Table 2.
Second order perturbation theory analysis of Fock matrix.
| Donor (i) | ED(i) (e) | Acceptor (j) | ED(j) (e) | E(2)a (kcal/mol) | E(j)-E(i)b (a.u) | F(ij)c (a.u) |
|---|---|---|---|---|---|---|
| σ(C1 – C2) | 1.96303 | σ*(C1 – C13) | 0.06263 | 2.25 | 1.12 | 0.045 |
| σ*(C3 – Cl9) | 0.03318 | 5.60 | 0.84 | 0.061 | ||
| LP(1)O14 | 1.95987 | σ *(O11 - H12) | 0.05796 | 4.30 | 1.10 | 0.062 |
| π (C1 – C2) | 1.65916 | π*(C5 – C6) | 0.44564 | 24.93 | 0.26 | 0.074 |
| σ(C1 – C6) | 1.96778 | σ*(C1 – C2) | 0.02188 | 4.29 | 1.26 | 0.066 |
| π(C5 – C6) | 1.60297 | π*(C3 – C4) | 0.42826 | 27.78 | 0.28 | 0.080 |
| σ(O11 – H12) | 1.98573 | σ*(C5 – C6) | 0.04282 | 5.82 | 1.25 | 0.077 |
| LP (1)Cl9 | 1.99215 | σ*(C3 – C4) | 0.03087 | 1.51 | 1.47 | 0.042 |
| LP (3)Cl9 | 1.93777 | π*(C3 – C4) | 0.42826 | 11.21 | 0.33 | 0.060 |
| LP (2)Cl10 | 1.96664 | σ*(C4 – C5) | 0.02608 | 4.02 | 0.88 | 0.053 |
| LP (3)Cl10 | 1.92703 | π*(C5 – C6) | 0.44564 | 11.60 | 0.32 | 0.060 |
| LP (1)O11 | 1.97308 | σ*(C1 – C6) | 0.03779 | 7.79 | 1.10 | 0.083 |
| LP (2) O11 | 1.81257 | π*(C5 – C6) | 0.44564 | 40.21 | 0.31 | 0.107 |
| LP (2) O14 | 1.85119 | σ*(C13 – O15) | 0.06444 | 24.60 | 0.72 | 0.121 |
| LP (1) O15 | 1.96086 | σ*(C13 – O14) | 0.02806 | 8.82 | 1.11 | 0.089 |
| LP (2) O15 | 1.74384 | π*(C13 – O14) | 0.33800 | 64.50 | 0.30 | 0.126 |
| σ*(C13 –O15) | 0.02806 | LP (1) H21 | 0.56515 | 13.93 | 1.16 | 0.133 |
| LP (3) O15 | 1.65021 | LP*(1) H21 | 0.56515 | 437.42 | 0.67 | 0.511 |
| π* (C18 - N19) | 1.90252 | π* (C16 - C17) | 0.05796 | 89.77 | 0.03 | 0.071 |
| LP (1) N19 | 1.73150 | LP*(1) H21 | 0.56515 | 286.67 | 0.61 | 0.404 |
E(2) means energy of hyper conjugative interaction (stabilization energy).
E(j) - E(i) is the energy difference between donor i and acceptor j.
F(i,j) is the Fock matrix element between i and j NBO orbital's.