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Chest X-ray (CXR) imaging is a low-cost, easy-to-use imaging alternative that can be used
to diagnose/screen pulmonary abnormalities due to infectious diseaseX: Covid-19,
Pneumonia and Tuberculosis (TB). Not limited to binary decisions (with respect to healthy
cases) that are reported in the state-of-the-art literature, we also consider non–healthy
CXR screening using a lightweight deep neural network (DNN) with a reduced number
of epochs and parameters. On three diverse publicly accessible and fully categorized data-
sets, for non–healthy versus healthy CXR screening, the proposed DNN produced the fol-
lowing accuracies: 99.87% on Covid-19 versus healthy, 99.55% on Pneumonia versus
healthy, and 99.76% on TB versus healthy datasets. On the other hand, when considering
non–healthy CXR screening, we received the following accuracies: 98.89% on Covid-19 ver-
sus Pneumonia, 98.99% on Covid-19 versus TB, and 100% on Pneumonia versus TB. To fur-
ther precisely analyze how well the proposed DNN worked, we considered well-known
DNNs such as ResNet50, ResNet152V2, MobileNetV2, and InceptionV3. Our results are
comparable with the current state-of-the-art, and as the proposed CNN is light, it could
potentially be used for mass screening in resource-constraint regions.

� 2022 Elsevier Inc. All rights reserved.
1. Introduction

Infectious diseaseX is global threat. Covid-19 is caused by the SARS-CoV-2 virus, Pneumonia is caused by viral infections,
and Tuberculosis (TB) is caused by Mycobacterium Tuberculosis (MTB) bacteria. All of these affect the lungs. According to the
World Health Organization (WHO) [1] 213 million people were sick at the time of this study, and Covid-19 was responsible
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for 4.45 million deaths. Pneumonia took the lives of around 8,08,000 people in 2017, with children under the age of five
accounting for 15% of all deaths. The death rate of the elderly has remained steady since 1990. TB infected 10 million indi-
viduals and killed 1.4 million people in 2019. With these data, it is critical to concentrate on understanding pulmonary dis-
orders/abnormalities. Artificial intelligence (AI) has prompted numerous improvements in medical imaging, and X-ray
imaging technology is fairly common and less expensive as compared to Computed Tomography (CT) scans. The nature of
the screening processes in the Covid-19 period has been enhanced by health tools [2–4]. Researchers [5] employed deep
learning (DL) based algorithms to detect the evidence of Covid-19 infection in lung region, reducing prognosis time and high-
lighting the need for RT-PCR tests. Custom Neural Networks (NNs) have been suggested for chest CT scans and chest X-rays
(CXRs) with the help of Computer-aided Diagnosis (CADx) transfer learning to diagnose pulmonary disease. Other studies
also used convolutional neural networks (CNNs) to separately detect Covid-19, Pneumonia, and TB infection in patients
[6–8].

In this paper, we proposed a custom designed Deep Neural Network (DNN) model to detect Covid-19, Pneumonia, and TB
in CXRs. We conducted cross validation to analyze and evaluated performance using Covid-19, Pneumonia, and TB CXRs
datasets, excluding healthy cases. Our findings/results are comparable with the state-of-the-art results for Covid-19, Pneu-
monia, and TB positive cases. Overall, let us itemize our research contributions:

1. Lightweight CNN: We aimed at building a lightweight (less number of layers, parameters, and epochs) DNN model to
detect pulmonary abnormalities in CXRs due to infectious diseaseX: Covid-19, Pneumonia, and TB.

2. Comprehensive experiments: Unlike state-of-the-art literature, we were not limited to classify non–healthy cases from
healthy ones, but also to classify one type of non–healthy cases from another non–healthy ones. To be precise, we pro-
duced an accuracy of 99.87% on Covid-19 versus healthy, 99.55% on Pneumonia versus healthy, 99.76% on TB versus
healthy datasets. When considering non–healthy X-ray screening, we received an accuracy of 98.89% on Covid-19 versus
Pneumonia, 98.99% on Covid-19 versus TB, and 100% on Pneumonia versus TB.

3. Genericity, scalability, and comparison: As experiments were done on three publicly accessible diverse datasets (exclud-
ing healthy cases): Covid-19 (1,200 CXRs), Pneumonia (3,875 CXRs), and TB (3,500 CXRs) without changing/modifying
parameters, our lightweight CNN is robust enough to be compared with state-the-art results. Our results are also com-
pared with other well-known DNN algorithms.

The rest of the manuscript is organized as follows. Section 2 presents background study of Covid-19, Pneumonia, and TB.
Section 3 describes the proposed DNN. Section 4 describes the experimental setup and outcomes in full. Section 5 provides
results analysis. We discuss our results (including previous results) in Section 6. Section 7 presents comparison with popular
DNNs. The work is concluded in Section 8.
2. Related works

AI contributed a lot to healthcare, and pulmonary screening/diagnosis using CXRs is no exception. DL models made it
more possible, reliable, and have a significant impact on biomedical research. In this section, we review up-to-date (recently
published, peer-reviewed) articles.

Covid-19:Covid-19’s primary symptoms include headaches, muscular discomfort, cough, frequent colds, periodic fevers,
and breathing difficulties in various susceptible instances [9]. Machine learning (ML) and/or DL models are used to prevent
potential human life hazards [10,11]. Researchers continue working on Covid-19 in 2021 on a large scale as compared to
2020. We refer authors few books on Covid-19 screening for further detailed information [12]. Authors, in [13], worked
on a new definition of cluster-based effective one-shot learning to detect Covid-19 cases. Das et al.[14] employed pre-
trained CNN model to detect Covid-19 positive patients. Mukherjee et al. [15,16] developed a CNN model to detect Covid-
19 and reported an overall accuracies of 96.28% (CT scans + CXRs) and 99.69% (CXRs) respectively. Authors, in [17,18], used
fuzzy color and stacking approaches with DL models. Deep transfer learning has been always common [19,20], where
authors reported an accuracy of more than 98%. DL models namely ‘DarkCovidNet’ and ‘CoroDet’ were proposed [21,22].
Pre-trained DL models are no exception [23,24] to detect Covid-19 cases. Ismael and Sengur [25] pre-trained ImageNet,
ResNet50, and SVM classifier, and their reported accuracy was 94.74%. Because of the diverse data sets, the results for each
study may vary. For further reading, we refer readers to follow up-to-date research article – how big data is big (for medical
imaging: Covid-19)? [26].

Pneumonia: In [27], authors examined DL approaches and automated CXR analysis for pneumonia detection so medical
practitioners could accurately diagnose Covid-19. Authors, in [28], employed transfer learning technique with a pre-trained
ImageNet model for diagnosis of Pneumonia based on lung segmentation (U-Net architecture). Authors employed largely
fine-tuned version of MobileNet V2, InceptionResNet V2, and ResNet50 to see how effective single and combined model
can be made to diagnose Pneumonia [29]. Using their combined model, they achieved an accuracy of 93.52%. The COVID-
DeepNet system [30] is a popular hybrid multimodal deep learning system that helps radiologists in precise and efficient
image interpretation with a precision rate of 99.93%. They reported 100 % precision and F1 score 99.93 %. A.K. Jaiswal
et al. [31] employed a DL method to diagnose Pneumonia using CXRs. Similarly, authors [32] used deep transfer learning
using pre-trained models such as MobileNetV3, InceptionV3, ResNet18, Xception, DenseNet121, and InceptionV3 to detect
Pneumonia, and they achieved an accuracy of 98.43%. Pre-trained models are common. In [33], AlexNet was employed to
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classify between Covid-19 and normal, and viral and bacterial pneumonia. Authors, in [34,35], employed deep transfer learn-
ing using pre-trained models: Inception-V3, VGG16, ResNet18, DenseNet201, Xception, and SqueezeNet to detect Pneumo-
nia. Similarly, pre-trained models such as GoogLeNet, LeNet, and ResNet-50, ResNet152, DenseNet121, and ResNet18 were
used [36,37]. In [38], transfer learning techniques were used to identify treatable diseases like Pneumonia and reported an
accuracy of 100.0%. They have not, however, analyzed whether results were biased.

Tuberculosis (TB): TB – a fatal infectious disease – caused by MTB bacteria. In medical imaging, feature selection is cru-
cial, and in [39], authors addressed the importance of correct use of features to achieve optimal performance. Another work
[40] evaluates on the impact of image enhancement. In [41], ensemble learning based TB detection in CXRs using hybrid fea-
ture descriptors. Another work, in [42], was to eliminate attainable sources of bias in computer assisted CXR analysis for pul-
monary TB. In [43], authors suggested CNN models for TB diagnosis based on voting and pre-processing variation ensemble.
Their findings show that 97.500% and 97.699% of data accuracy in Montgomery and Shenzhen datasets were achieved with
the suggested approach, respectively. Authors of [44] used DL techniques to identify TB using CXRs, and received 94.73% and
98.6% accuracy, respectively. For TB, DCNNs are used [45] for detecting TB using CXR images. Three DNNs, namely CAD4TB,
Lunit INSIGHT, and qXR were used [46]. Interestingly, authors used thoracic edge map of CXRs for automatically screening
pulmonary abnormalities [47,48]. Karargyris et al. [49] combined features (local and global), aiming to detect pulmonary
abnormalities caused by pneumonia or (TB). Qin et al. [50] explore five different AI algorithms to detect TB from CXRs.

Overall, in all three infectious disease types, more often, we observed that transfer learning techniques with pre-trained
models such as VGG16, GoogLeNet, LeNet, ResNet-50, ResNet152, DenseNet121, ResNet18, MobileNetV3, InceptionV3,
ResNet18, and Xception were employed. Also, they (most of them) were limited to binary classification: non–healthy versus
healthy.

The proposed tools’ primary objective, whether on Covid-19, Pneumonia, and TB, was to train a single DNN architecture
and test accordingly. Additional objective is not only to consider non–healthy versus healthy CXR screening but also to check
whether non–healthy CXR screening does work using the exact same DNN model. As before, our aim is to develop one DNN
architecture so Covid-19, Pneumonia, and TB positive patients (in CXRs) can be detected. On three publicly available data-
sets, we evaluated the model.

3. DNN architecture

There are various reasons why proposed architecture is a DNN architecture. The first thing we found is that DNNs are
quite good at lowering the amount of parameters while maintaining model quality. DNN does not require human feature
engineering because it can extract features from an image automatically. We also noted that several of the researchers
employed DNN and achieved good image classification and recognition accuracy. Our suggested DNN architecture comprises
of three layers: a convolutional layer, a pooling layer, and a fully connected layer to detect Covid-19, Pneumonia, and TB pos-
itive patients. To accomplish operations successfully, the layers are fully integrated. We have made our suggested DNN
model open to the public1.

The architecture of proposed model is shown in Fig. 1. The first layer of the architecture is the input layer, with the input
shape (224, 224, 1) with strides 2. The second layer is a convolution layer with 256 filters. The filter size of this layer is 3� 3
followed by activation function ReLU and 2� 2 max pooling layer. The third layer is convolution layer with 128 filters. The
filter size of this layer is 5� 5 followed by activation function ReLU and 2� 2 maxpooling layer. Fourth layer is convolution
layer with 256 filters. The filter size of this layer is 7� 7 followed by activation function ReLU and 2� 2 maxpooling layer.
The fifth layer of the architecture is a convolution layer with 128 filters. The filter size of this layer is 3� 3 followed by acti-
vation function ReLU and 2� 2 maxpooling layer. Sixth layer of the architecture is a convolution layer with 64 filters. The
filter size of this layer is 1� 1, followed by activation function ReLU and the 1� 1 maxpooling layer. The seventh layer of
the architecture is a flatten or fully connected layer with 0.5 or 50% dropout. The subsequent two layers are dense layers
with 256 and 128 neurons with 0.5 or 50% dropout. The eighth and last layer is output layers with a sigmoid activation func-
tion. The output shape and number of learning parameters of the proposed DNN architecture are shown in Table 1.

4. Experimental setup

4.1. Datasets

DNN requires a large amount of data. Using multiple resources, we created six different data combinations to train and
evaluate the proposed architecture. Table 2 shows all the detailed information about a collection of all images for this study.
Few samples from the above-mentioned collections are provided in Fig. 2. The combinations of six different dataset (D1 to
D6) are listed below (also in Table 3):

1. [C1:] Tawsifur Rahman’s Covid-19 collection [23,24] is publicly available. It contains 1,200 Covid-19 positive CXRs (date:
October, 2021).
1 GitHub: https://github.com/Kawsher/A-unified-deep-learning-model.git
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Fig. 1. Architecture of the proposed DNN model for abnormality screening (Covid-19, Pneumonia, and TB).

Table 1
Learning parameters for our proposed architecture (image size: 224� 224).

No Layer (type) Output shape Parameters

1 conv2d (Conv2D) (None, 112, 112, 256) 256
2 max_pooling2d (MaxPooling2) (None, 56, 56, 256) 0
3 conv2d_1 (Conv2D) (None, 52, 52, 128) 819,328
4 max_pooling2d_1 (MaxPooling2) (None, 26, 26, 128) 0
5 conv2d_2 (Conv2D) (None, 20, 20, 256) 1,605,888
6 max_pooling2d_2 (MaxPooling2) (None, 10, 10, 256) 0
7 conv2d_3 (Conv2D) (None, 8, 8, 128) 2,95,040
8 max_pooling2d_3 (MaxPooling2) (None, 4, 4, 128) 0
9 conv2d_4 (Conv2D) (None, 4, 4, 64) 8,256
10 max_pooling2d_4 (MaxPooling2) (None, 4, 4, 64) 0
11 flatten (Flatten) (None, 1024) 0
12 dropout (Dropout) (None, 1024) 0
13 dense (Dense) (None, 256) 2,62,400
14 dropout_1 (Dropout) (None, 256) 0
15 dense_1 (Dense) (None, 128) 32,896
16 dropout_2 (Dropout) (None, 128) 0
17 dense_2 (Dense) (None, 1) 129

Total parameters 3,026,497

Table 2
Data collections (open source).

Data collections # of CXRs

C1: Covid-19 1,200
C2: Pneumonia 3,875
C3: Tuberculosis 3,500

C4: Healthy 6,182
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2. [C2:] A publicly available collection [38] (Paul Mooney and his team) is composed of 5,856 CXRs, where 3,875 of them
were used in our study.

3. [C3:] We used Kaggle data (Tawsifur Rahman and his team) [44]. It contains 7,000 CXRs (date: October, 2021). This data-
set contains 3500 images of TB positive CXRs.

4. [C4:] We collected healthy images from several publicly available sources [23,24,38,44], and 6,182 CXRs were used in our
study.
392



Fig. 2. CXR samples (see Table 2): Covid-19 (left-most), Pneumonia (middle-left), TB (middle-right) and healthy (right-most).

Table 3
Details of dataset used our experiment (Table 1).

Dataset Covid-19 Pneumonia Tuberculosis

+ve �ve +ve �ve +ve �ve

D1 1,200 1,341 – – – –
D2 – – 3,875 1,341 – –
D3 – – – – 3,500 3,500
D4 1,200 – 3,875 – – –
D5 1,200 – – – 3,500 –
D6 – – 3,875 – 3,500 –
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With these collections, we built six different datasets (D1 to D6) for our experiment:

1. [D1:] It contains a total of 1,200 Covid-19 and 1,341 healthy cases.
2. [D2:] It is composed of 3,875 Pneumonia and 1,341 healthy cases.
3. [D3:] It includes 3,500 TB and 3,500 healthy cases.
4. [D4:] In D4, we have 1,200 Covid-19 and 3,875 Pneumonia cases.
5. [D5:] In D5, 1,200 Covid-19 and 3,500 TB cases were considered.
6. [D6:] In D6, 3,875 Pneumonia and 3,500 TB cases are considered.

The purpose of building the different data organizations (D1 to D3) is to show that our suggested DNN can detect Covid-
19, Pneumonia, and TB cases with respect to healthy cases. As Covid-19 could cause Pneumonia, a new dataset (D4) was cre-
ated to classify Covid-19 positive individuals and those having conventional Pneumonia. TB manifestation were also
included in D5 so that we can separate Covid-19 infected patients from TB patients, and vice versa. In addition, D6 was con-
structed to evaluate whether our model can classify between Pneumonia and TB cases.

CXRs images were scaled down to 224� 224� 1 (grayscale) for this study to match the input dimensions of the proposed
DNN model as an input to our architecture. It is also possible to reduce the computational complexity of such a resizing.

4.2. Evaluation protocol and performance metrics

We followed 10-fold cross-validation technique to evaluate our approach on all six different data sets: D1 to D6. To mea-
sure the performance, six distinct assessment metrics: accuracy (ACC), sensitivity (SEN), specificity (SEPC), precision (PREC),
F1 score, and area under the curve (AUC) were used for all 10 folds, and these are computed as follows:
ACC ¼ tpþ tn
tpþ tnþ fpþ fn

; SEN ¼ tp
tpþ fn

; SPEC ¼ tn
tnþ fp

;PREC ¼ tp
tpþ fp

; and F1 score ¼ 2
PREC� SEN
PRECþ SEN

;

where tp; fp; tn ,fn refer to true positive, false positive, true negative, and false negative respectively.
For evaluation, in addition to straightforward classification accuracy, we emphasize other important metrics such as pre-

cision, specificity, sensitivity, and F1 score. Sensitivity refers to the probability of a positive test provided that the individual
has the disease. And, specificity refers to the probability of a negative test provided that the individual is healthy. A model’s
combined performance score, the symphonic mean of its accuracy and sensitivity, is calculated using the F1 score.

4.3. Model validation

The vision was to build a simple, low-computing, low-epoch model that could identify three different lung abnormalities
using the exact same DNN model. We utilized few epochs to train our model, and we achieved an optimal performance
393



Fig. 3. Training accuracy versus validation accuracy and training loss versus validation loss on all datasets (see Table 3): a) D1, b) D2, c) D3, d) D4, e.) D5,
and f) D6.
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(twenty epochs). The entire dataset was partitioned into 70:30 ratios for training and validation purpose. The training and
validation accuracy of six data sets are shown in Fig. 3.

The training datasets D1, D2, and D3 contain 807, 27,12, 2,478 positive and 968, 939, 2,422 negative Covid-19, pneumo-
nia, and TB CXRs, respectively. Validation datasets D1, D2 and D3 comprise 393, 1,163, 1,022 positive and 373, 402, 1,078
negative Covid-19, Pneumonia and TB CXRs, respectively. To see how our proposed DNN performs for non–healthy CXR
screening, we have trained our DNN with non–healthy CXR screening. The training set of non–healthy CXR screening dataset
D4 contains 852 Covid-19 positive and 2,797 Pneumonia positive; D5 contains 8,41 Covid-19 positive and 2,451 TB positive
CXRs, and D6 2,711 Pneumonia positive and 2,451 TB positive CXRs. The validation set includes 348 Covid-19 positive and
1,078 Pneumonia positive (D4); 359 Covid-19 positive and 1,049 TB positive CXRs (D5); and 1,164 Pneumonia positive and
1,049 TB positive CXRs (D6). In Table 4, we provide accuracies and corresponding loss from both training validation of six
datasets.
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5. Results and analysis

In this section, we provide both results and analysis of our experiments. In our experiments, we considered not only
healthy versus non–healthy CXR screening but also within non–healthy CXRs.

5.1. Healthy versus non–healthy CXR screening

To provide a quantifiable result, we present the mean findings on each of healthy versus non–healthy CXR screening using
the 10-fold cross-validation. In Table 5, we provide experimental outcomes. Furthermore, detailed performance scores are
provided in the form of confusion matrix in Table 6. Confusion matrix depicts the distribution of correct and inaccurate pre-
dictions by class. Note that, in datasets (D1 to D3), we considered non–healthy versus healthy CXR screening.

Overall, the proposed DNN correctly detected all 393 Covid-19 CXRs from D1 test set, and one of 372 healthy cases was
misclassified as Covid-19 (see confusion matrix in Table 6). In D2 dataset, seven (0f 402) normal instances were misclassified
as Pneumonia and 1,163 Pneumonia cases were correctly detected. In D3, 1,021 TB cases were successfully detected and 1 TB
case was misclassified as healthy, and 4 out of 1,078 healthy cases were misclassified as TB. Following Table 6, we calculated
accuracy, sensitivity, specificity, precision, and F1 score for datasets (D1 to D3) to better understand the performance of the
proposed model (see Table 7).

5.2. Non–healthy CXR screening

To provide quantifiable outcome, we present the mean findings on each of the non–healthy CXR datasets (D3 to D6) using
10-fold cross-validation. Table 8 shows experimental results. As before, we provide confusion matrix in Table 9 for better
results analysis and/or understanding.

For non–healthy CXR screening (D4 to D6 in Table 9), we observe the following. The proposed DNN in D4 misclassified 7
Covid-19 cases as Pneumonia and 10 Pneumonia cases were misidentified as Covid-19. From D5, 10 Covid-19 cases were
misidentified as TB and 6 TB cases were misidentified as Covid-19. In D6, both TB and Pneumonia CXRs were correctly clas-
sified. With these, Table 10 shows accuracy, sensitivity, specificity, precision, and F1 score. In addition, we provide standard
deviation (r) and mean (l) that help us check statistical stability of the proposed DNN model. Interestingly, we achieved
AUC of 1 across all datasets (D4 to D6).

6. Previous studies

In this section, we provide a quick overview of our experiments as well as comparison study with several existing
approaches.

In the literature, majority of the researchers used deep transfer learning approaches [19,16,21] using pre-trained models
to detect Covid-19, Pneumonia, and TB using either CXRs. Of all, few authors [14,21] presented DL models that took into
account non–healthy CXR screening for Covid-19 and Pneumonia detection. No significant research works took into account
non–healthy CXR screening for multiple disease types: Covid-19, TB, and Pneumonia.

In Tables 11–13, we provide comparative studies. Table 11 shows the findings of some of the most recent methodologies
reported for Covid-19 detection. We observed that most of the studies at the beginning of the coronavirus pandemic did not
have enough Covid-19 positive CXRs, but later in the year 2020, we there exist relatively large data. In this category, the pro-
posed DNN model achieved 99.87% accuracy, which is the third highest accuracy among them. Note that, our comparison
may not be fair as we do not have exact same dataset as well as size. As before, Table 12 shows findings of some of the most
recent methodologies reported on Pneumonia detection. In contrast, the proposed model reported an accuracy of 99.55%,
which outperforms the existing models. However, it is important to note that our comparison may not be fair as results were
produced from using different datasets. In a similar fashion, several modern approaches were found for TB detection; and
few recent works are provided in Table 13. As before, our results (e.g., 99.76% accuracy) are comparable with the state-
of-the-art results.

7. Popular DNNs

To provide a fair comparison with the popular DNNs, we used exact same datasets (D1 to D3) and evaluation protocol. In
our study, we were limited to the following popular DNNs: ResNet50, ResNet152V2, MobileNetV2, and InceptionNetV3. With
these, we computed ROC curves and provided in Fig. 4. ROC curve (the area beneath the receiver operating characteristics) is
an important statistical assessment. As compared to ResNet50, ResNet152V2, MobileNetV2, and InceptionV3, our proposed
DNN (Covtben) performed better for all three different infectious diseases types: Covid-19 (D1 dataset), Pneumonia (D2
dataset), and TB (D3 dataset).

For a statistical significance test, we employed the Friedman statistics on three different datasets that follows ROC curve
in Fig. 4. With this, we have kð¼ 5Þ DNN models (InceptionNetV3, CovTbPnNet (proposed model), ResNet152V2, ResNet52,
and MobileNetV2) applied on Nð¼ 3Þ different datasets. For this test, we used AUC scores. To know what models perform the
395



Table 4
Training and validation performance (after 20 epochs, in %): Training Accuracy (TA), Validation Accuracy (VA), Training Loss (TL), and Validation Loss (VL).

Dataset TA VA TL VL

D1 99.03 98.88 0.0168 0.0229
D2 99.48 98.36 0.0223 0.0621
D3 99.12 99.18 0.0251 0.0200
D4 99.46 98.31 0.0170 0.1280
D5 98.81 96.06 0.0314 0.1559
D6 99.68 99.61 0.0165 0.0178

Table 5
Performance: 10-fold cross-validation accuracy (in %).

Dataset k1 k2 k3 k4 k5 k6 k7 k8 k9 k10 Avg (l� r)

D1 99.61 98.82 99.22 99.61 100.0 99.61 100.0 99.22 99.61 99.61 99.53 � 0.34
D2 99.62 99.81 99.23 99.81 99.04 98.85 99.42 99.23 99.62 99.42 99.41 � 0.30
D3 99.29 99.57 99.43 99.86 99.14 99.57 99.57 98.86 99.57 99.57 99.44 � 0.27

Table 6
Confusion matrix table for healthy versus non–healthy CXR screening.

Dataset ap tp fp an tn fn

D1 393 393 0 373 372 1
D2 1,163 1,163 0 402 395 7
D3 1,022 1,021 1 1,078 1,074 4

Table 7
Performance (in %) on healthy versus non–healthy CXR screening: accuracy, sensitivity, specificity, precision, and F1 score.

Dataset ACC AUC SEN SPEC PREC F1 score

D1 99.87 100.00 99.75 100.00 100.00 99.87
D2 99.55 100.00 99.40 100.00 100.00 99.70
D3 99.76 100.00 99.61 99.91 99.90 99.76
l 99.72 100.00 99.59 99.97 99.97 99.78
r � 0.133 0.00 � 0.181 � 0.051 � 0.058 � 0.086

Table 8
Performance: 10-fold cross-validation accuracy (in %).

Dataset k1 k2 k3 k4 k5 k6 k7 k8 k9 k10 Avg (l� r)

D4 99.61 98.82 99.41 99.02 98.04 99.41 99.02 99.21 98.43 99.02 99.00 �0.45
D5 98.73 97.88 97.45 98.51 97.88 97.66 97.66 98.30 98.73 99.36 98.22 � 0.58
D6 99.73 99.73 99.46 99.46 99.73 99.59 99.73 99.86 99.86 99.73 99.69 � 0.14

Table 9
Confusion matrix for non–healthy CXR screening.

Dataset ap tp fp an tn fn

D4 1,078 1,068 10 348 341 7
D5 1,049 1,043 6 359 349 10
D6 1,049 1,049 0 1,164 1,164 0

Table 10
Performance (in %) on non–healthy CXR screening: accuracy, sensitivity, specificity, precision, and F1 score.

Dataset ACC AUC SEN SPEC PREC F1 score

D4 98.89 100.00 99.40 97.15 99.1 99.28
D5 98.99 100.00 99.15 98.31 99.43 99.29
D6 100.00 100.00 100.00 100.00 100.00 100.00
l 99.29 100.00 99.52 98.49 99.53 99.52
r � 0.614 0 � 0.437 � 1.433 � 0.433 � 0.413
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Table 11
Performance comparison for Covid-19 detection. Also, Covid-19 positive cases are provided.

Authors Dataset size Performance (in %)

ACC AUC SPEC SEN

Das et al. (2020) [14] 18,524 CXRs: Covid-19 (972) 98.77 99.00 99.00 95.00
Togaçar et al. (2020) [17] 458 CXRs: Covid-19 (295) 97.78 – 95.74 98.86
Minaee et al. (2020) [19] 5,420 CXRs: Covid-19 (420) 98.00 – 95.80 91.00
Ozturk et al. (2020) [21] 1,127 CXRs: Covid-19 (127) 98.08 – 95.30 95.13

Chowdhury et al. (2020) [23] 3,487 CXRs: Covid-19 (423) 99.70 100.00 99.55 99.70
Aradhya et al. (2021) [13] 306 CXRs: Covid-19 (69) 79.76 – – –
Ismael et al. (2021) [25] 380 CXRs: Covid-19 (180) 92.63 – – –
Narin et al. (2021) [18] 14,194 CXRs: Covid-19 (341) 96.01 – 96.60 91.80

Mukherjee et al. (2021) [15] 336 CXRs: Covid-19 (168) 95.83 97.31 98.21 93.45
Mukherjee et al. (2021) [16] 260 CXRs: Covid-19 (130) 96.92 99.22 100.00 94.20
Bassi & Attux (2021) [20] 2,064 CXRs: Covid-19 (439) 100.00 – 99.98 99.99
Hussain et al. (2021) [22] 7,390 CXRs: Covid-19 (2,843) 99.12 – 97.36 95.36
Rahman et al. (2021) [24] 18,479 CXRs: Covid-19 (3,616) 99.65 100.00 95.59 94.56

Proposed DNN 2,541 CXRs: Covid-19 (1,200) 99.87 100.00 100.00 100.00

Table 12
Performance comparison for Pneumonia detection. Also, Pneumonia positive cases are provided.

Authors Dataset size Performance (in %)

ACC AUC SPEC SEN

Kermany, et al. (2018) [38] 5,232 CXRs: Pneumonia (3,883) 93.40 98.80 94.00 96.60
Jaiswal et al. (2019) [31] 2,5684 CXRs: Pneumonia (11,500) 98.18 – – –
Stephen et al. (2019) [36] 5,856 CXRs: Pneumonia (4,273) 95.31 – – –
Hashmi et al. (2020) [32] 5,856 CXRs: Pneumonia (4,273) 98.43 99.76 98.65 99.00
Jain et al. (2020) [34] 5,856 CXRs: Pneumonia(4,273) 92.31 – – 98.00

Chouhan et al. (2020) [35] 5,229 CXRs: Pneumonia (3,883) 96.40 99.34 – 99.62
Hammoudi et al. (2021) [27] 5,232 CXRs: Pneumonia (3,883) 97.97 – – –
Manickam et al. (2021) [28] 5,229 CXRs: Pneumonia (3,883) 93.06 – – 96.78
Asnaoui et al. (2021) [29] 6,087 CXRs: Pneumonia (4,273) 95.09 – 98.31 94.43
Waisy et al. (2021) [30] 800 CXRs: Pneumonia (400) 99.93 – 100.00 99.90
Ibrahim et al. (2021) [33] 11,568 CXRs: Pneumonia(4,450) 94.43 – 100.00 97.44

Cha et al. (2021)[37] 5,856 CXRs: Pneumonia (4,273) 96.63 96.03 – 98.46
Proposed DNN 5,216 CXRs: Pneumonia (3,875) 99.55 100.00 100.00 99.40

Table 13
Performance comparison for TB detection. Also, TB positive cases are provided.

Authors Dataset size Performance (in %)

ACC AUC SPEC SEN

Karargyris et al. (2016) [49] 615 CXRs: TB (275) 89.60 93.00 79.10 89.60
Santosh et al. (2016) [47] 682 CXRs: TB (400) 86.36 94.00 – –
Santosh et al. (2017) [48] 1,160 CXRs:: TB (478) 91.00 96.00 – –
Lakhani et al. (2017) [45] 1,007 CXRs: TB (492) 99.00 99.00 100.00 97.30
Vajda et al. (2018) [39] 814 CXRs: TB (392) 97.03 99.00 – –
Qin et al. (2019) [46] 1,196 CXRs: TB (218) 96.00 94.00 95.00 95.00

Munadi et al. (2020) [40] 662 CXRs: TB (336) 67.55 – – 94.08
Rahman et al. (2020) [44] 7,000 CXRs: TB (3,500) 96.47 – 96.40
Khan et al. (2020) [42] 2,198 CXRs: TB (272) – – 75.00 93.00
Ayaz et al. (2021) [41] 662 CXRs: TB (336) 97.59 99.00 – –
Qin et al. (2021) [50] 23,954 CXRs: TB (10,837) 91.29 – 95.00 95.00

Proposed DNN 7,000 CXRs: TB (3,500) 99.76 100.00 99.91 99.61

Md. Kawsher Mahbub, M. Biswas, L. Gaur et al. Information Sciences 592 (2022) 389–401
best, let us consider rij be the rank of jth model on ith dataset. We then computed mean of the ranks of all jth models on all
datasets as,
Rj ¼ 1
N

XN
i¼1

rij:
In Table 14, we provide detalied ranking information of all models we employed. Our proposed model (CovTbPnNet)
ranked 1.333 as opposed to 1.667 (InceptionNetV3). Using null hypothesis, we observed that models do not show significant
difference even though our model ranked first. We then computed the Friedman statistics using a chi-squared score,
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Fig. 4. AUC comparison: the proposed DNN (CovTbPnNet), ResNet50, ResNet152V2, MobileNetV2, and InceptionNetV3 a) Covid-19, b) Pneumonia, and c)
Tuberculosis.

Table 14
Statistical significance test using AUC scores of five different DNN models on three different datasets

Dataset/Model InceptionNetV3 CovTbPnNet ResNet152V2 ResNet52 MobileNetV2

D1 1.00 (1.5) 1.00 (1.5) 0.99 (3) 0.98 (4) 0.50 (5)
D2 1.00 (1.5) 1.00 (1.5) 0.99 (3) 0.81 (4) 0.50 (5)
D3 0.97 (2) 1.00 (1) 0.93 (3) 0.92 (4) 0.61 (5)

Mean rank 1.667 1.333 3 4 5
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X2
k�1 ¼ 12N

kðkþ 1Þ
X
j

R2
j �

kðkþ 1Þ2
4

" #
:

With k� 1ð¼ 4Þ degrees of freedom in our test, X2
k�1 was 4.83. For = 0.05, upper-tail critical value of chi-square distribu-

tion was 5.435. This means that we observed no significant difference.
8. Conclusion

In this paper, we have presented a lightweight (9-layered) deep neural network (DNN) to detect pulmonary abnormalities
in chest x-rays (CXRs) due to infectious diseaseX: Covid-19, Pneumonia, and Tuberculosis (TB). In our experiments, we were
not just limited to healthy versus non–healthy CXR screening, we also extended to non–healthy CXR screening. The latter
part of the experiments helped us analyze how well multiple disease types can be used for classification. In all scenarios,
performance scores can be compared with existing models (for Covid-19, Pneumonia, and TB). Further, popular DNNs were
compared as previous studies used different dataset sizes.
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As we have received the highest possible accuracy of more than 99.50%, we could see possible screening tool for infectious
diseaseX detection. Note that such a tool could help in assisting radiologists to make clinical decisions. Further, we are
encouraged to work on cross-population train/test models under the scope of activities as well as federated learning.
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