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A B S T R A C T   

Amid the COVID-19 pandemic, a nationwide lockdown was imposed in the United Kingdom (UK) on March 23, 
2020. These sudden control measures led to radical changes in human activities in the Greater London Area 
(GLA). During this lockdown, transportation use was significantly reduced and non-key workers were required to 
work from home. This study aims to understand how population exposure to PM2.5 and NO2 changed spatially 
and temporally across London, in different microenvironments, following the lockdown period relative to the 
previous three-year average in the same calendar period. Our research shows that population exposure to NO2 
declined significantly (52.3% ± 6.1%), while population exposure to PM2.5 showed a smaller relative reduction 
(15.7% ± 4.1%). Changes in population activity had the strongest relative influence on exposure levels during 
morning rush hours, when prior to the lockdown a large percentage of people would normally commute or be at 
the workplace. In particular, a very high exposure decrease was observed for both pollutants (approximately 66% 
for NO2 and 19% for PM2.5) at 08:00am, consistent with the radical changes in population commuting. The 
infiltration of outdoor air pollution into housing modifies the degree of exposure change both temporally and 
spatially. Moreover, this study shows that the impacts on air pollution exposure vary across groups with different 
socioeconomic status (SES), with a disproportionate positive effect on the areas of the city home to more 
economically deprived communities.   

1. Introduction 

Ambient air pollution levels are strongly associated with human 
activities, such as transportation, and can have significant population 
health impacts; in the UK, for example, air pollution is thought to 
contribute 28,000 to 36,000 excess deaths a year (PHE, 2019). On March 
23, 2020, the UK government imposed a nationwide lockdown due to 
increasing transmission of coronavirus, which subsequently led to 
radical changes in human activities including the transportation and 
time-activity behaviours of the population. The COVID-19 lockdown 
offers a unique natural experiment to evaluate and quantify the impact 
of rapid changes in people’s activity patterns and emissions on air 
pollution and subsequent population exposure. 

Numerous studies have already evaluated the impact of COVID-19 
lockdowns on outdoor air quality worldwide (Muhammad et al., 
2020). The vast majority of these studies show that radical shutdown 
measures in big cities led to lower and less variable outdoor concen
trations of urban air pollutants (Mahato et al., 2020; Mbandi, 2020; 

Sharma et al., 2020; Tanzer-Gruener et al., 2020; Zhao et al., 2020). 
However, most of these studies focus solely on the reduction of outdoor 
concentrations, and a relative few studies have assessed the impact of 
lockdowns on population exposure to urban air pollution (Williams, 
2020; Zhu et al., 2020). This is important, as exposure to outdoor air 
pollution also occurs in non-outdoor microenvironments (MEs) due to 
the infiltration of polluted air; for example, housing is thought to 
significantly modify population exposures (Taylor et al., 2014). 

Exposure is also dependent on the time-activity profiles of the pop
ulation. In cities under lockdown, much of the population radically 
changed their daily activities, including working from home instead of 
their usual workplace and by avoiding all unnecessary travel. For 
example, the lockdown led to a greater than 70% decrease in public and 
private transportation in London, likely reducing exposure to outdoor 
generated air pollution (Williams, 2020). Therefore, to assess spatial and 
temporal changes in exposure during the lockdown, key factors such as 
changes in population activity patterns and concentrations in different 
microenvironments, where people spent their daily time (for example at 

* Corresponding author. School of the Built Environment, University of Reading, United Kingdom. 
E-mail address: z.luo@reading.ac.uk (Z. Luo).  

Contents lists available at ScienceDirect 

Environmental Research 

journal homepage: www.elsevier.com/locate/envres 

https://doi.org/10.1016/j.envres.2021.111236 
Received 16 December 2020; Received in revised form 19 April 2021; Accepted 23 April 2021   

mailto:z.luo@reading.ac.uk
www.sciencedirect.com/science/journal/00139351
https://www.elsevier.com/locate/envres
https://doi.org/10.1016/j.envres.2021.111236
https://doi.org/10.1016/j.envres.2021.111236
https://doi.org/10.1016/j.envres.2021.111236
http://crossmark.crossref.org/dialog/?doi=10.1016/j.envres.2021.111236&domain=pdf


Environmental Research 198 (2021) 111236

2

home, workplaces, in transit, and outdoors) need to be considered. 
In addition, there may be important differences in exposure between 

population groups. Socioeconomic inequalities in concentration and 
exposure to outdoor pollution are well established (Tonne et al., 2018; 
Shiels et al., 2017; Stringhini et al., 2017; Rivas et al., 2017; Rotko et al, 
2000, 2001) and there is emerging evidence of similar disparities in
doors (Ferguson et al., 2020). Several studies have shown a strong 
connection between communities of either lower or higher socioeco
nomic position and increased concentrations and exposure to urban air 
pollution (Hajat et al., 2015). In US, several studies have shown that 
deprived areas experience higher levels of outdoor pollution exposures 
(Su et al., 2012; Gray et al., 2013; Hajat et al., 2015). In London and 
other big cities, it has been suggested socioeconomic inequalities in 
outdoor levels of traffic-related air pollution are driven by differences in 
road traffic volume, which affects the amount of emissions (Brook and 
King, 2017; Padilla et al., 2014; Tonne et al., 2018) Therefore, changes 
in road traffic following the lockdown provide a unique natural exper
iment opportunity to investigate exposure disparities across socioeco
nomic groups, with potential changes in outdoor generated air pollution 
resulting in differences in exposure changes across different such groups. 

In this study, we seek to 1) understand how the COVID-19 lockdown 
changed population-level outdoor air pollution exposures, and 2) eval
uate whether changes in exposures varied across socioeconomic groups 
and explore the role of traffic-related pollution on exposure inequalities. 

To achieve this, we aim to quantify and illustrate the spatio-temporal 
change in population exposure to outdoor-generated air pollution in 
London during the lockdown period relative to previous years for the 
same period. By accounting for the spatial and temporal variability of 
outdoor air pollution, dwelling Indoor-Outdoor (I/O) ratios (the pro
portion of outdoor air pollution that infiltrates indoors), and changes in 
diurnal population activity patterns, we assess the impact of the lock
down on the population exposure levels. Moreover, we also evaluate 
socioeconomic differences in exposure reduction. Understanding the 
spatial and temporal distribution of air pollution across different MEs, 
and subsequent exposure inequalities, is important to develop policies to 
reduce inequalities and improve sustainable development. 

2. Material and methods 

2.1. Study period and air quality data 

Lockdown measures were applied to the Greater London Area (GLA), 
UK, on March 23rd, 2020. To examine the impact on short-term air 
quality, a one-month period (23 March to 22 April) in 2020 was 
compared against the same calendar period, averaged from 2017 to 
2019. The hourly monitoring data for two major traffic-related air pol
lutants (NO2 and PM2.5) were obtained from the London Air Quality 
Network (LAQN) (King’s College London,). For NO2, 98 monitoring sites 
were included, whereas for PM2.5 only 21 monitoring sites were avail
able for the study period. Average hourly concentrations for each hour 
of the study period were calculated for each monitoring site. The Vor
onoi Neighbor Averaging (VNA) tool in QGIS was used to spatially 
interpolate hourly data between monitoring sites, estimating hourly 
outdoor concentrations pre and post-lockdown at Lower-Super Output 
Area (LSOA) level (a census unit with an average of 1500 residents). 

2.2. Microenvironments and infiltration of outdoor pollutants 

Four different MEs have been considered in this work:  

(i) The home;  
(ii) Work, assuming that all individuals work inside buildings;  

(iii) Transport, including public or private transportation (i.e., bus, 
private car/taxi and train) to travel; and  

(iv) Outdoors, including people who are walking or cycling. 

We only consider exposure to outdoor-generated pollution. Esti
mates of indoor pollution from indoor sources are highly uncertain and 
have not been considered in this study due to a lack of data. The infil
tration of outdoor NO2 and PM2.5 into the home ME was considered 
using previously derived hourly I/O ratios across GLA for the same 
calendar period (Taylor et al., 2014). This data includes the hourly 
average I/O ratios of 1.5 million London dwelling (covering approxi
mately 46% of London dwellings), and accounts for seasonal wind 
pressures and summertime window opening; here we use hourly average 
dwelling I/O ratios for April to represent the lockdown period, averaged 
by LSOA (Fig. S1). For both pollutants, central London shows the lowest 
I/O ratios, likely due to the newer building stock and the large number 
of flats in multi-dwelling buildings, where the available surface for 
infiltration is considerably smaller. The average I/O ratio in the GLA 
ranges from 0.40 to 0.63 for PM2.5 and 0.15–0.40 for NO2. The I/O ratio 
is likely to significantly modify population exposure to outdoor air 
pollution due to the extended amount of time that people spent at home 
during the lockdown period. 

The spatially and temporally resolved I/O ratios provided by Taylor 
et al. (2014) have been derived only for domestic buildings and are not 
representative of commercial areas and workplaces. Thus, for the 
workplace, we have selected representative values according to the 
available literature. For PM2.5, we selected an average value of 0.60 
(Singh et al., 2020; Soares et al., 2014; Hänninen et al., 2011) and for 
NO2, we chose to use an average value of 0.68 (Hu and Zhao, 2020; 
Kornartit et al., 2010). 

For outdoor air pollution exposure in the transportation ME, we 
calculated the in-vehicle concentration using a mass balance equation 
(Smith et al., 2016). The same input values as Smith et al. (2016) were 
used except for the outdoor concentrations which were updated. As in 
Smith et al. (2016), the surface area of each commuter was derived as 
per Song et al. (2009). 

2.3. London population data and activity 

The spatial distribution of the London population was derived from 
2011 census data from the Office of National Statistics (ONS, 2011), 
representing 95% of households, and was assumed to be the same in 
both the baseline and study periods. The spatial distribution of the 
population was considered during daytime (defined as the period from 
7:00am to 19:00) population (Fig. S2a in SI) and night-time (defined as 
the period from 20:00 to 06:00am) population (Fig. S2b in SI). The 
Census usual resident population was used for the night-time period and 
the workday population for the daytime period. As expected, under 
normal circumstances the daytime population density is much higher in 
Inner London due to much of the population commuting into the city 
centre, whereas the night-time distribution is much more uniform across 
the GLA. 

2.3.1. Pre-COVID 
For the pre-COVID-19 period, we analyzed the amount of people at 

home, at work, in transportation and outdoors using Census and London 
Travel Demand Survey (LTDS, 2011) data. We used the Census work
place population (the number of people in each LSOA that were in their 
workplace during a usual weekday) to calculate the percentage of people 
normally at work. From the LTDS, the total number of trips per hour of a 
weekday, and the number of average trips per person were used to 
calculate the number of people that use public transportation each hour. 
As there was no data on the movements of populations in each LSOA, the 
temporal variation of the percentage of people in each ME was estimated 
using the LTDS data and the daytime and night-time population distri
butions. LTDS also provides data on the number of people commuting at 
each hour, defined as travelling between the home and workplace. Thus, 
at each hour the respective number of commuters was subtracted from 
the workplace population. 

The diurnal variation of the population activity in the four MEs is 
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presented in Fig. 1A. During the morning and afternoon rush hours, the 
percentage of people in the transportation ME peaks. During daytime, 
more than 30% of people are either at work or in transportation, while at 
the night after 22:00 more than 90% of the population are at home. In 
this study, children were included in the home population. 

2.3.2. COVID lockdown 
For the COVID-19 period, changes in population daily movements 

between MEs were obtained from App Maps (Apple,) and Google sta
tistics (Google statistics,). Google statistics used the median value of 
each day of the week in January 2020 (i.e., 5-week period from 3 
January until 5 February) as baseline, while App Maps used January 13, 
2020. Both datasets show significant changes in population travel and 
working behavior after March 23rd, with transportation reduced by 
more than 70%, and more than 75% of the working population 
remaining at home. The remaining population at work during the 
lockdown period likely consists largely of key workers, who continued 
going to their workplace. The data also shows that less than 1% of the 
total population are outside at most hours of the day. This data was used 
alongside spatial distribution of the usual resident (night-time) popu
lation in order to estimate the variation of the percentage of the popu
lation in each ME during the COVID-19 period (Fig. 1B). 

2.4. Population-weighted exposure 

The population-weighted mean exposure (PE) is estimated from the 
concentration level in each ME and the amount of people that spent time 
in those MEs. The PE was calculated as: 

PE =

∑n
i=1Ci,t,j × Pi,t,j

PT
(1)  

where PE is the population weighted mean exposure for a population, n 
is the number of the populated geographical units (here LSOAs); C and P 
are the mean concentration of the pollutant and the number of people, 
respectively, for LSOA i, microenvironment j and hour t of the day; and 
PT is the respective total population. 

2.5. Socioeconomic analysis 

To compare concentration and exposure across socioeconomic status 
(SES), we used LSOA – level deprivation data from the 2019 Index of 
Multiple Deprivation (IMD). The IMD is an overall relative measure of 
deprivation constructed by combining seven domains of social and 
economic deprivation (i.e.,’ Income Deprivation’, ‘Employment Depri
vation’, ‘Education, Skills and Training Deprivation’, ‘Health Depriva
tion’, ‘Crime’, ‘Barriers to Housing and Services’ and ‘Living 
Environment Deprivation’). The IMD was linked to population exposure 
in each LSOA based on the usual resident population distribution. 

We then examined the statistical relationship between the IMD and 
the average change of concentration and exposure to PM2.5 and NO2 at 
LSOA-level using Spearman’s correlation. Our goal was to show the 
strength of association between the time-averaged air pollution re
ductions and SES. Spearman’s correlation was chosen for the statistical 
analysis because it is considered as a suitable technique to correlate 
ordinal variables, such as the ranked IMD data, and has been previously 
used to correlate UK IMD data with different environmental exposures 
(Tonne et al., 2018). 

3. Results 

3.1. Spatial and temporal change in air pollution concentration and 
exposure 

3.1.1. Spatial distribution of concentrations and exposure reduction 
Hourly average outdoor concentrations changed significantly 

following the COVID-19 lockdown. Before the lockdown, the three-year 
London average (2017–2019) NO2 and PM2.5 concentrations from 23 
March to 23 April were 45.1 μg/m3 and 18.2 μg/m3, respectively. After 
implementation of lockdown measures, the average outdoor concen
trations of NO2 and PM2.5 during the same period were 26.7 μg/m3 and 
15.7 μg/m3 (Table 1), respectively, representing a decrease of 40.9% ±
6% for NO2 and 13.9% ± 4% for PM2.5. 

As changes in outdoor concentrations of NO2 and PM2.5 due to 
COVID-19 shutdown have been presented and analyzed by several 
studies, we focus here on changes in population-weighted exposure 
across different environments. We estimate that transportation was the 
most highly polluted ME during the lockdown with an average exposure 
of 22.1 μg/m3 for NO2 and 13.1 μg/m3 for PM2.5, while the average 
workplace concentration was 17.1 μg/m3 for NO2 and 9.4 μg/m3 for 
PM2.5. The home ME had the lowest NO2 and PM2.5 concentrations with 
7 μg/m3 and 8.6 μg/m3, respectively. 

Population and time-weighted exposure is impacted by population 
activity patterns, I/O ratios and outdoor concentration. The indoor 

Fig. 1. Diurnal variation of the percentage of people in each ME: a) during the 
pre-COVID-19 period and b) during the COVID-19 period (first lockdown). 

Table 1 
Total exposure and concentrations before (2017–19) and during the lockdown 
period (2020).  

MEs 2017–19 2020 

NO2 (μg/ 
m3) 

PM2.5 (μg/ 
m3) 

NO2 (μg/ 
m3) 

PM2.5 (μg/ 
m3) 

Outdoor 45.1 18.2 26.7 15.7 
Transportation 37.4 15.1 22.1 13.1 
Work 28.9 10.9 17.1 9.4 
Home 11.9 9.9 7 8.6 
Total Exposure 

concentration 
16.2 10.3 7.7 8.7  
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levels of outdoor air pollution are directly affected by the I/O ratios of 
dwellings, thus modifying exposures to outdoor air pollution. Here, we 
found that the average population-weighted mean exposure decreased 
following lockdown from 16.2 μg/m3 to 7.7 μg/m3 (a 52.3% reduction) 
for NO2, and from 10.3 μg/m3 to 8.7 μg/m3 (a 15.7% reduction) for 
PM2.5. The fact that a much higher percentage of people were spending 
their daytime inside their homes (an increase from 50% to 90%), has led 
to a greater reduction in exposure during the lockdown due to the 
protective role of housing on outdoor air pollution exposures (Smith 
et al., 2016). 

Figs. 2a and 3a show the concentration and exposure change across 
London. For NO2, the greatest exposure reductions (55–71%) were 
observed in Inner London (Fig. 2a). PM2.5 showed the greatest re
ductions (28%–32%) in East and West areas of Inner London (Fig. 3a). 
Relatively few areas in West London showed only minor reductions in 
exposure (<2%). The spatial variation of exposure reduction is also in- 
part due to changes in the distribution of the population across Lon
don and the I/O ratios of the dwellings where they spend their time. The 
large decrease in exposure in Central London was due to various factors, 
particularly the more uniform distribution of the population during the 
lockdown, when the population was not concentrated in central London 
during working hours (Fig. S2). Additionally, the lower average I/O 
ratios of dwellings (Fig. S1) and the greater reduction in outdoor con
centrations (Figs. 2 and 3) also contributed to reduced exposure. In 
contrast, some areas in western London, which showed higher I/O ratios 
(particularly PM2.5) and low reductions in outdoor pollution show 
comparatively low decreases in overall exposure levels. 

3.1.2. Temporal change in air pollution concentration and exposure 
Fig. 4 describes the average hourly reduction in concentration and 

population exposure to NO2 and PM2.5 during the lockdown. As ex
pected, there is little difference between the concentration (Fig. 4a) and 
exposure (Fig. 4b) reduction during most hours of the day for both 
pollutants. However, during morning during rush hours the percent 
reduction fluctuates differently for both pollutants, which reveals the 
strong impact of the change in population activity on exposure. Both 
pollutants show the greatest exposure decrease during morning and 
evening peak rush hours. During those two time periods, the lowest 
percentage of people are inside the home relative to other hours of the 
day (Fig. 1) pre-COVID-19, and thus we expect to observe the most 
significant changes after lockdown measures at these times. In partic
ular, there was the greatest reduction in population exposure for NO2 
(66.1% ± 5.1%) and PM2.5 (19.2% ± 3.9%) at 08:00am. 

The spatial distribution of the concentration and exposure reduction 
at the time of the greatest hourly decrease (i.e., 08:00am) is illustrated 
on Figs. 2b and 3b. NO2 exposures show the highest percent reduction 
(>65%) in Inner and Northwest London, while PM2.5 exposure is 
reduced more in the Northeast, South, and parts of Inner London. 
Because NO2 is strongly related to traffic, the most traffic congested 
areas of London, such as central London, show the highest exposure 
change. PM2.5 shows a slightly different and more uniform distribution 
of exposure reduction, due to factors discussed in section 3.1.1. 

Fig. 2. Maps a) and b) illustrate the spatial distribution of average NO2 concentration and exposure reduction (%) during the lockdown period across London. Maps 
c) and d) illustrate the spatial distribution of average NO2 concentration and exposure reduction (%) at 08:00am. 
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3.2. Socioeconomic status 

Air pollution concentration and exposure data are summarized to 
illustrate the differences between IMD classifications. Figs. 5 and 6 
present PM2.5 and NO2 concentrations and exposure differences between 
the two examined periods across each deprivation decile. For PM2.5, the 
concentration and exposure differences in the most deprived LSOAs 
(deciles 1, 2, and 3) demonstrate the lowest variability, while the LSOAs 
with moderate deprivation (i.e., deciles 4,5,6) show the largest vari
ability. For NO2, LSOAs in IMD decile 2 show the highest average and 
the greatest variability for both concentration and exposure difference, 
while the least deprived LSOAs (i.e., decile 10) show the lowest vari
ability and slightly lower average difference (8.6 μg/m3) compared to 
the most deprived (8.9 μg/m3). The magnitude of the variability in each 
IMD decile is likely influenced by the corresponding spatial variation of 
I/O ratios and outdoor concentrations among the LSOAs of each decile. 
The smaller variability across the deprivation deciles observed for PM2.5 
reductions relative to NO2 may be explained by the less variable particle 
concentrations across London (Williams, 2020). Moreover, the re
ductions in concentration also indicate that highly deprived populations 
in London are disproportionately impacted by air pollution from traffic 
sources. For both pollutants, the results demonstrate a negative rela
tionship between deprivation deciles and the average exposure and 
concentration difference during the study period (Table 2). Therefore, 
disadvantaged areas were associated with higher reduction of concen
tration and exposure to PM2.5 and NO2. Only a very weak association 
was found for NO2 with correlations of − 0.11 and − 0.05 for concen
tration and exposure, whereas the PM2.5 concentration and exposure 

difference were more strongly correlated with IMD. All correlations are 
statistically significant (p-value <0.05). This study provides evidence of 
weak associations, but in the direction of the predictions of several 
previous studies that suggest a great concentrations or exposure in the 
most deprived areas (Brook and King, 2017; Padilla et al., 2014; Tonne 
et al., 2018) 

4. Discussion 

Lockdown measures in different parts of the world due to the COVID- 
19 outbreak have provided an opportunity to evaluate the human 
impact on the urban environment. In this work, we evaluate the rela
tionship between population exposure and time-activity patterns, 
including the time spent indoors. We found a high average percent 
reduction in NO2 exposure (52.3% ± 6.1%) with the greatest decrease in 
Inner London, while PM2.5 exposure showed a considerably lower 
average percent reduction (15.7% ± 4.1%). The very high reductions in 
exposure to both pollutants during the morning rush hours show the 
strong influence of changes in population commuting. By linking pop
ulation SES and exposure change, we demonstrate variation in air 
pollution exposure reduction following lockdown across IMD deciles, 
and provide evidence supporting the conclusion that deprived commu
nities in London are disproportionately affected by road transport 
pollution. 

Numerous prior research studies have investigated and evaluated the 
influence of coronavirus on air quality globally, and several approaches 
can be broadly identified. According to recent literature, reductions in 
NO2 and PM2.5 concentrations during the lockdown ranged from 10% to 

Fig. 3. Maps a) and b) illustrate the spatial distribution of average PM2.5 concentration and exposure reduction (%) during the lockdown period across London. Maps 
c) and d) illustrate the spatial distribution of average PM2.5 concentration and exposure reduction (%) at 08:00am. 
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greater than 50% worldwide (Fonseca, 2020; Tanzer-Gruener et al., 
2020; Williams, 2020; Wu et al., 2021; Zhao et al., 2020) with the 
highest emission reductions observed during morning rush hours. Here, 
we estimate an average reduction of approximately 50% and 16% for 
NO2 and PM2.5, respectively. The radical changes in population activity 
and the significant change in the spatial distribution of the population 
are likely to have significantly contributed to this reduction in emis
sions. As with other studies, we estimated the greatest exposure re
ductions during morning rush hours and during the evening peak hours, 
particularly at 08:00am when there was the greatest reduction in pop
ulation exposure for NO2 (66.1% ± 5.1%) and PM2.5 (19.2% ± 3.9%). 
The steep decrease in air pollution exposure levels during rush hours 
reflects the importance of the temporal variation of population activity 
and spatio-temporal variation of the domestic I/O ratios. Conversely, 
during night hours and early morning hours, the reduction in exposure 
was much lower. As the number of night workers is much lower than the 
number of day or evening workers and over 90% of the population was 
at home during night or early morning, only minor changes were 
observed to the population activity patterns at these times. 

Many large cities around the world demonstrated lower outdoor 
concentrations of air pollution during the quarantine measures, 
improving air quality (Arregocés et al., 2021; Kumar et al., 2020). 
However, it is worth noting that some studies show higher PM2.5 con
centrations in several locations (Daniella Rodriguez-Urrego and Leo
nardo Rodriguez-Urrego, 2020) relative to the pre-covid period, and the 
effect of the lockdown on some pollutants might be still questionable. A 
direct comparison between studies is frustrated by the different periods 

and sites considered, and the methodologies used to quantify the 
changes. In the UK, a selection of studies have investigated the impact of 
the shutdown on the concentration of urban pollutants (Williams, 2020; 
Fonseca et al., 2020). However, there is little research on how changes in 
population exposure are distributed across urban areas, accounting for 
the spatial and temporal variability of the exposures in different MEs. 
Our novel approach includes hourly average I/O ratios of more than 1.5 
million dwellings - averaged by LSOA - and estimates an average pop
ulation exposure reduction of 66% and 19% for NO2 and PM2.5. For NO2, 
the highest reduction was observed in Central, Northwest and Southeast 
London and for PM2.5 in the West and East of Inner London. For both 
concentration and exposure, NO2 show notably higher reductions than 
PM2.5 post lockdown. This is likely due to a significant decrease in 
traffic-rated emissions in London, meaning pollutants that are strongly 
related to traffic emissions, such as NO2, are more significantly affected. 
On the other hand, for outdoor PM2.5, the contribution of local transport 
emissions is smaller than for NO2 (Reis et al., 2018) and particulate 
pollution may be influenced by other factors (for example, local mete
orology, transboundary transport, resuspension and the use of 
fireplaces). 

Health studies have suggested that lower SES populations are more 
likely to suffer premature mortality from air pollution exposure than 
higher SES populations (Krewski et al., 2009). Multiple studies have 
been conducted in large cities and metropolitan areas around the world 
associating the SES with the air pollution concentration and exposure. 
Most of them demonstrate high associations between the most deprived 
areas and high outdoor (Sarmadi et al., 2020; Cakmak et al., 2016; 
Pinault et al., 2016; Padilla et al., 2014; Gray et al., 2013) and indoor 
concentrations (Ferguson et al., 2020). Here, we provide new informa
tion about the impact of lockdown measures on people across different 
IMD groups. Results indicate negative associations between the re
ductions of concentration and exposure during the lockdown period and 
the area-level deprivation status, where PM2.5 is more strongly corre
lated than NO2. Several studies conducted in large urban areas have 
presented similar outcomes (Padilla et al., 2014). In London, (Brook and 
King, 2017) predicted that reductions in exposure to NO2 would be 
higher for areas that fall within IMD decile 1 (most deprived) after the 
implementation of air pollution reduction measures. Furthermore, 
Tonne et al. (2018) analyzed the relationship between SES and outdoor 
air pollution, finding an exposure different of 0–1.9 μg/m3 between the 
highest and lowest household income groups, and greater reductions in 
air pollution in the least advantaged areas after the activation of the 
Congestion Charging Zone in London. 

The main strengths of our study are the large dataset, including 
population information at LSOA-level, travel behavior from a repre
sentative sample of the London population and the large spatio-temporal 
variability of the I/O ratios for dwellings. The indoor environment is 
protective of exposure to outdoor air pollutants and that is usually re
flected in much lower exposures when Home MEs have been taken into 
account. Amid the pandemic lockdown measures, when more than 90% 
of the population had to stay at their home during the daytime, the 
incorporation of the spatial and temporal distribution of domestic I/O 
ratios when estimating the population-weighted exposure significantly 
modifies the magnitude and distribution of the exposure change. 

This study contains several limitations. The limitations is the quality 
of the derived air pollution data and the absence of meteorological ef
fects. Because our study is based on recent measurements, most of the 
available concentrations for 2020 have not yet been fully ratified by the 
LAQN. However, in order to reduce the uncertainty and improve the 
quality of our data, we did not include any negative or unusually 
extreme hourly values to our analysis. A few monitoring sites did not 
provide 100% of the data for the whole study period and some hourly 
readings were missing (or not included). No sites provided less than 70% 
of the data (Lang et al., 2019; King’s College London, 2015). Temporal 
and spatial variability of air pollution concentrations are subject to 
changes in emissions and meteorology, which may impact the exposure 

Fig. 4. Average diurnal a) concentration reduction (%) and b) exposure 
reduction (%) during the lockdown period (yellow represents NO2 and blue 
PM2.5). (For interpretation of the references to colour in this figure legend, the 
reader is referred to the Web version of this article.) 
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levels (Bujin et al., 2020). NO2 levels can be directly linked to the 
reduction of transport emissions due to its strong relation to traffic (He 
et al., 2020a, 2020b). However, transboundary transport of PM and 
precursors from mainland European sources and the associated meteo
rology play an important role in PM concentrations in London. Thus, 
post-COVID-19 concentrations might be different than pre-COVID-19 
due to reasons that are not directly related to lockdown. The wind 
conditions during 2020 have been exceptional in many ways across the 
UK (Carslaw, 2020). Moreover, the lockdown period also coincides with 
the period of the year where there is an increased frequency of PM2.5 
episodes in Europe (Air Quality Expert Group, 2020). Therefore, the lack 
of accounting for weather conditions in our assessment is likely to have 
affected our results and some reductions may have been over-estimated. 
However, our approach of averaging the same calendar period of the 
previous years might have the benefit of reducing meteorological vari
ability. Another limitation is that exposure to other urban air pollutants 
was not considered, mostly due to data in availability. In this study we 
focused on the two most important major air pollutants for London’s air 
quality (https://www.london.gov.uk/). Many air pollutants have com
mon sources, and air pollution reduction strategies that take advantage 
of these common sources may achieve economies of scale that control 
strategies that target one pollutant at a time cannot. Moreover, pollut
ants can also be connected by similar precursors or chemical reactions 
once in the atmosphere. Thus, control strategies that target one pollutant 
may affect others, perhaps in unintended ways. A much denser network 
of monitoring stations was available for the NO2 compared to PM2.5. As 

the concentration of air pollution can change across small distances, the 
denser network can lead to higher prediction accuracy. In this work, 
roadside and urban background sites were included, with roadside sites 
mostly located within Inner London. The denser NO2 monitoring 
network and the smaller distances between the sites were able to provide 
adequate coverage of background sites for non-traffic locations. How
ever, the interpolation of roadside measurements, especially for the less 
dense PM2.5 network, may have led to an overestimation of the impacts 
of reduced traffic by interpolating to non-traffic areas. The surrounding 
urban environment can significantly influence pollutant transport and 
concentration, and to account for this, high-skilled urban modelling 
accounting for complex urban morphology is required. However, this 
kind of advanced modelling was not feasible for this study, but could be 
incorporated to future studies. Moreover, schools and commercial 
buildings were assumed to have same values as home microenvironment 
and children were included in the home population. Finally, the average 
workplace I/O ratio used in this study was assumed from several Eu
ropean cities (Soares et al., 2014; Hänninen et al., 2004, 2011). Data on 
I/O ratios in commercial buildings, and for different type of workplaces 
are scarce. Therefore, it was assumed that the values demonstrated in 
Europe were also representative for London. 

This work utilized Google Statistics and App Maps to determine 
differences in travel patterns. Both App Maps and Google statistics are 
based on data sent from users’ devices and users that opt-in to location 
history for their account, respectively. Consequently, those data sources 
contain limitations in terms of their representativeness of the overall 

Fig. 5. a) Variation of PM2.5 concentration difference and the total population of all LSOAs in each decile, b) Variation of PM2.5 exposure difference and the total 
population of all LSOAs in each decile. 
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population. Apple Maps has no demographic information about its users, 
making it difficult determine data representativeness. In the calcula
tions, Google statistics includes only data from users that use their 
Google account and have opted-in to Location History. Those data also 
have to meet Google’s privacy threshold. Consequently, this location 
data may not represent the exact behavior of the wider population. As 
described in methodology section, the IMD is based on seven main do
mains. The ‘Living Environment’ domain contributes approximately 9% 
to the production of the overall index and measures the quality of the 
local environment and the indicators fall into two sub-domains. The 
‘indoors’ and the ‘outdoors’, which consists of two elements: air quality 
and road accidents. However, the already included ‘air quality’ element 
is not likely to have affected our calculations, because here we examined 
the associations between the IMD and the reduction of concentration 

and exposure. Other studies have already used IMD to investigate SES 
inequalities in air pollution (Brook and King, 2017; Sheridan et al., 
2019; Tonne et al., 2018) 

Some segments of the working population – so-called essential or key 
workers - had to continue to travel to work in their original workplace 
during the lockdown period. When estimating the population-weighted 
exposure, we assumed that all SES groups are equally likely to stay at 
home during lockdown, however many essential workers are likely to be 
low SES individuals. Their total exposure to air pollution may still 
decrease due to the reduction in outdoor concentration, however the 
change in their exposure to air pollution would be different from other 
working groups because their daily activity during the lockdown would 
be the same as the pre-COVID-19 period. Due to the unavailability of 
data, essential workers could not be linked with the IMD analysis to 
investigate how this may impact exposure differences between IMD 
groups. By using the workplace population for the work ME, and by 
applying the mean percent reduction for the population that continued 
going to workplaces during the shutdown, we assume that the per
centage of population in work ME during post-COVID-19 period (28%) 
represents essential workers. This percentage is consistent with the ONS 
estimate that essential workers are approximately 29.5% of London’s 
workforce (ONS, 2020). While further work is required to understand 
uncertainties in travel and work patterns of low-SES essential workers, 

Fig. 6. a) Variation of NO2 concentration difference and the number of people in each decile; b) Variation of NO2 exposure and the number of people in each decile.  

Table 2 
Spearman’s correlation coefficient between deprivation index (IMD) and air 
pollution concentration (exposure) difference.   

Concentration Exposure 

IMD NO2 PM2.5 NO2 PM2.5 

− 0.11* − 0.25* − 0.05** − 0.26* 

*p-value <0.001, **p-value<0.05. 
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these results allow us to conclude that the lockdown provided significant 
exposure reductions to low-income communities in London. 

5. Conclusions 

The implementation of stay-at-home measures due to the global 
outbreak of COVID-19 has offered a unique opportunity to assess the 
effect of the rapid changes in population activity patterns on air pollu
tion concentration and population exposure. This study quantified and 
analyzed spatial and temporal changes in population-weighted mean 
exposure to air pollution of outdoor origin between the COVID-19 
lockdown period and previous 3-year average during the same calen
dar period. Subsequently, we evaluated socioeconomic variation across 
the distribution of exposure change. We demonstrate that changes in 
diurnal population activity and outdoor concentrations have reduced 
exposure to air pollution, predominately during the morning rush hours. 
The average exposure to NO2 showed a greater than 50% reduction, 
which was consistent with the remarkable decrease in traffic levels, a 
major source of NO2. For PM2.5, the 16% decrease in average exposure 
could not be linked directly to the reduction in urban traffic, because 
other factors, such as meteorological conditions, may have affected the 
magnitude of the change in the outdoor concentrations. While there 
were not large inequalities in how the exposure change was distributed 
among people with different SES, our results provided useful evidence 
about the strength of association between the concentration and expo
sure reduction, and the impact on the most and the least deprived areas. 

By quantifying exposure reduction, and accounting for the signifi
cance of the time spent indoors and the spatio-temporal variability of 
average dwelling I/O ratios, this study offers insight into the effective
ness of extreme traffic-control measures on reducing the outdoor 
pollution and the exposure. Although these measures are extreme and 
highly unlikely to be adopted under normal conditions, this natural 
experiment offers the opportunity to assess the influence of some key 
elements (e.g., population activity, important indoor MEs) on popula
tion exposure, using largely real-world data. The estimated exposure 
reductions may provide best-case estimates of the degree to which more 
realistic control strategies for stationary and mobile urban sources, such 
technological (e.g., new-source certifications, retrofits of existing vehi
cles, etc.) or non-technological (e.g., management of transportation, 
etc.) may reduce exposures. The analysis of the SES inequalities across 
the distribution of the exposure reduction also demonstrates the 
importance of developing strategies that can reduce existing exposure 
inequalities. 
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