Skip to main content
. 2022 Dec 14;22:316. doi: 10.1186/s12902-022-01222-0

Table 5.

Performance of the optimal models via tenfold cross validation

Models Accuracy Specificity Sensitivity AUC F1-Score
RF Type D Mean 0.7047 0.7075 0.6978 0.7027 0.5835
95% CI (0.69, 0.72) (0.69, 0.72) (0.68, 0.71) (0.69, 0.71) (0.57, 0.6)
SD 0.0178 0.0207 0.024 0.0178 0.021
XGB Type D Mean 0.6962 0.6837 0.7258 0.7048 0.5861
95% CI (0.69, 0.71) (0.67, 0.69) (0.71, 0.74) (0.69, 0.72) (0.57, 0.6)
SD 0.0177 0.0168 0.0233 0.0189 0.0215
SVM Type C Mean 0.7001 0.6985 0.7039 0.7012 0.5818
95% CI (0.69, 0.71) (0.69, 0.71) (0.69, 0.72) (0.69, 0.71) (0.57, 0.59)
SD 0.0151 0.0161 0.0219 0.0159 0.0185
LR Type C Mean 0.7021 0.7022 0.702 0.7021 0.5827
95% CI (0.69, 0.71) (0.69, 0.71) (0.69, 0.72) (0.69, 0.71) (0.57, 0.59)
SD 0.0143 0.013 0.0241 0.0164 0.0192
ANN1 Type C Mean 0.6981 0.6914 0.7142 0.7028 0.5837
95% CI (0.69, 0.71) (0.68, 0.7) (0.7, 0.73) (0.69, 0.71) (0.57, 0.6)
SD 0.016 0.0171 0.0276 0.0178 0.0207
ANN2 Type D Mean 0.6968 0.689 0.7152 0.7021 0.583
95% CI (0.69, 0.71) (0.68, 0.7) (0.71, 0.73) (0.69, 0.71) (0.57, 0.59)
SD 0.0157 0.0192 0.0163 0.0144 0.0166

ANN1 = ANN model with 1 hidden layer; ANN2 = ANN model with 2 hidden layers