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Abstract
In this work we study the blood dynamics in the pulmonary arteries by means of a 3D-0D
geometric multiscale approach, where a detailed 3D model for the pulmonary arteries is
coupled with a lumped parameters (0D) model of the cardiovascular system. We propose
to investigate three strategies for the numerical solution of the 3D-0D coupled problem: the
Splitting-Explicit and Implicit algorithms, where information are exchanged between 3D
and 0D models at each time step at the interfaces, and the One-Way algorithm, where the
0D is solved first off-line. In our numerical experiments performed in a realistic patient-
specific 3D domain with a physiologically calibrated 0D model, we discuss first the issue
on instabilities that may arise when not suitable connections are considered between 3D
and 0D models; second we compare the performance and accuracy of the three proposed
numerical strategies. Finally, we report a comparison between a healthy and a hypertensive
case, providing a preliminary result highlighting how our method could be used in future
for clinical purposes.

Keywords Pulmonary circulation · Hemodynamics · Computational fluid dynamics ·
Geometric multiscale model · Partitioned coupling algorithm
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1 Introduction

The pulmonary arteries are among the largest arteries in human body, and they are located
between the right ventricle and the lungs; they carry de-oxygenated blood coming from
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the venous circulation to the pulmonary alveoli, where it is oxygenated [25]. The study of
the pulmonary arteries hemodynamics is fundamental since the pulmonary circulation is
exposed to critical diseases. One of the most important is Pulmonary Arterial Hypertension
(PAH) which leads to an increased resistance to blood flow in the lungs [9, 16].

Computational methods revealed to be an effective, non-invasive tool for the quantita-
tive description of hemodynamics [20, 31]. One of the most used computational method
in hemodynamics is the geometric multiscale approach [32, 33]. In such context, the car-
diovascular system is divided in two different parts: the part of interest, which is modeled
by means of a high detailed model (for example, the 3D Navier–Stokes equations), and
the remaining part, which is modeled by means of a geometrically reduced model such as
the lumped parameters one, since a detailed description of the hemodynamics outside the
region of interest is not needed. We refer to [4, 10, 11, 24, 26, 27, 46] for other works about
geometric multiscale coupling.

In this context, the pulmonary circulation is less studied than the systemic arterial one,
but in the recent years its interest is increased specially due to the spreading of the Coron-
avirus COVID19 disease. In [23], the authors simulate the fluid-structure interaction (FSI)
of a healthy pulmonary arterial tree using a segregated approach in which the outlet bound-
ary conditions are imposed by means of the Windkessel model; in [21], a FSI of the
pulmonary arteries is proposed where traction-free conditions are prescribed at the outlet; in
[40], the computational fluid dynamics (CFD) of the pulmonary arteries is simulated under
resting and exercise conditions and the outlet boundary conditions are imposed by means
of a pure resistance lumped parameter; in [45], the authors simulate FSI in the pulmonary
arteries and vary the vessel wall stiffness to simulate different PAH scenarios, with outlet
boundary conditions imposed by means of the Windkessel model.

About 3D-0D geometric multiscale modelling in the context of pulmonary circula-
tion, recent works focused on the coupling with a closed-loop 0D model to study specific
unhealthy scenarios [8, 28, 38]. For example, in [8], the authors studied the hybrid Nor-
wood procedure, whereas in [28] the authors studied the Potts shunt as a potential palliative
treatment for suprasystemic idiopathic PAH. It is worth also citing papers on the 3D-0D
geometric multiscale modelling in the context of PAH [29, 39, 43–45].

In the present work, we investigate the coupling between a 3D fluid-dynamic model
of the pulmonary arteries and a closed-loop lumped parameters model accounting for the
whole cardiovascular system and we compare different numerical algorithms and scenarios.
The closed-loop 0D model brings to a multiscale 3D-0D problem allowing us to impose
physiological conditions to the 3D domain. In particular, we study the reliability of includ-
ing a RLC model downstream the diode representing the pulmonary artery in order to
prevent numerical instabilities. We consider three different numerical algorithms for the
solution of the 3D-0D problem, a Splitting-Explicit coupled algorithm, a Splitting-Implicit
coupled algorithm [26, 33] and a One-Way decoupled algorithm [8] the results are com-
pared in terms of hemodynamic variables (velocity, pressure and wall shear stress). Finally,
we report a comparison between the healthy and the simulated PAH cases.

The paper outline is as follows. Section 2 is dedicated to the mathematical model of
the geometric multiscale coupling. In Section 3 the numerical algorithms are described.
Finally, in Section 4 we report the numerical results aiming at showing the reliability of
the proposed model, together with a discussion of possible instabilities which may arise in
specific conditions.
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2 The 3D-0D Geometric Multiscale Model

In medium and large vessels as the pulmonary arteries, blood is well modeled as an
incompressible, homogeneous and Newtonian fluid [3, 6, 31]. Thus, we consider the 3D
incompressible Navier–Stokes equations, where u(x, t) : Ω × R

+ → R
3 is the blood

velocity, p(x, t) : Ω × R
+ → R the blood pressure, μ stands for the dynamic blood vis-

cosity, ρ is the blood density and n is the outgoing normal vector from the boundaries. In
[23], it has been demonstrated that the rigid wall assumption is able - in first approxima-
tion - to well approximate the results obtained by a FSI simulation for the largest branches
of the pulmonary arteries since the compliance is not so relevant due to the small displace-
ments featured by our cases (notice that also in the hypertension case the pressure is below
35mmHg, see below). Accordingly, in this work we consider rigid walls. Referring to Fig. 1,
the 3D computational domain is Ω ⊂ R

3, where ΓIN is the inlet boundary, ΓOUT,i (with
i = 1, . . . , 4) are the outlet boundaries and ΓW is the vessel wall.

Fig. 1 Top: Geometric multiscale model of the entire cardiovascular system obtained by the coupling
between the 3D pulmonary artery and the Open-0D model. Bottom: Zoom on the region where the 3D-0D
coupling occurs. In the squares the four interface variables
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The fluid dynamics of the remaining part of the cardiovascular system is modeled by
means of a lumped parameters 0D model based on electrical analogies [33]. In particular,
the voltage and the current represent the pressure and the blood flow, respectively; the resis-
tance corresponds to the effect of the blood viscosity, the capacity the wall compliance,
whereas the inductance the inertial effects of the blood flow. The four cardiac valves are
modeled by means of non-ideal diodes, and the heart is described with time dependent elas-
tances representing the pump function [12, 33]. We refer to [36] for the complete list of the
differential-algebraic equations of the lumped parameters model. Moreover, we define y as
the vector of the state variables and z as the vector of the algebraic variables.

The 3D and 0Dmodels are coupled through suitable interface conditions (I.C.) at the inlet
and outlet boundaries guaranteeing the continuity of flow rates and pressures. We refer to the
lumped parameter model used here as Open-0D model, since it needs to be closed with the
3D model. It is worth noting that the information coming from the 0D model is called defec-
tive since it prescribes only one scalar function of time over the entire boundary of the 3D
domain, thus representing an incomplete information for the 3D formulation [13, 14, 30].
In this work, due to laminar assumption of blood flow that holds true in the pulmonary
artery [17, 18], defective flow rate information is completed by means of the prescription
of a parabolic velocity profile. Regarding the defective mean pressure condition, a constant
and normal pressure is instead prescribed according to the do-nothing approach, see [15].

Thus, let us define T as the final time of the simulation, therefore the strong formulation
of the geometric multiscale 3D-0D model reads as follows:

Find u, p and y, z, for any t ∈ (0, T ], such that
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

3D

⎧
⎪⎪⎨

⎪⎪⎩

ρ ∂u
∂t

+ ρ(u · ∇)u − ∇ · T (u, p) = 0 in Ω,

∇ · u = 0 in Ω,

u(x, 0) = 0 in Ω,

u(x, t) = 0 on ΓW ,

I .C.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

QIN =
∫

ΓIN

u · n dΓ,

PIN = 1

|ΓIN |
∫

ΓIN

T (u, p)n · n dΓ,

QOUT =
∫

ΓOUT

u · n dΓ,

POUT = 1

|ΓOUT |
∫

ΓOUT

T (u, p)n · n dΓ,

Open − 0D

⎧
⎨

⎩

d
dt

y = f O
1 (t, y, z, PIN ,QOUT ),

y(0) = y0,

z = f O
2 (t, y),

where T = −p I +μ(∇u+(∇u)T ), ΓOUT = ∑4
i=1ΓOUT,i , f O

1 and f O
2 are the right hand

side terms of the differential and algebraic equations of the Open-0D model. It is worth
reporting the equations describing the heart chambers and the cardiac valves; in particular
the elastance E has the structure E(t) = Ea r(t) + Eb [5], with

r(t) =

⎧
⎪⎪⎨

⎪⎪⎩

1
2

(
1 − cos

(
πt

Tcontr

))
, t ≤ Tcontr ,

1
2

(
1 + cos

(
π(t−Tcontr )

Trelax

))
, Tcontr < t ≤ Tcontr + Trelax,

0, t > Tcontr + Trelax,

where Ea and Eb are the active and passive elastances, respectively, Tcontr is the duration of
the chamber contraction and Trelax is the duration of the chamber relaxation. The resistance
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of the cardiac valves is in general defined as follows:

R = 10c, c = log10 Rmin + (
log10 Rmax − log10 Rmin

)

×
[
1

2
+ 1

π
arctan

(
200π

2
(P2 − P1)

)]

,

where Rmax is the resistance when the valve is closed and Rmin corresponds to the resistance
when the valve is open, and P1 and P2 are the pressures upstream and downstream the valve,
respectively.

In Fig. 1, we report the representation of the geometric multiscale model highlighting the
zones of interest (the resistance of the cardiac valves is omitted).

Notice from Fig. 1 that we couple the 3D model not directly with the pulmonary valve
(diode, light blue block) in the upstream region. Instead, we introduce an additional block,
denoted as “proximal compartment” and colored in red in Fig. 1, representing the proximal
part of the pulmonary artery. We couple the inlet of the 3D model to the proximal com-
partment, and we found that this coupling choice preserves the appearance of instabilities,
as we better discuss in Section 4.3. Moreover, as first approximation, we couple the outlets
of the pulmonary arteries with a single compartment (representing the arterial pulmonary
microvascolature); therefore, the downstream pressure is the same at all outlets.

3 Algorithms for the Numerical Solution

In order to numerically solve the geometric multiscale model, we introduce a uniform time
discretization in which Δt = T

Nt
is the step size, and Nt are the number of steps in which

the time interval is subdivided. The nth temporal time step is defined as tn = nΔt for
n = 0, . . . , Nt . Given a function of time v(t), we denote by vn � v(tn) its approximation
after the time discretization.

Concerning the 3D model, the time discretization is obtained by means of the first order
backward differentiation formula (implicit Euler) and the convective term is treated with a
semi-implicit treatment [34]. The time discretization of the 0D model is achieved by means
of the explicit Euler scheme or the 4th order Runge–Kutta explicit method [35], depending
on the test, see Section 4.

For the solution of the coupled geometric multiscale problem, we introduce three strate-
gies: the Splitting-Explicit Algorithm, the Splitting-Implicit Algorithm and the One-Way
Algorithm, described in what follows.

3.1 The Splitting-Explicit Algorithm

The geometric multiscale coupling is solved first by means of the Splitting-Explicit (SE)
algorithm through a partitioned and explicit way; this means that the lumped parameter
model and the 3D model are solved sequentially once per time step by means of different
numerical solvers through the exchange of information at the interfaces [8, 28].

The SE algorithm is constructed as follows: at time tn+1 the 3D model receives from the
Open-0D model the flow rate datum Qn

IN computed at previous time step imposed at the
inlet ΓIN by means of a parabolic velocity profile, i.e. un+1 = g, with

∫

ΓIN

g · n dΓ = Qn
IN , g(r) = −2

Qn
IN

πR2

(
1 − r2/R2

)
n,
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where R is the radius of the circle located at the inlet of the pulmonary artery and obtained
by considering a small flow extension of the reconstructed inlet [1], and r is the radial
coordinate. Moreover, it receives the mean pressure datum P n

OUT imposed at each of the
four in parallel outlets ΓOUT,i by means of the do-nothing approach, i.e

T
(
un+1, pn+1

)
n = −P n

OUT n on ΓOUT,i × (0, T ], i = 1, . . . , 4.

We use for the 3D fluid dynamics the compact notation F(un+1, pn+1) = 0 together
with the interface boundary conditions involving Qn

IN and P n
OUT , which allows to com-

pute the other two interface data P n+1
IN and Qn+1

OUT . These latter information are passed
to the Open-0D model as forcing terms. In particular, we compactly use for the Open-
0D model the notation yn+1 = f O

1 (tn; yn, zn+1, P n+1
IN ,Qn+1

OUT ) and zn+1 = f O
2 (tn, yn)

which is solved allowing to compute the quantities Qn+1
IN and P n+1

OUT for the next time
step.

We report the Splitting-Explicit scheme in Algorithm 1.

Algorithm 1 Splitting-explicit algorithm.
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Fig. 2 Closed-0D model used in the One-Way Algorithm. QIN and POUT are provided to the 3D pulmonary
arteries (Algorithm 3). Notice the 3D pulmonary arteries compartment, here is replaced by the black RLC
network

3.2 The Splitting-Implicit Algorithm

In the Splitting-Implicit (SI) algorithm, the lumped parameter model and the 3D model
are instead solved sequentially many times per time step until convergence of the interface
conditions. This corresponds to an implicit time discretization of the coupling that guaran-
tees absolute stability for any value of Δt . On the contrary, the Splitting-Explicit algorithm
reported above could be seen as an explicit time discretization of the interface conditions,
that leads to the same accuracy of the SI algorithm, but with a constraint on the values of
Δt that guarantee absolute stability.1 The SI scheme is reported in Algorithm 2 (notice that

in this case we have g(r) = −2
Q

n+1,(k−1)
IN

πR2 (1 − r2/R2)n).

3.3 The One-Way Algorithm

The One-Way algorithm couples the 3D and the Closed-0D model obtained by the Open-
0D model inserting a RLC circuit representing the pulmonary artery (see the black box in
Fig. 2).

In this case the coupling is only in one direction; in particular, the Closed-0D model is
solved off-line independently. Afterward, at each time step tn the 0D flow rate Qn

IN and the
mean pressure P n

OUT are passed to the 3D model, without any feedback to the Closed-0D
model.

We report the One-Way scheme in Algorithm 3, where f C
1 and f C

2 are the right hand
side terms of the differential and algebraic equations of the Closed-0D model.

1Notice however that in our numerical simulations we did not find any constraint for Δt when using the SE
algorithm, meaning that its choices, driven by accuracy purposes, satisfy the stability bound. See Section 4
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Algorithm 2 Splitting-implicit algorithm.

3.4 Space Discretization

For the solution of the 3D problem in all the algorithms presented in the previous section,
we consider the Finite Elements approximation. In particular, we use Q1-Q1 Finite Ele-
ments for the approximation of the pressure and each velocity component, introducing
Xh
1 (Ω) = {vn+1

h ∈ C0(Ω) : vn+1
h ∈ Q1, ∀K ∈ Th}, where Th is partition of the domain

into hexahedral cells K , together with a stabilization term to ensure uniqueness of the solu-
tion given by the PSPG technique. Moreover, to guarantee stability of the numerical solution
in presence of a dominated advection regime, we also include the SUPG stabilization [34].
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Finally, due to the presence of backflows at the outlets that lead to the production of insta-
bilities due to the lack of energy dissipation of the convective term, we also add a backflow
stabilization non-consistent term [2].

Algorithm 3 One-way algorithm.

Thus, the fully discretized formulation reads as follows: for every n = 0, 1, . . . , Nt − 1,
find un+1

h ∈ V h and pn+1
h ∈ Qh such that

(

ρ

(
un+1

h − un
h

Δt

)

, vh

)

+
(
ρun

h · ∇un+1
h , vh

)
+

(
μ(∇un+1

h + (∇un+1
h )T ,∇vh

)
−

+
(
pn+1

h ,∇ · vh

)
+

∫

ΓOUT,i

β
ρ

2

(
un

h · n
)

− un+1
h · vh dΓ + sh(u

n+1
h , pn+1

h ; vh, qh)

=
∫

ΓOUT,i

P n
OUT n · vh dΓ ∀vh ∈ Wh,

(∇ · un+1
h , qh) = 0 ∀qh ∈ Qh,

u0
h = 0 in Ω,

where V h = {v ∈ [Xh
1 (Ω)]3 : vΓIN

= g, vΓW
= 0}, Qh = Xh

1 (Ω), Wh = {v ∈
[Xh

1 (Ω)]3 : vΓIN∪Γw = 0}, β is the backflow stabilization parameter, and sh is the SUPG-
PSPG stabilization term [41].
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4 Numerical Results

In this section, we present some numerical results of the proposed computational models
to handle the geometric multiscale coupling in the pulmonary arteries. First, we report the
results about the comparison between the Splitting-Explicit and the Splitting-Implicit algo-
rithms (Section 4.2) and about the mesh convergence (Section 4.3). Second, we discuss the
presence of possible numerical instabilities and how to stabilize the solution (Section 4.4).
Then, we report the results obtained with the two proposed numerical algorithms and
we analyze their differences in terms of velocity, pressure and wall shear stresses (WSS)
(Section 4.5). In Section 4.6 we discuss the accuracy of the Closed-0D model in compari-
son with the 3D-0D one. Finally, in Section 4.7 we report a comparison between a healthy
and a Pulmonary Arterial Hypertension (PAH) cases.

4.1 Numerical Experiments Setting

The numerical algorithms were implemented in lifex,2 a high-performance object-oriented
Finite Element library focused on the mathematical models and numerical methods for
cardiac applications. It is developed in the iHEART3 project at the MOX Laboratory, Dipar-
timento di Matematica, Politecnico di Milano. The numerical simulations were run on
clusters with processor Xeon E5-2640 v4 with 20 core, a base frequency of 20GHz, and
with RAM of 63GB.

The 3D computational domain of the pulmonary arteries is reconstructed from CT scans
provided by the Division of Cardiovascular Surgery of “Luigi Sacco” Hospital, Milan, by
means of the Vascular Modeling ToolKit (VMTK, see [1]), which allows also to generate
the corresponding hexahedral computational mesh (see Section 4.3).

We set the blood density ρ = 1.06·103 Kg
m3 , dynamic viscosityμ = 3.5·103 Pa·s, time step

Δt = 0.001 s and a heartbeat period T = 0.8 s. The linear system arising after linearization
and discretization is solved by means of the GMRES method with a maximum number of
iterations equal to 1000 and an absolute tolerance of 10−10. The backflow stabilization (see
Section 3.4) is applied on every outlet boundary with β = 1.

In Table 1, we report all the values of the lumped parameters used in the 0D models of
the two algorithms. Notice that common values used in the Open- and Closed-0D models
were taken from [46]. Instead, the specific values (capitalized in the table) corresponding
to the pulmonary artery in the Closed-0D model (black box in Fig. 2) were calibrated in
order to maximize the accordance between the 3D-0D and the Closed-0D results during
the third heartbeat. Notice that the values of the resistance, compliance and inductance of
the proximal compartment are chosen in order to prevent numerical instabilities. For this
reason, their values, in particular the compliance one, could have not a physical meaning
and are much larger than the other ones.

As for the time discretization of the 0D model, we employed the explicit Euler scheme
for the test reported in Section 4.2 whereas the 4th order Runge–Kutta explicit method for
the other tests.

2https://lifex.gitlab.io/
3iHEART - An Integrated Heart model for the simulation of the cardiac function. European Research Council
(ERC) grant agreement No 740132.
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Table 1 Resistance (mmHg·s
ml

), inductance (mmHg·s2
ml

), capacity ( ml
mmHg

) and elastance (mmHg
ml

) values of both
(Open- and Closed-) 0D models

Right atrium Ea 0.06

Eb 0.07

Tcontr 0.17

Trelax 0.17

Tricuspid valve Rmin 75 · 10−3

Rmax 75 · 103
Right ventricle Ea 0.55

Eb 0.05

Tcontr 0.34

Trelax 0.15

Pulmonary valve Rmin 75 · 10−3

Rmax 75 · 103
Proximal compartment RIN 3.21 · 10−2

LIN 2.50 · 10−3

CIN 3.90

PULMONARY ARTERY RPA 2.50 · 10−4

LPA 2 · 10−3

CPA 5 · 10−4

Microvasculature and lungs ROUT 2.29 · 10−2

LOUT 1.65 · 10−3

COUT 0.25

Pulmonary venous system RPUL
V EN 3.56 · 10−2

LPUL
V EN 5 · 10−4

CPUL
V EN 16

Left atrium Ea 0.07

Eb 0.09

Tcontr 0.17

Trelax 0.17

Mitral valve Rmin 75 · 10−3

Rmax 75 · 103
Left ventricle Ea 2.75

Eb 0.08

Tcontr 0.34

Trelax 0.15

Aortic valve Rmin 75 · 10−3

Rmax 75 · 103
Systemic arterial system RSYS

ART 0.64

LSYS
ART 5 · 10−3

CSYS
ART 1.2

Systemic venous system RSYS
V EN 0.26

LSYS
V EN 5 · 10−4

CSYS
V EN 60

In caps the values of the pulmonary artery block, holding only for the Closed-0D model
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4.2 Test I: Splitting-Explicit vs. Splitting-Implicit Algorithms

In this section we want to assess a comparison between the SE and the SI algorithms. The
value ε = 0.001 has been used as tolerance in the relative stopping criterion of Algorithm 2.
In Fig. 3, we report in the first row the comparison for the interface quantities computed by
the 0D model, i.e. QIN and POUT . From these results we observe an excellent agreement
between the explicit and implicit strategies. Moreover, we report the same comparison also
for a halved time step, i.e. Δt = 0.0005 s. As expected from the theory, the two strategies
tend to the same solution for decreasing values ofΔt , being two different time discretization
of the interface coupling. We observe that convergence of the 3D-0D coupling was achieved
with an average number of iterations equal to 5.0 and 3.9 for Δt = 0.001 s and Δt =
0.0005 s, respectively.

In the second row of Fig. 3, we report the 3D velocity field on a slice at time t =
1.9 s (systolic peak). This result shows that, as expected, also the explicit and implicit 3D
solutions are in excellent agreement. As anticipated (see Footnote 1), the results obtained
with the SE algorithm were stable. We deduce that the value of Δt = 0.001 s selected for
our simulations is below the constraint required by the explicit treatment. Thus, since SE

Fig. 3 Comparison between implicit and explicit solutions. Top-Left: Inlet flux QIN . Top-Right: Outlet
pressure POUT . Bottom: Velocity field at the systolic peak (t = 1.9 s). Left: Splitting-explicit algorithm;
Right: Splitting-implicit algorithm. Test I

138 F. Marcinno’ et al.



algorithm reveals to be also accurate, in what follows we consider only the Splitting-Explicit
algorithm with Δt = 0.001 s.

4.3 Test II: Mesh Convergence

We carry out a mesh convergence study to investigate the accuracy of our numerical solution
by refining the grid. To this aim, we consider here three grids having a different space step
discretization, namely:

– Fine grid, h1 = 0.4mm,
– Medium grid, h2 = 0.7mm,
– Coarse grid, h3 = 1.1mm.

It is worth noting that the space discretization steps have a constant ratio, r = h2
h1

=
h3
h2

= 1.6. On a longitudinal slice, obtained by cutting the 3D pulmonary artery, we compute
the integrals fi, i = 1, 2, 3, of the pressure field for the three grids, used as indices for
the convergence analysis. Then, we estimate the order of convergence (p), the constant of
the numerical method (c) and the reference solution (fref ), by means of the Richardson
extrapolation [37],

p =
log

(
f3−f2
f2−f1

)

log(r)
, fref = (h

p

2 · f3 − h
p

3 · f2)

(−h
p

3 + h
p

2 )
.

Finally, we compute the relative discrepancies among the meshes as follows:

Ei = |fi − fref |
|fref | , i = 1, 2, 3.

Given the value of r used in this analysis, an acceptable value for the relative discrepancy
under which we can argue that the solution has reached convergence, is 3%.

In Table 2, we report the quantitative values used to perform the mesh convergence. From
these results, we find that the medium mesh (average cell size h = 0.7mm, corresponding
to 84992 cells, see Fig. 4), satisfies the convergence requirement, namely, a relative error
less than 3%. Thus, we decide to use it for the all the numerical simulations.

It is worth noting that the simulations for the grid convergence were done with a fixed
time step of 10−3 s that guaranteed that the temporal error was below the spatial one.

4.4 Test III: About the Stability of Coupling Algorithms

In Section 2 we have discussed the introduction of a RLC model (the red one in Fig. 1)
between the 3D pulmonary artery and the pulmonary valve (downstream diode in the light

Table 2 For the three different meshes: total number of grid cells N , index fi used for the convergence
analysis, relative discrepancy Ei

Mesh N fi Ei(%)

Coarse 26692 6.754 4.9

Medium 84992 6.774 2.9

Fine 298176 6.785 1.8

Mesh convergence. Test II
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Fig. 4 Medium grid of the patient-specific pulmonary artery used for all the numerical tests, anterior view.
Test II

blue block). This RLC model represents the first 0.3 cm of the pulmonary artery and allows
to avoid the direct connection of the 3D model with the diode, which, as detailed below for
the first time, may lead to unstable results. This lumped parameter model must be suitably
devised to guarantee a correct mathematical transition between the models.

In order to valuate the effect of this RLC model on the Splitting-Explicit and One-Way
algorithms, we considered two scenarios: the first one where in the Open-0D model such
block is eliminated and the 3D model is connected directly with the pulmonary valve diode
(light blue block); we refer to this scenario as Setting 1, see Fig. 5, left; and a second
one where the 3D model is connected to 0D pulmonary valve through the proximal RLC
compartment (Setting 2, see Fig. 5, right).

For the sake of completeness, we report in what follows the terms of the equations
differentiating the two Settings:

Fig. 5 Left: The 3D model is
directly connected with the
pulmonary valve (Setting 1).
Right: The 3D model is
connected with the complete
Open-0D models (Setting 2).
Test III
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Fig. 6 Comparison between the results obtained with Setting 1 (blue) and Setting 2 (red). Left: 0D inlet flow
rate (QIN ). Center: 3D inlet mean pressure (PIN ). Right: 0D right ventricular pressure (PRV ). Test III

Setting 1 Pulmonary valve

QPV = PRV − PIN

RPV (PRV , PIN)
.

Setting 2 Pulmonary valve

QPV = PRV − PPC

RPV (PRV , PPC)
.

Proximal compartment

CIN

dPPC

dt
= QPV − QIN,

LIN

dQIN

dt
= −RINQIN − (PIN − PPC).

In Fig. 6 we report, for the Splitting-Explicit Algorithm, the inlet quantities at the first
heartbeat together with the ventricular pressure computed by the 0D model in both Settings
1 and 2. Similar results are obtained for the One-Way Algorithm. In particular, the inlet
flow rate QIN is computed by the 0D model whereas the inlet mean pressure PIN by the
3D model. We can observe unstable solutions just after the first time steps in the case of
Setting 1. The arising of such instabilities seems to be independent of the choice of the time
step Δt . Moreover, varying the resistance of the non-ideal diode modeling the pulmonary
valve does not introduce any improvement. Instead, the complete Open-0D model account-
ing also for the RLC (red block) lumped model (Setting 2, see Fig. 5, right), allows to
get stable results. We notice a small, non-physiological pressure drop during the first time
instants. This is due to the fact that the solution is not completely developed and has not
yet reached a regime state. This pressure drop disappears during the following heartbeats as
clearly showed in Fig. 9.

We also observed a significant difference (about 10 mmHg) between PIN and PRV , that
is the pressure at the inlet of the 3D model and the 0D ventricular pressure, respectively.
This is equivalent to the pressure drop across the RLC block, see Fig. 5, right. Thus, the
price to pay to have stability is the formation of a large pressure drop corresponding to a
short tract of the pulmonary artery (the RLC block), which seems to be larger than expected.
The instability behaviour reported above could be explained by observing that in Splitting-
Explicit Algorithm for 3D-0D coupling the concept of bridging regions plays a fundamental
role [7, 26, 33]. In particular, when the 3D model gives to the Open-0D model an informa-
tion about the pressure, the latter becomes a forcing term for the Open-0D model making
necessary the presence of an inductive term at the interface to allow the calculation of the
flow rate representing a state variable for the Open-0D model. On the other hand, if the 3D
model gives an information about the flow rate to the Open-0D model, a compliance must
be present at the interface, in order to calculate the pressure representing a state variable
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for the Open-0D model. Thus, the direct connection of the 3D model with the diode does
not guarantee, for both Splitting-Explicit and One-Way Algorithms, the satisfaction of such
principle and this explains the unstable solutions.

4.5 Test IV: Comparison between Coupling Algorithms

In this section, we report and discuss the results obtained by means of the two coupling algo-
rithms introduced in Section 3, namely the Splitting-Explicit Algorithm and the One-Way
Algorithm. In particular, in Fig. 7 we report for a longitudinal slice the comparison between
velocity fields at three different temporal instants of the heartbeat, namely the acceleration
phase (t = 1.75 s), the systolic peak (t = 1.9 s) and the deceleration phase (t = 2.15 s). The
results do not present any relevant difference in terms of flow pattern and magnitude. We
observe a recirculation region in the inferior side of the right pulmonary artery during the
systolic peak. Some vortices are generated during the deceleration phase, which are slightly
different in the two cases. In Fig. 7, we also report a zoom on the streamlines of the right
pulmonary artery during the diastolic phase.

On the same section, we report in Fig. 8 the pressure field obtained with the Splitting-
Explicit Algorithm. The solution of the One-Way Algorithm is almost identical, thus it is
not shown. At the systolic peak, a high pressure is experienced at the inlet.

On the branching of the left and right pulmonary arteries, there is a stagnation point
that generates the highest pressure of the whole pulmonary arteries. Finally, in the second
row of Fig. 8, we show the WSS field on the physical wall, again only for the Splitting-
Explicit algorithm since relevant differences are not found between the two algorithms.
WSS measures the tangential viscous stress exerted by the blood in motion onto the vessel
walls [12]:

WSS = ‖T n − (T nn)n‖,
where T represents the Cauchy stress tensor. In particular, the WSS is reported from the
anterior view in order to highlight the differences between the main and distal branches.
The WSS magnitude is strongly related to the velocity, therefore we see a higher WSS in
the distal branches of the pulmonary vasculature where the diameter of the vessel decreases.

The results obtained with this test show that the proposed method is able to simulate
the hemodynamics of the pulmonary arteries obtaining physiological results [22, 42]; the
pulmonary arterial pressure is between 14–20 mmHg, the WSS is between 0–3 Pa and the
right ventricular volume is between 60–160 ml.

4.6 Test V: About the Accuracy of the Closed-0DModel

The Closed-0D model (i.e the model where the 3D pulmonary artery is substituted with
a 0D model, black box in Fig. 2) allows the calculation of the mean pressure and flow
rate in the whole cardiovascular system with a convenient computational cost; therefore, it
is a powerful framework that can give a quantitative indication about the haemodynamics
at least in terms of averaged flow properties as mean pressures and flow rates. In Fig. 9,
we compare the mean pressure PIN and the flow rate QOUT inside the pulmonary artery
compartment computed by the Closed-0D model with those computed by means of the 3D
model for both the Splitting-Explicit and One-Way Algorithms.

From these results, we notice that the Closed-0Dmodel, properly calibrated (see Table 1),
is able to give accurate results able to capture almost perfectly the mean quantities, i.e
the inlet mean pressure and the outlet flow rate. In the flow rate, we are not able to see
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Fig. 7 Top: Velocity field at three different istants for the One-way and Splitting-Explicit algorithms. Left:
Acceleration phase (t = 1.75 s). Center: Systolic peak (t = 1.9 s). Right: Deceleration phase (t = 2.15 s).
Bottom: Zoom on the right pulmonary artery during the diastolic phase. Test IV

any difference, instead in the pressure field, the models present the bigger differences at
the systolic peak and during the deceleration phase. Of course, to have a fully detailed
description of the blood flow, as the local pressure, velocity field andWSS, a 3D-0D coupled
model is needed (see Fig. 2).
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Fig. 8 Pressure field (top) and WSS (bottom) for the Splitting-Explicit algorithm. Left: Acceleration phase
(t = 1.75 s). Center: Systolic peak (t = 1.9 s). Right: Deceleration phase (t = 2.15 s). Test IV

4.7 Test VI: Comparison between Healthy and Pulmonary Arterial Hypertension
Cases

In this final test, we compare the hemodynamics in the pulmonary artery in the healthy
and PAH diseases. To this aim, we use the Splitting-Explicit Algorithm. The PAH is a dis-
ease characterized by an elevated resistance in the distal branches of the pulmonary arteries
(the microvasculature and the lungs compartment); this condition entails an increase in the

Fig. 9 Interface quantites. Left: Inlet pressure (PIN ). Right: Outlet flow rate (QOUT ). Test V
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Fig. 10 Systolic peak (t = 1.9 s). Left: Velocity field. Center: Pressure field. Right: WSS field. Test VI

working pressure of the right ventricle, possibly causing hypertrophy and failure [19]. It has
been demonstrated that the hemodynamics parameters are significant indicators of PAH; in
particular, changes in the right ventricle end-diastolic volume and a decrease of WSS at the
proximal part of the pulmonary artery are suggested as a good indicator of PAH severity
[45]. We model the PAH disease by increasing the resistance of microvascolature and lungs
compartment: specifically, we quintuplicate the ROUT value with respect to the physiolog-
ical case choosing ROUT = 1.14 · 10−1 mmHg·s

ml . Using the same visualizations of Figs. 7
and 8, in Fig. 10 we compare the velocity, pressure and WSS fields of the healthy and
simulated PAH cases at the systolic peak (t = 1.9 s).

From these results, we observe that the PAH is characterized by a strong decrease in term
of velocity due to the resistance increase of the 0D microvasculature and lungs compartment
representing physically the distal branches of the pulmonary arteries. This increase leads to
a higher pressure along the whole pulmonary artery, and consequently to lower velocities.
Since the WSS is strongly related with the velocity field, we find that the PAH is also asso-
ciated with a lower WSS than the healthy case, specially in the distal branches. In particular,
we observe a decrease of about 40% of the WSS. It is worth noting that in the PAH disease,

Table 3 Averaged in time quantities for the healthy and PAH cases. Test VI

Case QMEAN
IN (ml/s) P MEAN

IN (mmHg) P MEAN
RV (mmHg) V MEAN

RV (ml) SV (ml)

Healthy 111.1 16.4 13.4 154.4 88

PAH 97.3 27.7 16.2 166.1 82
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Fig. 11 Pressure-volume loop of the right ventricle. Test VI

the pressure reached at the systolic peak is about 34mmHg, almost 1.5 times more than the
pressure reached in the healthy case. As a confirmation of such results, in Table 3, we report
the time-averaged values (computed during the third heartbeat) of the inlet pressure P MEAN

IN

and flow rate QMEAN
IN for both the scenarios. Moreover, we report also the time average

right ventricle pressure P MEAN
RV and end diastolic right ventricle volume V MEAN

RV .4 From
these results, we observe that for the PAH case, as expected, also P MEAN

RV increases. Inter-
estingly, we also observe that the end-diastolic volume increases of about 10% in the PAH
case. This could be ascribed to Frank-Starling law, which allows the ventricle to increase its
volume in order to win the increased resistances.

Moreover, we report in Fig. 11, the right ventricle pressure-volume loop of both the sce-
narios. According to the literature the PAH case is characterized by an increase of pressures
and volumes [19, 42, 45], corresponding to a decrease of the stroke volume.

5 Conclusions and Limitations

We have simulated the hemodynamics of the pulmonary arteries in a geometric multiscale
context. Physiological inlet and outlet boundary conditions are provided to the 3D model of
the pulmonary arteries by means of a lumped parameter model of the entire cardiovascular
system.

We adopted three strategies for the coupling of the 3D and 0D models: the One-Way,
the Splitting-Explicit and the Splitting-Implicit algorithms. Numerical results have demon-
strated that all these algorithms are able to reproduce physiological results in accordance
with the literature. The algorithms provide substantially equivalent results in terms of
velocity and WSS, and some slight differences for the pressure.

We have also simulated PAH disease increasing the resistance of the microvasculature
and lungs compartment. We found that, as expected, PAH produces a strong increase of the

4Remember that P MEAN
IN and QMEAN

IN are computed from the 3D simulation, whereas P MEAN
RV and V MEAN

RV
from the 0D model.
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pressures with respect to the healthy case and consequently, lower velocities and WSS, in
particular in the distal branches.

This study presents some limitations. First, the 3D pulmonary arteries were modeled
by means of the rigid walls assumption. This is a restrictive choice because it leads to an
overestimation of pressure, velocity and WSS, especially in the distal branches, as found in
[23]; for a simulation including the 3D model of the microvasculature, the fluid-structure
interaction approach becomes mandatory. Moreover, the pulmonary arterial stiffness seems
to be one of the principal biomechanical markers for the identification of PAH disease [45],
therefore an FSI simulation may give more accurate information about PAH.

Second, the lumped parameter model of the cardiovascular system is relatively sim-
ple; other RLC compartments could be added in order to consider different parts of the
cardiovascular system.

Third, we have assumed the same outlet pressure at the four distal pulmonary outlets.
This is an approximation, since some pressure differences (although small) may appear
and in any case the length of the branches is not identical. Different RLC compartments
should be considered for each outlet. However, since this work is focused on comparison
among different algorithms and scenarios (all affected by this limitation), we believe that
our assumption may be in first approximation acceptable.

In addition, both the algorithms have practically the same computational time taking
about 24 hours to simulate three heartbeats of 0.8s as period using the medium grid; more-
over, no relevant computational time differences between the healthy and the PAH case have
been observed.

Funding Open access funding provided by Politecnico di Milano within the CRUI-CARE Agreement.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/

References

1. Antiga, L., Piccinelli, M., Botti, L., Ene-Iordache, B., Remuzzi, A., Steinman, D.A.: An image-based
modeling framework for patient-specific computational hemodynamics. Med. Biol. Eng. Comput. 46,
1097–1112 (2008)

2. Bazilevs, Y., Gohean, J.R., Hughes, T.J.R., Moser, R.D., Zhang, Y.: Patient-specific isogeometric fluid–
structure interaction analysis of thoracic aortic blood flow due to implantation of the Jarvik 2000 left
ventricular assist device. Comput. Methods Appl. Mech. Eng. 198, 3534–3550 (2009)

3. Bessonov, N., Sequeira, A., Simakov, S., Vassilevskii, Y., Volpert, V.: Methods of blood flow modelling.
Math. Model. Nat. Phenom. 11, 1–25 (2016)
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