NPV = 87%  +  4 9

PPV = 31% − 20 131

BALF 100 90 9.5 NPV = 80%  +  3 5

PPV = 38% − 12 47

Lung tissue 600 80 8 NPV = 76%  +  2 6

PPV = 25% − 12 37

Pleural fluid 50 80 8.5 NPV = 91%  +  1 1

PPV = 50% − 2 20
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BALF is the widest among the other respiratory speci-
men types. Hence, although tracheoscopy is challeng-
ing and could be refused by patients, we recommend 
patients, especially those with suspected NTM or 
Aspergillus infections, to have their BALF sampled to 
avoid ambiguous mNGS reports. Rigorous adherence 
to disinfection and sterilization standards when per-
forming bronchoscopy procedures is also strongly rec-
ommended to minimize the effects of the background 
microbes.

Although mNGS using BALF shows higher sensitiv-
ity in detecting NTM, the sensitivity for MTB detection 
is poorer than sputum, lung tissues, and even the pleu-
ral fluid [21]. This is in line with the previously observed 
trend that sputum is more sensitive for TB diagnosis [9]. 
The exact reason is not clear, but might be the patho-
genicity and biology difference of the two categories of 
mycobacteria. The main route of MTB transmission is 
through inhalation of aerosols from patients, indicating 
MTB might commonly colonize the upper airways [22]. 
In contrast, NTM species are environmental and oppor-
tunistic pathogens, which cannot be transmitted between 
individuals and rarely causes human diseases unless in 
immunocompromised hosts, indicating the NTM load 
could be higher in the lower airways.

It is unexpected that the mNGS detection rates for 
NTM are lower than the rates of conventional methods 
(Fig. 2c). This is mainly due to the latest diagnosis guide-
lines for NTM lung disease, recommending that patients 
who are highly suspected to have NTM infections should 
be diagnosed [23]. This is to make the globally increas-
ing burden of the hard-to-detect NTM infections to be 
noticeable [24]. In China, additional PCR assays as com-
plementation tests for the mNGS detection of NTM 
have been increasingly prevalent to capture the mNGS-
missed opportunist pathogen in healthcare settings [25]. 
However, the exact reason for the detection difficulty of 
NTM is currently unknown, possibly due to the microbi-
ological and the host’s immunological difference towards 
NTM and MTB. We also notice a relatively poor perfor-
mance of mNGS in the identification of Cryptococcus, 
as the detection sensitivities using the serum cryptococ-
cal capsular polysaccharide antigen (CrAg) test and the 
computed tomography (CT) features of pulmonary cryp-
tococcosis are higher [26]. So, most of the Cryptococcus 
cases in this study were successfully diagnosed using the 
conventional methods instead of mNGS.

Albeit normally sterile, pleural fluid gives poorer diag-
nosis performance in bacteria identification. One of the 
main reasons is the low microbial loads in the sterile 
but neutrophil-rich body fluid [27]. Pleural effusions are 
mainly built up by host inflammation reactions. Another 
reason is the incidence of pleural infection is limited 

(approximately 8 cases per 100,000 people), and pulmo-
nary infections occasionally induce peripheral pulmonary 
lesions by common Gram-positive and Gram-negative 
bacteria [28]. The PPV of pleural fluid in mycobacte-
ria detection is higher because of the high incidences of 
tuberculous pleurisy in our hospital.

The human respiratory microbiome composition is 
highly associated with specimen types, host health sta-
tus, and infection etiologies [8, 15]. So, here in this study, 
in addition to pathogen identifications, we explore the 
information given by the mNGS data harder, and char-
acterize the microbiome features in different specimens 
and populations to facilitate differential diagnosis of 
complicated infections using mNGS. Our results exhibit 
the microbial composition in immunocompetent patients 
is more divergent (Figs.  4b, 5b). As for mycobacteria in 
Fig. 4c, more relevant microbes are in MTB cases rather 
than the NTM cases, which can be due to the greater 
amount of bacterial burden and virulence in MTB cases 
comparing to the NTM cases [29]. Regarding to the 
tumor bacteriome, Veillonella, Streptococcus, Prevo-
tella and Haemophilus, which are common in patients 
with idiopathic pulmonary fibrosis and bronchiectasis 
are identified, different from the species composition in 
cystic fibrosis patients carrying Pseudomonas aeruginosa, 
Staphylococcus aureus, and Burkholderia [11].

Another microbiome analysis highlight is the virome. 
HHVs are commonly identified in this study, especially 
in the immunosuppressed patients [15]. Indeed, criti-
cally ill patients, such as the COVID-19 patients with 
poor immune status, may have multiple episodes of virus 
infections [12]. Similarly, immunocompromised patients 
have higher possibilities of virus colonizing [30]. A higher 
proportion of viruses and a relatively high proportion of 
TTVs are observed in the transplant patients, support-
ing the trend of virus co-existing in transplant patients 
and the suggestion of using TTV as a host immune sta-
tus indicator [31]. More importantly, two virus species 
[i.e., HHV-1 (HSV-1) and EBV] with regards to tumor 
patients are pinpointed by the logistic regression analy-
sis, showing varied effects of antineoplastic treatment on 
hosts [30].

The application of clinical mNGS has led us to the era 
of precise and individualized medicine, however, the 
technique can simultaneously detect both true patho-
gen and the clinically insignificant microbes [16]. A 
comprehensive view of potential false-positive (FP) 
mNGS pathogen results has been shown for each speci-
men type, ranging from oral normal flora in sputum 
and environmental contaminants and skin commensals 
in lung tissues and pleural fluid [32]. The airway micro-
biota in BALF cover almost all microorganisms present 
in the other specimen types with relatively low RARs, 
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suggesting the FPs could be filtered out by the applica-
tion of bioinformatic threshold for etiology diagnosis 
[16]. The new issue of optimizing mNGS in clinical diag-
nosis is to determine the etiological pathogen accurately 
and automatically. So, we test several parameter combi-
nations, and achieve comparative result with the results 
given by the experienced clinicians, albeit still challeng-
ing to build a fully-automatic analysis pipeline.

Conclusions
This study evaluates the clinical mNGS performance, and 
recommends the usage of BALF in respiratory infection 
diagnosis. Furthermore, it shows microbial compositions 
differing between populations, and emphasizes the flora 
differences and complexity of respiratory microbiome 
in clinical decision making. Finally, an automatic pipe-
line which can give comparable pathogen identification 
results as differential diagnosis reports given by the expe-
rience clinicians was built up.
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