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Abstract

Background

Co-circulation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and other

respiratory viruses, such as influenza and respiratory syncytial virus (RSV), can be a severe

threat to public health. The accurate detection and differentiation of these viruses are essen-

tial for clinical laboratories. Herein, we comparatively evaluated the performance of the

Kaira COVID-19/Flu/RSV Detection Kit (Kaira; Optolane, Seongnam, Korea) for detection

of SARS-CoV-2, influenza A and B, and RSV in nasopharyngeal swab (NPS) specimens

with that of the PowerChek SARS-CoV-2, Influenza A&B, RSV Multiplex Real-time PCR Kit

(PowerChek; Kogene Biotech, Seoul, Korea).

Methods

A total of 250 archived NPS specimens collected for routine clinical testing were tested in

parallel by the Kaira and PowerChek assays. RNA standards were serially diluted and

tested by the Kaira assay to calculate the limit of detection (LOD).

Results

The positive and negative percent agreements between the Kaira and PowerChek assays

were as follows: 100% (49/49) and 100% (201/201) for SARS-CoV-2; 100% (50/50) and
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99.0% (198/200) for influenza A; 100% (50/50) and 100% (200/200) for influenza B; and

100% (51/51) and 100% (199/199) for RSV, respectively. The LODs of the Kaira assay for

SARS-CoV-2, influenza A and B, and RSV were 106.1, 717.1, 287.3, and 442.9 copies/mL,

respectively.

Conclusions

The Kaira assay showed comparable performance to the PowerChek assay for detection of

SARS-CoV-2, influenza A and B, and RSV in NPS specimens, indicating that the Kaira

assay could be a useful diagnostic tool when these viruses are co-circulating.

Introduction

In December 2019, coronavirus disease 2019 (COVID-19), caused by severe acute respiratory

syndrome coronavirus 2 (SARS-CoV-2), emerged in Wuhan, China, and rapidly spread world-

wide, achieving pandemic status in March 2020 [1]. As of October 31, 2022, over 627 million

people have been infected with SARS-CoV-2 worldwide, resulting in over 6.5 million deaths

[2]. To curb the spread of SARS-CoV-2 infection, rapid and accurate laboratory diagnosis is

required, and molecular assays are the current gold standard for laboratory diagnosis of

SARS-CoV-2 infection [3–5]. More than 200 SARS-CoV-2 molecular assays have been granted

emergency use authorization by the US Food and Drug Administration, the majority of which

use real-time reverse transcription polymerase chain reaction (rRT-PCR) technology.

During the COVID-19 pandemic, circulation of other respiratory viruses, such as influenza

and respiratory syncytial virus (RSV), may pose a tremendous challenge to healthcare systems,

as SARS-CoV-2 and these viruses can cause similar symptoms [6–8]. Furthermore, co-infec-

tion of SARS-CoV-2 and other respiratory viruses can occur, albeit at a low rate [9, 10]. To

address this situation, various molecular assays to simultaneously detect SARS-CoV-2 and

other respiratory viruses have been developed and are widely used in clinical settings [11–21].

The Kaira COVID-19/Flu/RSV Detection Kit (Kaira; OPTOLANE, Seongnam, Korea) is a

novel rRT-PCR assay that can detect SARS-CoV-2, influenza A and B, and RSV in nasopha-

ryngeal swab (NPS) specimens within 80 min. This assay is a single-tube multiplex assay tar-

geting the open reading frame 1ab (ORF1ab) of SARS-CoV-2, the matrix protein 2 gene of

influenza A, the nuclear export protein gene of influenza B, and the matrix protein gene of

RSV. Herein, we assessed the performance of the Kaira assay compared with the PowerChek

SARS-CoV-2, Influenza A&B, RSV Multiplex Real-time PCR Kit (PowerChek; Kogene Bio-

tech, Seoul, Korea). The graphical abstract of this study is shown in Fig 1.

Material and methods

Clinical specimens

This study included 250 NPS specimens collected for routine clinical testing at Samsung Medi-

cal Center, a 1989-bed tertiary care hospital in Seoul, Korea. Positive specimens were selected

based on the cycle threshold (Ct) values obtained from routine clinical testing and covered a

wide range of Ct values (Table 1). All specimens were stored frozen at −70˚C until retrieved

for this study. This study was reviewed and approved by the Institutional Review Board (IRB)

of Samsung Medical Center (approval number: 2022-08-010). The need for informed consent
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was waived by the IRB due to the retrospective study design and use of fully anonymized

patient data.

Kaira assay

RNA extraction was performed using QIAamp DSP Viral RNA Mini Kit (Qiagen, Hilden,

Germany). The Kaira assay was performed according to the manufacturer’s instructions. In

brief, 10 μL of template RNA was added to 12.5 μL of rRT-PCR master mix and 2.5 μL of

primer/probe mixture, giving a final reaction volume of 25 μL. The rRT-PCR was performed

on the CFX96 system (Bio-Rad, Hercules, CA, USA) using the following cycling conditions: 1

Fig 1. Graphical abstract of the study.

https://doi.org/10.1371/journal.pone.0278530.g001

Table 1. Distribution of Ct values of positive specimens selected for this study.

SARS-CoV-2 Influenza virus RSV

Ct value� E ORF1ab Influenza A Influenza B

< 20 13 12 8 15 3

20–25 6 4 20 13 15

25–30 9 11 18 15 18

> 30 22 23 4 7 14

Total no. 50 50 50 50 50

� Ct values were obtained by routine clinical testing using the PowerChek SARS-CoV-2 Real-time PCR Kit (Kogene Biotech) for SARS-CoV-2 and the AdvanSure RV-

plus real-time RT-PCR (LG Chem, Seoul, Korea) for influenza and RSV.

E, envelope gene; ORF1ab, open reading frame 1ab.

https://doi.org/10.1371/journal.pone.0278530.t001
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cycle at 50˚C for 10 min and 1 cycle at 95˚C for 10 min, followed by 45 cycles at 95˚C for 10

sec and 57˚C for 30 sec. For the SARS-CoV-2 target, a Ct value� 42 was considered a positive

result, while for the other three targets, a Ct value� 43 was considered a positive result.

PowerChek assay

The PowerChek assay is a two-tube multiplex rRT-PCR assay and was performed according to

the manufacturer’s instructions. In brief, 5 μL of template RNA was added to 10 μL of

rRT-PCR master mix and 5 μL of primer/probe mixture, giving a total reaction volume of

20 μL. The rRT-PCR was performed on the CFX96 system using the following cycling condi-

tions: 1 cycle at 50˚C for 30 min and 1 cycle at 95˚C for 10 min, followed by 40 cycles of 95˚C

for 15 s and 60˚C for 1 min. For all four targets, a Ct value� 38 was considered a positive

result. If the results of the Kaira and PowerChek assays were discordant, the BioFire Respira-

tory Panel 2.1 (RP2.1; bioMérieux, Marcy l’Etoile, France) was conducted.

Analytical performance

The analytical sensitivity of the Kaira assay was assessed using AMPLIRUN TOTAL SARS-

CoV-2/FluA/FluB/RSV CONTROL (SWAB) (Vircell, Granada, Spain). This RNA standard

was serially diluted in a pool of negative NPS specimens and extracted as described above.

Twenty replicates per dilution level were tested using the Kaira assay.

The analytical specificity of the Kaira assay was evaluated using 34 strains of human respira-

tory pathogens (Table 2). Bacterial and viral strains were tested in duplicate at concentrations

of 1 × 106 and 1 × 105 copies/mL, respectively.

Statistical analysis

Two-by-two tables were used to assess the agreement between the Kaira and PowerChek

assays. The positive percent agreement (PPA), negative percent agreement (NPA), Cohen’s

kappa values, and two-sided 95% confidence intervals were calculated to evaluate the level of

agreement between the two assays. The correlation between Ct values of positive specimens by

the two assays was assessed using Pearson correlation coefficient. The limit of detection (LOD)

was determined using Probit regression analysis. All statistical analyses were performed using

Excel (Microsoft, Redmond, WA, USA) and MedCalc Statistical Software version 19.5 (Med-

Calc Software Ltd, Ostend, Belgium).

Results

Compared to the PowerChek assay, the PPA and NPA of the Kaira assay for SARS-CoV-2

were 100% (49/49) and 100% (201/201), respectively. The PPA and NPA for influenza A and B

were as follows: 100% (50/50) and 99.0% (198/200) for influenza A and 100% (50/50) and

100% (200/200) for influenza B. The PPA and NPA for RSV were 100% (51/51) and 100%

(199/199), respectively. Kappa values ranged from 0.98 (influenza A) to 1.00 (SARS-CoV-2,

influenza B, and RSV), indicating an almost perfect agreement (Table 3). The Ct values of clin-

ical specimens tested positive by both the Kaira and PowerChek assays were highly correlated,

with R2 ranging from 0.9071 to 0.9819 (Fig 2). Only two specimens showed discordant results.

These specimens tested positive for influenza A and B by the Kaira assay; however, their Ct val-

ues for influenza A (42.6 and 42.3) were near the assay cut-off. They tested positive only for

influenza B by the PowerChek and RP2.1 assays (Table 4).

The LODs of the Kaira assay for SARS-CoV-2, influenza A and B, and RSV were 106.1,

717.1, 287.3, and 442.9 copies/mL, respectively (Table 5), which were comparable to those of

PLOS ONE Comparison of the Kaira and PowerChek assays

PLOS ONE | https://doi.org/10.1371/journal.pone.0278530 December 14, 2022 4 / 10

https://europepmc.org/articles/PMC8482523/table/tbl0005/
https://doi.org/10.1371/journal.pone.0278530


the PowerChek assay determined in our previous study (362.7, 1239.8, 90.2, and 634.4 copies/

mL, respectively) [14]. In the analytical specificity test, all intended targets of the Kaira assay

(SARS-CoV-2, influenza A and B, and RSV) were detected, and no cross-reactivity with other

respiratory pathogens was observed (Table 2).

Discussion

In this study, we compared the performance of the Kaira and PowerChek assays for detection

of SARS-CoV-2, influenza A and B, and RSV in NPS specimens. We found that the perfor-

mance of the Kaira assay was comparable to that of the PowerChek assay.

The COVID-19 pandemic has drastically changed the epidemiology of other respiratory

viruses. During the 2020–2021 season, other respiratory viruses circulated at historically low

Table 2. Analytical specificity evaluation results of the Kaira assay.

Organism Source (code number) Result

SARS-CoV-2 B.1.1.7 (Alpha) Vircell (MBC138-R) SARS-CoV-2 positive

SARS-CoV-2 B.1.351 (Beta) Vircell (MBC139-R) SARS-CoV-2 positive

SARS-CoV-2 P.1 (Gamma) Vircell (MBC140-R) SARS-CoV-2 positive

SARS-CoV-2 B.1.617.2 (Delta) Vircell (MBC141-R) SARS-CoV-2 positive

SARS-CoV-2 B.1.1.529 (Omicron) Vircell (MBC143-R) SARS-CoV-2 positive

SARS-CoV Vircell (MBC136-R) Negative

MERS-CoV Vircell (MBC132) Negative

Human coronavirus 229E ATCC (VR-740D) Negative

Human coronavirus OC43 Vircell (MBC135-R) Negative

Human coronavirus NL63 Vircell (MBC142-R) Negative

Human coronavirus HKU1 Clinical isolate Negative

Influenza A virus H1N1 Vircell (MBC028) Influenza A positive

Influenza A virus H3N2 Vircell (MBC029) Influenza A positive

Influenza A virus H5N1 Vircell (MBC052) Influenza A positive

Influenza B virus Vircell (MBC030) Influenza B positive

RSV type A Vircell (MBC041) RSV positive

RSV type B Vircell (MBC083) RSV positive

Human parainfluenza virus 1 Vircell (MBC037) Negative

Human parainfluenza virus 2 Vircell (MBC038) Negative

Human parainfluenza virus 3 Vircell (MBC039) Negative

Human parainfluenza virus 4 Vircell (MBC050) Negative

Enterovirus D68 Vircell (MBC125) Negative

Enterovirus A71 Vircell (MBC019) Negative

Rhinovirus B14 Vircell (MBC091) Negative

Human adenovirus 1 Vircell (MBC001) Negative

Human bocavirus ATCC (VR-3251SD) Negative

Human metapneumovirus Vircell (MBC144-R) Negative

Streptococcus pneumoniae ATCC (33400D-5) Negative

Haemophilus influenzae ATCC (51907D-5) Negative

Chlamydophila pneumoniae ATCC (53592D) Negative

Mycoplasma pneumoniae ATCC (15531D) Negative

Legionella pneumophila ATCC (33152D-5) Negative

Bordetella pertussis ATCC (9797D-5) Negative

Bordetella parapertussis ATCC (15311D-5) Negative

https://doi.org/10.1371/journal.pone.0278530.t002
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levels due to public health measures to curb the spread of SARS-CoV-2. Notably, the circula-

tion of influenza and RSV was virtually absent during this period [22–25]. However, after

relaxation of public health measures, an unexpected out-of-season resurgence of influenza and

RSV has recently been observed in many parts of the world [26–30]. Given the changes in the

epidemiology of influenza and RSV, molecular assays to simultaneously detect these viruses

and SARS-CoV-2 are urgently needed and should be performed throughout the year.

Currently, various molecular assays to simultaneously detect SARS-CoV-2 and other respi-

ratory viruses are commercially available, most of which are sample-to-result rRT-PCR assays

[11–21]. Sample-to-result assays such as the RP2.1 and Xpert Xpress SARS-CoV-2/Flu/RSV

assays are simple to perform and do not require skilled personnel. Furthermore, these assays

Table 3. Clinical performance of the Kaira assay in comparison with the PowerChek assay.

Kaira result PowerChek result PPA (95% CI) NPA (95% CI) Kappa value (95% CI)

Positive Negative

SARS-CoV-2 Positive 49 0 100% (92.7–100%) 100% (98.2–100%) 1.00 (1.00–1.00)

Negative 0 201

Influenza A Positive 50 2 100% (92.9–100%) 99.0% (96.4–99.9%) 0.98 (0.94–1.00)

Negative 0 198

Influenza B Positive 50 0 100% (92.9–100%) 100% (98.2–100%) 1.00 (1.00–1.00)

Negative 0 200

RSV Positive 51 0 100% (93.0–100%) 100% (98.2–100%) 1.00 (1.00–1.00)

Negative 0 199

PPA, positive percent agreement; NPA, negative percent agreement; CI, confidence interval.

https://doi.org/10.1371/journal.pone.0278530.t003

Fig 2. Correlation between Ct values of clinical specimens tested positive by both the Kaira and PowerChek assays. (A) E and ORF1ab

Ct values of the PowerChek assay were averaged and plotted against the ORF1ab Ct values of the Kaira assay. (B) Influenza A Ct values of

the PowerChek assay were plotted against the influenza A Ct values of the Kaira assay. (C) Influenza B Ct values of the PowerChek assay

were plotted against the influenza B Ct values of the Kaira assay. (D) RSV Ct values of the PowerChek assay were plotted against the RSV

Ct values of the Kaira assay.

https://doi.org/10.1371/journal.pone.0278530.g002
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enable random-access testing, providing test results to physicians in a timely manner; however,

they have relatively low throughput and are suited for small-volume clinical laboratories [14,

19]. By contrast, the Kaira and PowerChek assays are designed for high-throughput batch test-

ing (Kaira assay: up to 96 specimens per batch; PowerChek assay: up to 48 specimens per

batch) and suited for high-volume clinical laboratories. The performance of the PowerChek

assay has recently been evaluated [14]; however, little is known about the performance of the

Kaira assay. To the best of our knowledge, this is the first study to evaluate the performance of

the Kaira assay.

In this study, the clinical performance of the Kaira assay was comparable to that of the

PowerChek assay, with kappa values ranging from 0.98 (influenza A) to 1.00 (SARS-CoV-2,

influenza B, and RSV). Only two specimens gave discordant results (Kaira: positive for influ-

enza A and B; PowerChek: positive for influenza B only), which were resolved by the RP2.1

assay (positive for influenza B only). On repeat testing using the Kaira assay, these specimens

showed positive results only for influenza B. As the initial Ct values for influenza A were near

the assay cut-off and coinfection of influenza A and B viruses is rare [31, 32], the initial positive

results for influenza A are highly likely to be false-positive. In addition, the LODs of the Kaira

assay were comparable to those of the PowerChek assay, indicating high sensitivity of the

Kaira assay in detecting SARS-CoV-2, influenza A and B, and RSV.

An important limitation of the Kaira assay is that it utilizes only one target gene (ORF1ab)

for detection of SARS-CoV-2. As mutations in the primer/probe binding sites of the SARS-

CoV-2 genome could compromise the rRT-PCR assay’s performance, it is important to use

rRT-PCR assays targeting at least two independent regions of the SARS-CoV-2 genome

[33–35]. Although the Kaira assay correctly detected all SARS-CoV-2 strains included in this

study, clinical laboratories should be aware of this assay’s limitations regarding the use of only

one SARS-CoV-2 target.

Table 4. Details of two specimens showing discordant results between the Kaira and PowerChek assays.

Specimen no. Clinical comparison Discrepancy resolution

Kaira result (Ct value) PowerChek result (Ct value) RP2.1 result

124 Influenza A (42.6)�, Influenza B (22.1) Influenza B (20.5) Influenza B

131 Influenza A (42.3)�, Influenza B (27.2) Influenza B (25.8) Influenza B

� On repeat testing using the Kaira assay, these specimens showed negative results for influenza A.

https://doi.org/10.1371/journal.pone.0278530.t004

Table 5. Analytical sensitivity evaluation results of the Kaira assay.

Target

concentration

SARS-CoV-2 Influenza A Influenza B RSV

Copies/

mL

Replicates Detected Copies/

mL

Replicates Detected Copies/

mL

Replicates Detected Copies/

mL

Replicates Detected

#1 2500 20 20 3500 20 20 2400 20 20 4000 20 20

#2 1250 20 20 1750 20 20 1200 20 20 2000 20 20

#3 500 20 20 700 20 18 480 20 20 800 20 20

#4 250 20 20 350 20 0 240 20 17 400 20 18

#5 50 20 12 70 20 0 48 20 3 80 20 11

#6 25 20 7 35 20 0 24 20 0 40 20 8

#7 12.5 20 5 17.5 20 0 12 20 1 20 20 2

Probit LOD (copies/

mL)

106.1 717.1 287.3 442.9

https://doi.org/10.1371/journal.pone.0278530.t005
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A major limitation of this study is its retrospective design. A prospective study was not fea-

sible because during the ongoing COVID-19 pandemic, influenza cases, particularly influenza

B cases, have rarely been identified in Korea. To obtain a sufficient number of positive speci-

mens, archived NPS specimens previously collected for routine clinical testing were used for

this study.

In conclusion, the Kaira assay was found to be highly sensitive and specific for detecting

SARS-CoV-2, influenza A and B, and RSV in NPS specimens. During the COVID-19 pan-

demic, circulation of influenza and RSV may pose a significant challenge to the already over-

burdened healthcare systems. In this situation, the Kaira assay with a high-throughput

capacity (up to 96 specimens per batch) and short turnaround time (80 min) can be useful in

clinical settings.

Supporting information

S1 File. Kaira and PowerChek results for each specimen.

(XLSX)
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