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Abstract

Summary: RNA-Seq and mass spectrometry-based studies generate omics data tables with measurements for tens
of thousands of genes across all samples in a study. The success of a study relies on the quality of these data tables,
which is determined by both experimental data generation and computational methods used to process raw experi-
mental data into quantitative data tables. We present OmicsEV, an R package for the quality evaluation of omics
data tables. For each data table, OmicsEV uses a series of methods to evaluate data depth, data normalization, batch
effect, biological signal, platform reproducibility and multi-omics concordance, producing comprehensive visual
and quantitative evaluation results that help assess the data quality of individual data tables and facilitate the identi-
fication of the optimal data processing method and parameters for the omics study under investigation.

Availability and implementation: The source code and the user manual of OmicsEV are available at https://github.
com/bzhanglab/OmicsEV, and the source code is released under the GPL-3 license.

Contact: bing.zhang@bcm.edu.

1 Introduction

RNA-Seq and mass spectrometry (MS)-based proteomics provide
global measurements of the abundance of genes and their protein
products in samples of interest. These measurements are usually
stored in quantitative data tables for downstream analysis. The suc-
cess of an omics study is largely determined by the quality of these
tables, which in turn depends on the quality of both experimental
data generation and computational methods used to process raw ex-
perimental data into quantitative data tables. Omics data processing
involves multiple steps, and many algorithms, software, and work-
flows have been developed for these essential tasks.

Optimal selection of tools, algorithms and parameters is critical
to ensure reliable and accurate estimation of gene or protein quanti-
fication (Conesa et al., 2016). Many studies have been performed to
evaluate different methods for processing RNA-Seq or proteomics
data (Cole et al., 2019; Corchete et al., 2020; Frohlich et al., 2022;
Valikangas et al., 2018). Many of these studies focus on a specific
aspect of data processing such as normalization or missing value im-
putation. Moreover, these studies are typically based on a few
benchmarking datasets. Due to the complexity of omics data and its
processing, a single evaluation study does not cover all aspects of the
data processing and may not generalize to other datasets with differ-
ent complexities. In addition, as new methods are being continuous-
ly developed, new evaluation studies are required. It remains a
challenge to pick optimal methods and parameter settings for proc-
essing a specific omics dataset of interest.

Here, we propose OmicsEV, an R package that provides multiple
quality evaluation methods for RNA-seq and proteomics data
tables. These metrics can be used to evaluate the quality of a given
RNA or protein data table and to guide the selection of optimal
methods or parameter settings for processing a specific dataset.

2 Features and implementation

OmicsEV is implemented as an R package, and a docker is also
available. OmicsEV takes a folder that contains omics data tables to
be evaluated together with a sample annotation file as input and
evaluates the data quality of each data table using a series of meth-
ods, which can be classified into six groups focusing on different
aspects (Fig. 1). Group 1 methods assess data depth. The numbers of
identified and quantifiable features (i.e. genes or proteins) in each
data table are summarized in a table. The overlap of features across
different data tables is visualized in an UpSet plot. A scatter plot is
used to visualize the number of features identified in each sample.
Moreover, the missing value distribution plots provide an overview
of the missing data frequency in each data table. Group 2 methods
evaluate data normalization by visualizing feature abundance distri-
bution in each sample using boxplots and density plots and by com-
puting pair-wise distribution similarities based on the receiver
operating characteristic curve (AUROC) analysis. Group 3 methods
evaluate the potential batch effect. Batch effect is quantified using
silhouette width and principal component regression analysis. These
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quantifications are complemented by the visualization of principal
component analysis (PCA) plots and correlation heatmaps. Group 4
methods assess the strength of the biological signal in a data table
using four complementary methods. First, correlation analysis based
on protein complexes from the CORUM database is performed. For
each data table, the same number of intra-complex feature pairs and
inter-complex pairs are randomly generated, and the Pearson correl-
ation coefficient is calculated for each pair. The correlations of
inter-complex pairs should be close to zero, and higher overall corre-
lations for intra-complex pairs are indicative of stronger biological
signal and better data quality. Second, gene function prediction is
performed using co-expression network analysis (Wang et al.,
2017). Each data table is used to build a co-expression network of
features. For a selected network and a selected KEGG pathway, fea-
tures annotated to the pathway and included in the network are
defined as a positive feature set, and other features in the network
constitute the negative set for the pathway. The random walk with
restart algorithm is then used to assess prediction performance for
each pathway and network through cross-validation (Wang et al.,
2017). Better performance as quantified by higher AUROC scores
indicates stronger biological signal and better data quality. Third,
for a sample classification specified in the input file, e.g. tumor ver-
sus normal, machine learning models are constructed based on each
data table, and the prediction performance evaluated through cross-
validation is compared across data tables. Higher AUROC scores
correspond to stronger biological signal and better data quality.
Finally, unsupervised clustering is used to visually assess whether
sample grouping is associated with the sample feature specified in
the input file, indicating good data quality, or experimental batches,
indicating batch effect. Group 5 methods evaluate platform repro-
ducibility when replicated quality control (QC) samples are included
in the study. The coefficient of variation (CV) for each feature is
computed for replicated QC samples in each data table. CV distribu-
tions are plotted, and the percentage of features with CV less than
30% is used as a quantitative metric for platform reproducibility as-
sessment. Group 6 methods focus on multi-omics concordance.
When a paired mRNA data table is available for proteomics data
tables, mRNA-protein correlation metrics for gene-wise and sample-
wise correlations are generated. Higher overall correlation is
indicative of the better quality of a proteomics data table. When
evaluating RNA-Seq data tables, a paired proteomics data table can
be used similarly if available. Together, these six groups of methods
produce comprehensive visual and quantitative evaluation results

that help evaluate the quality of a given data table and facilitate the
identification of the optimal data processing method and parameters
for the omics study under investigation. All these analyses are wrapped
into a single function for easy application. All evaluation results are
included in an HTML report, preceded by a brief introduction section
summarizing the data tables under evaluation and associated sample
information and by an overview section with all quantitative results
summarized in a table and visualized in a radar plot (Fig. 1).

3 Applications

Earlier versions of OmicsEV have been used in multiple proteoge-
nomic studies on hepatocellular carcinoma (Gao et al., 2019), endo-
metrial carcinoma (Dou et al., 2020), breast cancer (Satpathy et al.,
2020), head and neck squamous cell carcinoma (Huang et al., 2021)
and pancreatic ductal adenocarcinoma (Cao et al., 2021), respect-
ively. Three examples on the application of the current version of
OmicsEV to evaluate RNA-Seq data tables generated using different
normalization methods, proteomics data tables generated using dif-
ferent pipelines and a single RNA-Seq data table, respectively, are
available at https://github.com/bzhanglab/OmicsEV. We expect
OmicsEV will have broad applications in omics studies to assess
data quality and to select and optimize data processing methods
including tools, algorithms and parameter settings.
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