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Introduction
Weaned piglets are highly susceptible to many stressors 

including bacterial pathogens, oxidative stress, and inflamma-
tion, which predisposes pigs to post-weaning diarrhea, even-
tually leading to reduced growth performance, high mortality 
and morbidity rates, and compromised animal welfare (Yang 
et al., 2015a, 2015b; Hassan et al., 2018). Since post-weaning 

diarrhea commonly results from the proliferation of patho-
genic Escherichia coli, antibiotic growth promoters have been 
widely used in piglet diets, especially in nursery diets, to control 
incidences of diarrhea during the transition. Total consump-
tion of antimicrobials in animal food production worldwide 
was estimated at 63,151 tons in 2010, with an increasing trend; 
the annual consumption of antimicrobials per kilogram body 
weight was 148 mg/kg for pigs (Van Boeckel et al., 2015). This 
practice may lead to the spread of antimicrobial-resistant bac-
terial pathogens in pigs and humans, challenging the sustain-
ability of the pork industry (Yang et al., 2015a, 2015b). With 
environmental, health, and safety concerns, the public demands 
antibiotic-free pork (e.g., raised without antibiotics). However, 
the withdrawal of antibiotics from feeds can result in several 
challenges including compromised gut health and increased 
gut diseases. So far, we do not have a single “magic bullet” that 
can replace in-feed antibiotics. Although different types of al-
ternatives to antibiotics (e.g., essential oils and probiotics) have 
been widely recognized as promising alternatives to antibiotics 
in feeds, an integrated approach to control post-weaning diar-
rhea should be taken, including supplementation of antibiotic 
alternatives, and measures related to nutrition, biosecurity, 
and management. In this review article, we reviewed the use 
of essential oils as antibiotic alternatives, the use of ingredi-
ents to lower dietary acid-binding capacity (ABC), and the use 
of innovative chemical and biological approaches to detoxify 
vomitoxin, which may be considered important parts of an in-
tegrated approach to control post-weaning diarrhea in piglets.

Using Essential Oils as Antibiotic 
Alternatives

Essential oils have antioxidative, anti-inflammatory, and 
antimicrobial properties. Some essential oils (e.g., thymol, eu-
genol, and cinnamaldehyde) have been widely used to replace 
antibiotics in swine production mainly because of these essen-
tial oils’ antimicrobial properties (Yang et  al., 2015a, 2015b; 
Hassan et  al., 2018; Omonijo et  al., 2018a). The adverse ef-
fects of pathogenic microbes on swine health are undeniable. 
However, antimicrobial properties should not be solely based on 
selecting alternatives to antibiotics in swine production (Gresse 
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Implications

• The role of living microbes on swine health is undeni-
able. However, antimicrobial properties should not be 
solely based on selecting essential oils in swine produc-
tion. Instead of higher doses required for their killing 
pathogens properties, using lower doses of essential 
oils could prevent inflammation and “leaky gut” in-
duced by lipopolysaccharide.

• It is critical to look at the total blend of raw materials 
available for feed formulation, their inclusion levels, 
costs, feed preference as well as the targeted feed acid-
binding capacity value and then make the final decision 
based on science and field experience.

• Minimizing mycotoxin contamination in feeds is an 
important component to control post-weaning diar-
rhea. Chemical approaches, such, as the use of sodium 
metabisulfite and biological approaches, such as the 
use of microorganisms for detoxification, have shown 
promise in reducing vomitoxin.
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et al., 2017; Fouhse et al., 2016; Figure 1). Lipopolysaccharides, 
also called endotoxins, are cell wall components of Gram-
negative bacteria (e.g., Salmonella and Escherichia) that are 
present everywhere in the environment including in the intes-
tine, ground, air, and water, and have received much attention 
due to their ability to stimulate a low-grade inflammation in 
pigs (Huang et al., 2016; Nordgreen et al., 2018). One of the 
negative consequences of inflammation at the intestine level 
is increased intestinal permeability, or “leaky gut,” associated 
with impaired nutrient absorption and increases in diarrhea 
incidence (Gresse et  al., 2017). Interestingly, in addition to 
antimicrobial properties, thymol (50 µM, 7.5 mg/kg), eugenol 
(100 µM, 16.4 mg/kg), and citral (10 to 20 µM, 1.52 to 3.04 mg/
kg) can reduce inflammation associated with lipopolysac-
charide or peptidoglycan in porcine intestinal epithelial cells 
(Omonijo et al., 2019; Hui et al., 2020; Li et al., 2022a, 2022b) 
and cinnamaldehyde (25  µM, 3.3  mg/kg) can improve intes-
tinal mucosal barrier function (Sun et al., 2017). These levels 
are much lower than the minimum inhibitory concentration 
of thymol and eugenol against major pathogens (Yang et al., 
2015a, 2015b; Omonijo et al., 2018a). Moreover, the minimum 
inhibitory concentration of most essential oils is much higher 
than the acceptable levels in the animal industry in terms of 
cost-effectiveness and feed palatability (Omonijo et al., 2018a). 
Since the industry’s acceptance of essential oils also depends 

on inclusion cost, those results are encouraging producers to 
use lower doses of essential oils to prevent inflammation and 
“leaky gut” induced by lipopolysaccharide instead of using 
higher doses required for their killing pathogens properties. 
Moreover, using higher doses has drawbacks on optimal feed 
intake and cost.

The combined use of essential oils and other additives 
should lead to higher advantages. For two reasons, a combin-
ation of other alternatives with essential oils holds the most 
promise as a substitute for antibiotics in pig feeds. First, no 
single antibiotic alternative has been reported to be able to re-
place antibiotics completely. Second, a combination of prod-
ucts can have a synergistic effect that will reduce the effective 
dosages required to combat pathogens (e.g., organic acids and 
essential oils). For example, essential oil can change the struc-
ture and functions of bacterial cell membranes. This results 
in membrane swelling and thus increased membrane perme-
ability, leading the bacteria toward an increased susceptibility 
to organic acids. Moreover, the hydrophobicity (being water-
repellent) of essential oil is increased at low pH. Combining es-
sential oils with organic acids will enable the essential oil to pass 
through the lipids of the bacterial cell membrane more easily.

Essential oils exhibit great potential to prevent post-weaning 
diarrhea. However, their direct inclusion in pig diets has com-
promised efficacy because of such factors as low stability, poor 

Figure 1. Schematic diagram illustrating the four different potential mechanisms by which essential oils improve the gut ecosystem and growth performance of 
piglets.
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palatability, and low availability in the lower gut. Therefore, an 
effective and practical delivery method is very important for 
the use of essential oils in swine production. It is documented 
that the formulation of microparticles could effectively deliver 
thymol and lauric acid to the pig intestinal tract. Lauric acid 
not only acts as a carrier for thymol but also has synergistic 
antibacterial effects with thymol (Omonijo et al., 2018b). The 
stability of thymol in commercial lipid matrix microparticles 
(encapsulated essential oils and organic acids) was investigated 
during feed pelleting and feed storage and determined the 
intestinal release of thymol (Choi et  al., 2020a). The thymol 
concentration was not significantly different in the mash and 
pelleted feeds, suggesting that the pelleting of feed did not affect 
total thymol in those lipid matrix microparticles. Encapsulated 
thymol was also stable in simulated pig gastric fluid (26.0% 
thymol released). The rest of the thymol was progressively re-
leased in the simulated intestinal fluids until completion, which 
was achieved within 24 h. In a pig experiment, 15.5% of thymol 
was released in the stomach, and 41.9% of thymol was de-
livered in the mid-jejunum section, demonstrating a slow re-
lease, and 2.2% of thymol was recovered in feces (Choi et al., 
2020a). The lipid matrix microparticles maintained the stability 
of thymol during the feed pelleting process and storage and 
allowed a slow and progressive intestinal release of thymol in 
weaned pigs (Choi et al., 2020a). Subsequent studies were con-
ducted to investigate further the effects of these commercial 
lipid matrix microparticles on growth performance, immune 
system, gut barrier function, nutrient digestion, and absorption 
in disease-challenged weaned piglets and demonstrated that the 
supplementation of those lipid matrix microparticles showed 
anti-diarrhea effects in disease-challenged weaned piglets (Choi 
et al., 2020b; Xu et al., 2020). Therefore, microencapsulated es-
sential oil and organic acid combination can be a useful method 
to control post-weaning diarrhea in swine production.

Using Probiotics to Improve Gut Health
Direct-fed probiotics refer to live microorganisms sup-

plied to the host with adequate amounts benefiting the host 
(Pluske, 2013). The benefits of providing direct-fed probiotics 
into swine diets are categorized into several aspects:1) bene-
fiting gut health by modifying the composition of enteric 
microflora (Sartor, 2004); 2)  promoting immunity (Yan and 
Polk, 2011), 3)  increasing efficiency of nutrient digestion and 
utilization (Yadav and Jha, 2019) and 4) enhancing gut func-
tion and improving growth performance (Vohra et al., 2016). 
Direct-fed probiotics contain three main categories: Bacillus, 
lactic acid-producing bacteria, and yeast (Kerr et  al., 2013). 
Bacillus is a potent producer of extracellular fiber-degrading 
enzymes, which can increase nutrient digestibility and utiliza-
tion (Kiarie and Mills, 2019). In addition, Bacillus synthesizes 
enzymes that degrade feed and produces short-chain fatty acids 
through fermentation (Merchant et  al., 2011). Those short-
chain fatty acids are considered a useful energy source utilized 
by pigs to develop the large intestine (den Besten et al., 2013). 
Recent studies have identified the protective effect of Bacillus 

strains on intestinal cells challenged with enteric pathogenic 
bacteria, since they found the pre-treatment of  Bacillus could 
upregulate tight junction protein expression and decrease 
quorum sensing (Chen et al., 2021; Li et al., 2022a, 2022b). 
For weaned piglets, including lactic acid-producing bac-
teria in their dies could relieve weaning stress, reduce diar-
rhea, and enhance growth performance (Yang et al., 2015a, 
2015b). Lactic acid-producing bacteria are the primary bac-
teria in the nursing pig gut, and the lactic acid produced by 
lactic acid bacteria fermentation can inhibit the growth of 
intestinal pathogenetic bacteria and helps to aid immunity 
(Guevarra et al., 2019). That makes the supplementation of 
lactic acid-producing bacteria beneficial for the weaned pig-
lets (Guevarra et al., 2019). The common forms of  yeast sup-
plied to pig diets include whole live yeast cells, heat-treated 
yeast cells, ground yeast cells, purified yeast cell cultures, 
and yeast extracts. Yeast supplementation has been reported 
to boost intestinal development by providing fermentation 
by-products such as short chain fatty acids to pigs and re-
ducing post-weaning scour by supplying weaned piglets with 
beneficial nutrients such as specific sugars and nucleotides 
(Broadway et al., 2015). Accordingly, introducing probiotics 
in the creep feed is increasingly being explored (Barba-Vidal 
et  al., 2018). However, the results of  these studies are not 
consistent and further studies are still needed to interpret the 
mechanisms of  action of  probiotics and their interaction in 
various gut health situations.

Using Ingredients to Lower Dietary 
 Acid-binding Capacity

Due to the decreased capacity of gastric acid secretion at 
weaning, weaned piglets have a higher pH value in the stomach 
than sow-reared piglets (Heo et al., 2013). Maintaining a lower 
gastric pH value is pivotal for the gut health of weaned piglets 
because this can positively affect the nutrition digestion and 
pathogenic bacteria inhibition. In contrast, the elevated gas-
tric pH level makes weaned piglets more susceptible to enteric 
infections (Heo et al., 2013). Hence, not only the amino acid 
profile or the energy content of the diet but also other nutri-
ents and key parameters should be considered (e.g., dietary 
ABC, Table 1). It refers to the ration’s resistance to a low pH 
in the pig’s stomach, is highly related to raw materials used in 
the feed and has a great impact on the pH of the stomach and 
feed digestibility. A high ABC can lead to lower digestibility 
of dry matter and crude protein and, therefore, adversely af-
fect the growth performance of piglets. Moreover, a high ABC 
can increase the release of amine and ammonia that are toxic 
and could lead to diarrhea. The ABC value of feed ingredients 
and complete feeds can be calculated as the amount of acid 
in milliequivalents (meq) required to lower the pH of 1 kg of 
a sample to pH 4 and pH 3 based on the measurement value 
from a 0.5 g sample (Lawlor et al. 2005) and it can be used a 
nutrient constraint in feed formulation to select suitable ingre-
dients. Therefore, lowering the ABC of the diets for new wean-
lings with the addition of feedstuffs with a low ABC in piglet 
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feed formulations can be a good strategy for controlling diar-
rhea in weaned piglets (Huting et al., 2021).

Some mineral sources are key contributors to a high ABC 
value of feed, especially limestone (calcium carbonate), 
dicalcium phosphate (DCP), mono-dicalcium phosphate 
(MDCP) and zinc oxide (ZnO). So, it is very important to 
avoid limestone, DCP, and MDCP in formulating a weaner 
diet. Lowering calcium levels by decreasing the limestone con-
tent of the feed has a huge impact on the buffering capacity of 
the feed and on improving growth performance (Blavi et  al., 
2016). Using phytase super-dosing can provide multiple bene-
fits including the reduction of limestone in diets. For example, 
the calcium and phosphorus levels (for the first 2  wk after 

Table 1. Acid-binding capacity for different ingre-
dients (Scholten et al., 2001; Lawlor et al., 2005; 
Karvelis, 2014; Hajati, 2018)
Ingredient ABC-3a ABC-4b Unit 

Milk

Acid casein 200 0 meq/kg

Sows milk 650 481 meq/kg

Whey powder 714 − 1,000 434 meq/kg

cheese whey 60.0 − 48.8  meq/kg

Milk replacer 892 579 meq/kg

Skim milk 1,105 756 meq/kg

Rennet casein 1,929 1,423 meq/kg

Cereals

Wheat Soft 250  meq/kg

Wheat bran 500  meq/kg

Wheat 180 − 40 108 meq/kg

liquid wheat starch 77.0 − 74.5  meq/kg

Maize 200 − 254 111 meq/kg

Barley 225 − 266 113 meq/kg

Maize starch 202 91 meq/kg

Corn 135 − 172  meq/kg

Corn distillers 438 96 meq/kg

Oat flakes 180 72 meq/kg

Root and pulp products

Sugar 98 23 meq/kg

Cassava 393 167 meq/kg

Beet pulp 480 191 meq/kg

Molasses 790 399 meq/kg

Citrus pulp 873 373 meq/kg

Mashed potato steam peel 64.2 − 79.5  meq/kg

Vegetable protein

Sunflower meal 852 482 meq/kg

Rapeseed meal 945 498 meq/kg

Soybean meal 1,068 642 meq/kg

Soybean meal 42% 980 − 1,240  meq/kg

Soybean meal 44% 1,100  meq/kg

Soybean meal 48% 1,025 − 1,035  meq/kg

Palm kernel 485 250 meq/kg

Peas 515 278 meq/kg

Maize gluten 571 114 meq/kg

Beans 473 275 meq/kg

Meat and fishmeal

Blood plasma 1,150 − 1,350  meq/kg

Meat and bone meal 920 595 meq/kg

Fishmeal 1,122.5 − 2,100 738 meq/kg

Fishmeal 70/72% 1,800 − 2,200  meq/kg

Fishmeal Peru origin 1,800 − 2,000  meq/kg

Fat

Fat 137 16 meq/kg

Vegetable fat 200  meq/kg

Choline chloride 100 − 226 101 meq/kg

Betaine 600  meq/kg

Dextrose 140 − 200  meq/kg

Microbial protein

Yeast 130 150 meq/kg

Amino acids

Lysine 600 − 695 123 meq/kg

Tryptophan 1,024 179 meq/kg

Methionine 1,000 − 1,219 192 meq/kg

Threonine 1,100 − 1,386 218 meq/kg

Minerals

Limestone 18,500 − 22,000  meq/kg

Ferrous sulphate 93 −655 meq/kg

Salt 162 83 meq/kg

Copper sulphate 269 92 meq/kg

Cobalt sulphate 516 329 meq/kg

Monoammonium phosphate 815 46 meq/kg

Ferrous oxide 986 549 meq/kg

Finisher minerals and vitamins 5,123 3,357 meq/kg

Weaner minerals and vitamins 6,302 4,292 meq/kg

Dicalcium phosphate 3,813.6 − 10,150 3,098 meq/kg

Sow minerals and vitamins 7,503 5,413 meq/kg

Potassium citrate 7,851 5,703 meq/kg

Mono dicalcium phosphate 1,800 − 5,494  meq/kg

Sodium citrate 8,745 6,334 meq/kg

Defluorinated phosphate 10,436 6,412 meq/kg

Calcium formate 9,000 − 12,069 3,983 meq/kg

Calcium carbonate 19,680 − 20,000  meq/kg

Manganese oxide 10,887 6,678 meq/kg

Sodium bicarbonate 12,870 12,566 meq/kg

Limestone flour 15,044 12,932 meq/kg

Zinc oxide 13,000 − 17,908 16,321 meq/kg

Acids

Orthophosphoric acid −7,957 −8,858 meq/kg

Fumaric acid −6,400 − −4,093 −10,862 meq/kg

Formic acid −3,473 −13,550 meq/kg

Citric acid −2,349 −5,605 meq/kg

Ascorbic acid −4,000 − −2,249 −217 meq/kg

Malic acid −2,550 −7,214 meq/kg

Lactic acid −1,498 −5,079 meq/kg

Acetic acid −141 −2,283 meq/kg

Propionic acid −5 −1,358 meq/kg

Sorbic acid 120 −220 meq/kg
aAcid-binding capacity to pH 3.0; bAcid-binding capacity to pH 4.0.

Table 1. Continued
Ingredient ABC-3a ABC-4b Unit 
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weaning) should be reduced to 0.60% to 0.65% and 0.35% to 
0.40%, respectively. At the same time, calcium formate (as a Ca 
source, 9,000 meq/kg) can partially replace limestone (18,000 
to 20,000 meq/kg), which will inevitably lead to increased cost 
but will effectively reduce the feed ABC value.

Dietary supplementation of high levels of ZnO (2,000 to 
3,000 mg/kg) has been widely used as an effective approach to 
reducing the incidences of post-weaning diarrhea (Laskoski 
et al., 2021). However, using a high dose of ZnO in piglet feeds 
has been associated with several negative effects including 
neutralizing the acid in the stomach because of a high ABC, 
being associated with post-weaning anemia, ZnO toxicity, zinc 
accumulation in the environment, interacting negatively with 
phytase, and antibiotic resistance (Maenz et al., 1999; Debski, 
2016; Burrough et  al., 2019). The maximal of 150  ppm zinc 
in the feed will be effective in June 2022 and the use of a high 
dose of zinc will be regulated in Canada. Although it becomes 
feasible to reduce the effective dosage of ZnO to combat post-
weaning diarrhea and at the same time mitigate the negative 
impacts related to the high dosage of ZnO in feeds with the 
availability of new cost-effective technologies such as organic 
minerals, nanotechnology, and microencapsulation (Brown 
et al., 2019; Wang et al., 2022), there is still a need to develop 
strategies to replace higher doses of zinc in the feeds.

Organic acids have negative ABC (e.g., citric acid: −4,000 
meq/kg and formic acid: −6,400 meq/kg). So, the addition of 
organic acids can decrease the ABC value of feed and then 
lower stomach pH (Desai et al., 2007). Sciopioni et al. (1978) 
reported a reduction in stomach pH from 4.6 to 3.5 with the 
addition of 1% citric acid and a pH reduction from 4.6 to 4.2 
with 0.7% fumaric acid in the diet. However, we should con-
sider the palatability of organic acids. Citric acid and tartaric 
acids improved feed preference; a high inclusion of some or-
ganic acids (e.g., formic acid), however, may reduce feed intake 
(Suarez et al., 2010). Higher early feed intake is very important 
for weaned piglets for promoting gut development and sup-
porting better growth performance later on. On the other 
hand, inorganic acids (e.g., hydrochloric or phosphoric acid) 
can also reduce stomach pH but may also decrease feed prefer-
ence (Suarez et al., 2010). Except for inhibition of pathogenic 
bacteria and reduction of ABC, organic acids can also act as 
an energy source in the gut of pigs as these are the intermediary 
products of tricarboxylic acid and improve mineral utilization 
(Pearlin et al., 2020). Therefore, several factors, including ABC 
value, palatability, bacteria inhibition, and other physiological 
functions, should be considered in the selection of organic 
acids in feeds.

Cereals and cereal by-products have a lower ABC when 
compared with the sources of minerals and proteins. So, it is 
important to keep feed crude protein levels as low as possible 
while maintaining a good, balanced supply of amino acids by 
using high protein raw materials and synthetic amino acids. 
When compared with fishmeal and soybean meal, potato pro-
tein, wheat gluten, and corn gluten have a lower ABC and there-
fore are highly recommended in weaner piglet feeds. However, 
potato protein, wheat gluten, and corn gluten may negatively 

affect feed intake as those protein sources are less preferred 
than fishmeal and soybean meal by piglets (Solà-Oriol et al., 
2011). Moreover, it is not necessary to reject good high-value 
raw materials simply based on apparently high ABC as there 
are other ways to reduce the ABC of the feed.

Selecting ingredients to lower ABC is critical for optimizing 
the digestive function of the immature piglet. Although there 
is no clear-cut recommendation on the ABC values for nursery 
diet, it is critical to look at the total blend of raw materials 
available, their inclusion levels, costs, feed preference as well as 
the targeted feed ABC value and then make the final decision 
based on science and field experience.

Using Innovative Chemical and Biological 
Approaches to Detoxify Vomitoxin (DON)
The mycotoxin, deoxynivalenol (DON), commonly occurs 

on Fusarium-infected cereal grains (e.g., corn, wheat, barley), 
and the incidence of DON contamination of grains has been 
increasing in recent years (Biomin, 2021). It has been estimated 
that direct and secondary losses resulting from Fusarium Head 
Blight (a fungal disease of cereal crops, which also is an indi-
cator of DON contamination) range from $50 to $300 million 
each year in Canada (Alberta Agriculture and Forestry, 2012). 
Moreover, the mycotoxin contamination in feeds and feed in-
gredients can reduce feed intake and compromise the immune 
system, which can make animals more susceptible to pathogens. 
Minimizing mycotoxin contamination in feeds is an important 
component to control post-weaning diarrhea. Typical negative 
effects of mycotoxin consumption include reduced feed intake, 
digestive dysfunction (e.g., gastroenteritis, gastrointestinal 
tract lesions, reduced nutrient absorption), immune suppres-
sion, and reduced growth performance (Sergent et  al., 2006; 
Pinton et al., 2008; Johnston et al., 2010; NRC, 2012) with the 
primary physiological effect dependent on the mycotoxin pre-
sent. DON levels as low as 0.6 to 2.0  ppm in complete feed 
cause a reduction in feed intake and growth rate (Pinton et al., 
2008; Johnston et al., 2010). In addition to reduced feed intake 
and growth performance, consuming DON-contaminated feed 
results in damage to the intestinal tract epithelial cells resulting 
in alteration of intestinal growth and barrier function as well as 
increased susceptibility to enteric pathogen challenge (Pinton 
et al., 2012; Ghareeb et al., 2015). Damage to the intestine also 
results in a reduction in nutrient absorption (Ghareeb et  al., 
2015). Once absorbed, DON inhibits protein synthesis, causes 
kidney and liver damage, and can suppress immune func-
tion resulting in decreased ability to resist disease challenges 
(Chaytor et al., 2011). In general, the negative effects of myco-
toxins are greater in younger animals (Chaytor et  al., 2011). 
While strategies have been developed to reduce the effects of 
some mycotoxins (e.g., aflatoxin), such as toxin binders, these 
have limited effect on mitigating the negative effects of DON 
(Beaulieu et al., 2009). There is a need for effective and eco-
nomical methods to reduce the impact of DON in feed and 
feed ingredients. Chemical approaches, such as the use of so-
dium metabisulfite (SMBS) (Rempe et al., 2013), and biological 
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approaches, such as the use of microorganisms for detoxifica-
tion (Yu et al., 2010; Li et al., 2011), have shown promise in 
reducing DON.

Sulphite reducing agents, including sodium sulphite 
(Na2SO3), sodium bisulphite (NaHSO3), and SMBS, have 
the capacity to cleave disulphide cross-linkages (Truong 
et al., 2016). Both in vitro and in vivo studies have demon-
strated that SMBS is effective in DON detoxification (Table 
2). Specifically, it has been shown that SMBS can destroy 
70% to 100% of  DON in processed grains or feeds in vitro 
with 0.45% to 0.9% levels at pH around 6.5 but not under 
acidic conditions (Dänicke et  al., 2010a, 2010b; Schwartz 
et al., 2013; Frobose et al., 2015). Frobose et al. (2015) re-
ported that adding a SMBS-based feed additive and pelleting 
can help overcome some of  the negative effects of  DON in 
the nursery pigs fed with naturally contaminated dried dis-
tillers grains with solubles (DDGS) (Frobose et  al., 2015). 
Hydrothermally processing DON-contaminated diets with 
1.0% SMBS restored ADFI and improved G:F in the nursery 
pigs (Frobose et al., 2017). Shawk et al. (2019) also reported 
that in diets with low DON concentrations (<1.5  mg/kg), 
SMB-based products increased ADG compared with control 
diets. Pigs fed high DON diets (4.17 mg/kg) had reduced per-
formance compared with pigs fed low DON. Sodium meta-
bisulfite (0.5%) in high DON diets (manufactured with corn 
containing an average of  4.17 mg/kg DON) provided a benefit 
in growth performance with ADG and G:F exceeding growth 
performance in the low DON diet (manufactured with corn 
containing an average of  2.46  mg/kg DON) (Becker et  al., 
2022). Mwaniki et  al. (2021) reported that a feed additive 
containing SMB improved growth performance in the nur-
sery piglets fed diets formulated with naturally contaminated 
corn (formulated with 5.5  mg/kg DON). The results from 
the above in vivo studies have demonstrated that feeding a 
supplement with relatively high levels of  SMB to weanling 
pigs is safe and effective to detoxify DON. Although the re-
sponse is still present even without pelleting in many situ-
ations, heat and moisture during the pelleting process seem 
to enhance the capacity of  SMBS to detoxify DON as pel-
leted feeds were used in the above studies, suggesting SMBS 
detoxifying DON during the pelleting process not necessary 
in the gut. Because SMBS may be degraded quickly under 
aqueous acid conditions such as pig stomach to form sulfur 
dioxide and subsequently decompose into sodium oxide 
and sulfur dioxide (Dänicke et  al., 2012), then damaging 
the metabolism of  the liver and the functionality of  the im-
mune system, eventually leading to a decrease in health or 
growth performance (Davis et  al., 2022). This may explain 
why more than 0.35% of  unprotected SMBS in the diet can 
show toxic effects on pigs. Moreover, little SMBS will remain 
intact in the small intestine where an optimal pH environ-
ment exists for SMBS to detoxify DON (Yu et  al., 2022). 
Thus, there is a need to deliver intact SMBS to the lower 
gut such as the small intestine to detoxify DON effectively 
through innovative delivery methods (Yu et al., 2021, 2022). 
Encapsulated SMBS with hydrogenated palm oil was stable 

in the simulated gastric fluid and allowed a progressive re-
lease of  SMBS in the simulated intestinal fluid. The released 
SMBS in the simulated intestinal fluid effectively detoxified 
DON (Yu et  al., 2021). However, the efficacy of  DON de-
toxification by microparticles needs to be further investigated 
with pig experiments. Further, feeding high SMBS in the diet 
can decrease the bioavailability of  thiamin (Til et al., 1972); 
therefore, thiamin is usually supplemented at greater concen-
trations or with a protected form in diets that are supple-
mented with SMBS.

Biological approaches, such as using microorganisms to 
convert the toxins to non- or less toxic compounds, have 
become an attractive choice recently due to their high spe-
cificity, efficacy, and environmental soundness (Awad et  al., 
2010; He et al., 2016; Pierron et al., 2016; Vanhoutte et al., 
2016; Zhu et al., 2016; Tian et al., 2022). It has been shown 
that the higher tolerance for DON observed in ruminants is 
due, in part, to the conversion of  DON to nontoxic metab-
olites by rumen microorganisms (Chaytor et  al., 2011). For 
instance, a bacterial strain BBSH797 from the bovine rumen 
(Fuchs et al., 2002) could transfer DON into its metabolite 
DOM-1. Additionally, some bacteria from the poultry in-
dustry also have the potential to detoxify DON into DOM-
1, including a Clostridium sp. WJ06 from goose intestine in 
China (Li et al., 2017), a Bacillus sp. LS100 from the chicken 
intestine (Yu et al., 2010), and an Eggerthella sp. DII-9 from 
the chicken intestine (Gao et al., 2018). In general, the high 
pre-gastric bacterial count in both ruminants and poultry 
may be a major factor with respect to DON tolerance in these 
species (Maresca, 2013). Their detoxification principle is that 
the C12-C13 epoxy group is the main toxicity site of  DON 
(Karlovsky, 2011), and DON can be deepoxidized to the me-
tabolite DOM-1, which is considered to be a detoxification 
product. Indeed, many species of  bacteria have been shown 
to possess the capability to enzymatically degrade mycotoxins 
(Shetty and Jespersen, 2006). The described animal gut mi-
crobes deeply oxidize DON under anaerobic conditions, 
which limits its practical application and only a few of  them 
were identified that could detoxify DON-contaminated diets 
in vivo. A  bacterial strain Coriobacteriaceum DSM 11798 
(the active ingredient in Biomin BBSH 797)  can be used as 
a feed additive in diets to remove the toxic effects of  DON-
contaminated diets in pigs by detoxifying DON to DOM-1 
(Sayyari et  al., 2018). Previously isolated microorganisms, 
including Bacillus sp. LS100, has been shown to have DON 
detoxifying properties in vitro (Yu et al., 2010). The concept 
of  using the isolate for in vivo detoxifying DON has also been 
proven (Li et al., 2011) and found that microbial detoxifica-
tion of  contaminated feed could eliminate DON’s toxic ef-
fects on pigs. A U.S. patent has been granted for utilizing the 
bacterial isolates (Zhou et al., 2014). Since isolate LS100 pos-
sesses high efficiency and stability in detoxifying DON, direct 
feeding of  the isolate through feed provides a unique oppor-
tunity for developing an effective microbial agent for field ap-
plication to detoxify DON, which requires further pig studies 
to confirm the efficacy of  detoxification in the pig gut.
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Conclusion
Weaned piglets face many stressors including bacterial 

pathogens, oxidative stress, and inflammation. The withdrawal 
of antibiotics from feeds can result in challenges to control 
post-weaning diarrhea and an integrated approach should be 
taken to control post-weaning diarrhea. Regarding antibiotic 
alternatives, using lower doses of essential oils (e.g., combin-
ation with other bioactive compounds and microencapsulation) 
could prevent inflammation and “leaky gut” induced by lipo-
polysaccharide instead of higher doses required for their killing 
pathogens properties. With elevated pH levels in the stomach 
of weaned piglets, it is critical to look at the total blend of raw 
materials available, their inclusion levels, costs, feed preference 
as well as the targeted feed ABC value. Minimizing mycotoxin 
contamination in feeds is an important component to control 
post-weaning diarrhea. Chemical approaches, such, as the use 
of sodium metabisulfite and biological approaches, such as the 
use of microorganisms for detoxification, have shown promise 
in reducing vomitoxin. These strategies reviewed in this manu-
script may be considered important parts of an integrated ap-
proach to control post-weaning diarrhea in piglets.
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