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Abstract
Phylogenomic analyses routinely estimate species trees using methods that account for gene tree discordance. However, 
the most scalable species tree inference methods, which summarize independently inferred gene trees to obtain a species 
tree, are sensitive to hard-to-avoid errors introduced in the gene tree estimation step. This dilemma has created much 
debate on the merits of concatenation versus summary methods and practical obstacles to using summary methods 
more widely and to the exclusion of concatenation. The most successful attempt at making summary methods resilient 
to noisy gene trees has been contracting low support branches from the gene trees. Unfortunately, this approach requires 
arbitrary thresholds and poses new challenges. Here, we introduce threshold-free weighting schemes for the quartet- 
based species tree inference, the metric used in the popular method ASTRAL. By reducing the impact of quartets with 
low support or long terminal branches (or both), weighting provides stronger theoretical guarantees and better empirical 
performance than the unweighted ASTRAL. Our simulations show that weighting improves accuracy across many con
ditions and reduces the gap with concatenation in conditions with low gene tree discordance and high noise. On empirical 
data, weighting improves congruence with concatenation and increases support. Together, our results show that weight
ing, enabled by a new optimization algorithm we introduce, improves the utility of summary methods and can reduce the 
incongruence often observed across analytical pipelines.
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Introduction
Genome-wide data are increasingly available across the tree 
of life, giving researchers a chance to systematically resolve 
the evolutionary relationships among species (i.e., species 
trees) using phylogenomic data. A central promise of phy
logenomics is that processes such as incomplete lineage 
sorting (ILS) that can cause discordance (Maddison 1997; 
Degnan and Rosenberg 2009) among evolutionary histories 
of different parts of the genome (i.e., gene trees) can be 
modeled (Edwards 2009). There has been much progress 
in developing the theory and methods for species tree infer
ence in the presence of ILS (Mirarab et al. 2021) and other 
sources of discordance (Elworth et al. 2019; Smith and 
Hahn 2021). These phylogenomics approaches have also 
been widely and increasingly adopted in practice. Yet, sub
stantial challenges remain. Analyses of real data using dif
ferent methods often reveal incongruent results (Smith 
et al. 2015; Reddy et al. 2017; Shen et al. 2017; Walker 
et al. 2018; Gatesy et al. 2019), sparking debate about the 
cause. Meanwhile, simulation studies have revealed that 
the best choice of the method is data-dependent (e.g., 
Bayzid and Warnow 2013; Mirarab and Warnow 2015).

A major challenge in phylogenomics is that when we in
fer gene trees, often from relatively short sequences, the re
sults tend to be highly error-prone (Patel 2013; Mirarab, 

Bayzid, et al. 2014; Springer and Gatesy 2016). 
Co-estimation of gene trees and species trees (Szöllõsi 
et al. 2014) is perhaps the most accurate approach to deal
ing with such noise (Leaché and Rannala 2011; Knowles 
et al. 2012). However, despite some progress (Ogilvie 
et al. 2017), these methods have remained limited in their 
scalability to even moderately large numbers of species. 
The approach that is far more scalable and is used often 
in the “summary” approach: first estimate gene trees 
from sequence data independently and then summarize 
them into a species tree by solving optimization problems 
that provide guarantees of statistical consistency if we al
low ourselves to ignore the error in the input tree.

Many summary methods (e.g., Liu et al. 2009, 2010; 
Mossel and Roch 2010; Liu and Yu 2011; Vachaspati and 
Warnow 2015) were developed and proved statistically 
consistent under the multispecies coalescent (MSC) mod
el (Takahata 1989) of ILS. Species trees inferred by these 
tools can be highly accurate even under high levels of 
ILS. Among the summary tools, ASTRAL (Mirarab, Reaz, 
et al. 2014) is among the most widely used and is inte
grated into other packages (Alanjary et al. 2019; Wang 
et al. 2020). ASTRAL simply seeks the species tree that 
maximizes the number of shared quartets (unrooted four- 
taxon subtrees) between gene trees and the species tree, 
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an optimization problem that guarantees a statistically 
consistent estimator under the MSC model. The empirical 
accuracy and scalability of ASTRAL have compared favor
ably with other methods (e.g., Mirarab 2019). Moreover, it 
has now been shown that ASTRAL is also consistent and/ 
or accurate under the gene duplication and loss (GDL) 
model (Legried et al. 2021; Yan et al. 2021), some horizon
tal gene transfer models (Davidson et al. 2015), and com
bined models of ILS and GDL (Markin and Eulenstein 
2021), but not gene flow (Solís-Lemus et al. 2016). Zhang 
et al. (2020) have further adopted the quartet-based ap
proach to multicopy inputs.

Nevertheless, all summary methods, ASTRAL included, 
have a shortcoming: inaccuracies in input gene trees can 
translate to errors in the output species tree (Patel 2013; 
DeGiorgio and Degnan 2014; Lanier and Knowles 2015; 
Huang and Knowles 2016; Molloy and Warnow 2018). 
In fact, Roch et al. (2019) proved that summary methods 
(and concatenation) are positively misleading under 
pathological examples even in the absence of much 
true gene tree discordance. These concerns are not just 
theoretical and can impact biological analyses. For ex
ample, on an order-level avian phylogenomic dataset 
(Jarvis et al. 2014), summary methods, including ASTRAL, 
produce species trees contradicting the well-established 
relationships when given input gene trees that have ex
tremely low support (Bayzid et al. 2015), a condition 
that motivated Mirarab, Bayzid, et al. (2014) to bin mul
tiple genes together. As an alternative, Zhang et al. 
(2018) showed that contracting very low-support 
branches before running ASTRAL-III can improve accur
acy in simulations and on biological datasets such as the 
avian dataset. However, this form of reduction in species 
tree estimation error comes with caveats. Contracted 
branches may still include signals that will be lost. 
In particular, when contraction is overly aggressive 
(e.g., with moderately high thresholds such as 50% or 
75%), filtering is often harmful. More pragmatically, 
the best choice of threshold is dataset dependent, and 
making a principled choice is challenging, if not 
impossible.

Threshold-free approaches for incorporating gene tree 
branch support into summary methods have also been 
proposed. Multilocus bootstrapping (MLBS) runs the 
summary method on the bootstrap replicates of gene 
trees, repeating the process many times to obtain several 
species trees, which are then combined using a consensus 
method (Seo 2008). MLBS can be understood as weighting 
inferences made from each gene by their uncertainty, 
and thus, a way to deal with noise. However, previous stud
ies show that MLBS, in fact, reduces the accuracy com
pared with using maximum-likelihood (ML) trees 
(Mirarab et al. 2016). The related method of simply com
bining all bootstrap replicates into a single run of the sum
mary method has also not been accurate (Mirarab, Reaz, 
et al. 2014). A plausible explanation is that bootstrap repli
cates have much higher rates of discordance and error 
than ML trees (Sayyari and Mirarab 2016), and thus, using 

them directly as input adds noise, even if it reveals 
uncertainty.

An alternative to using bootstrap trees is to use ML 
trees as input but explicitly weight gene tree branches 
(or their quartets) by their statistical support. We can gen
eralize the moderately successful gene contraction ap
proach, which effectively assigns weights of zero or one 
to quartets, to weight each quartet shared between an es
timated gene tree and the proposed species tree according 
to the statistical support of the quartet resolution. Such an 
approach will free us from picking arbitrary contraction 
thresholds and may lead to better accuracy. However, 
weighting by branch support has not yet been incorpo
rated into existing summary methods such as ASTRAL-III 
for several reasons. (1) Quartet weights must be implicitly 
calculated, as explicitly examining all quartets of n species 
alone will take Θ(n4) time. The existing general (e.g., Avni 
et al. 2015) and MSC-based weighted quartet methods 
(Yourdkhani and Rhodes 2020; Richards and Kubatko 
2021) require weights explicitly calculated for every quar
tet, making them less scalable with n. The reason 
ASTRAL-III can scale to a large number of species is that 
it optimizes a score defined over all quartets without expli
citly enumerating them. Designing a scalable weighting 
method will require weights that can be implicitly com
puted based on examining O(n) gene tree branches. (2) 
It is difficult to design efficient algorithms to optimize a 
weighted score. Unless weights satisfy certain properties, 
it may not be possible to find an algorithm better than 
O(n4) even for the much simpler problem of computing 
the total quartet weights of a gene tree. However, with fa
vorable definitions of weights, these difficulties are not 
insurmountable.

Here, we introduce weighting schemes that avail them
selves to efficient optimization with weights conveniently 
obtained from tree branch lengths (wASTRAL-bl), branch 
support values (wASTRAL-s), or both (wASTRAL-h). We 
introduce the weighted ASTRAL algorithm, an efficient 
method that, similarly to unweighted ASTRAL, optimizes 
a quartet score but is different in several ways: (1) Its opti
mization criterion weights each gene tree quartet. (2) Its 
optimization algorithm is entirely different from un
weighted ASTRAL. Whereas the algorithm is more complex 
and slower in some cases, it scales much better (linearly in
stead of quadratically) as the number of genes (k) increases 
and handles missing data better. (3) Its software package is 
implemented from scratch and is in C++ instead of Java. 
We show that wASTRAL-h is superior to unweighted 
ASTRAL in terms of its theoretical guarantees under the 
MSC model and has better accuracy on simulated data in 
terms of its topology and branch support values. 
Moreover, wASTRAL-h is more accurate than concaten
ation performed using unpartitioned ML (CA-ML) in our 
simulations except when there is a large number of inaccur
ate gene trees or low levels of discordance, where CA-ML is 
slightly more accurate. Most interestingly, wASTRAL-h is 
more congruent than the unweighted ASTRAL with 
CA-ML on real datasets.
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Result
Weighted ASTRAL Algorithm
Unlike unweighted ASTRAL, where each (resolved) quar
tet in each gene tree contributes equally to the objective 
function, weighted ASTRAL assigns each quartet with a 
weight based on the support or lengths of branches corre
sponding to it. More specifically, we define three weighting 
schemes (fig. 1a).

Weighting by support extends the definition of branch 
support to a quartet. Let P be the set of branches on 

the path between internal nodes of a quartet tree (also 
called anchors; see fig. 1a) and let s(e) denote the support 
of a branch e. We define the support of the quartet as

1 −
􏽙

e∈P
(1 − s(e)), 

which essentially assumes support values are probabilities 
of correctness and that branches are independent (both 
assumptions can be disputed). Given a set of gene trees 
where each internal branch has a support value, using 

FIG. 1. Weighted ASTRAL (wASTRAL) method. (a) Illustration of weighting methods. The generic formula and an example of weighting gene tree 
quartet ab | cd. Trees are annotated with the support (s) of branches between anchors (hollow dots) and the substitution per site length of each 
leaf-to-anchor path (l). (b–e) Impact of weighting under the MSC+Error+Support model for a quartet species tree. (b) Each element of each 3 × 
3 grid in the top and middle panels corresponds to a true (by column) and an estimated (by row) quartet gene tree topology. Diagonal elements 
correspond to no gene tree error. The first row/column represents the species tree topology. The second row/column corresponds to the top
ology toward which gene tree estimation is biased. The gene tree estimation quality α ranges in [0, 1]. Gene tree estimation bias β is set to zero, 
moderate (0.4), or high (0.6). Internal branch length is − ln 0.75 in coalescent units (CU). The color shades on the top panel show the joint 
probability of a true/estimated topology combination, which corresponds to the expected quartet scores in unweighted ASTRAL; the colors 
in the middle panel show the expected scores in wASTRAL-s. The row marginals of each 3 × 3 grid are shown in the bottom panel: Each 3 × 
2 grid shows the expected score of each topology (rows) for unweighted ASTRAL (UW column) and weighted ASTRAL (W column). Note the 
reduced darkness of W columns as α decreases, showing that poor gene trees contribute less. Two highlighted girds: the score is highest for the 
wrong (second row) topology without weights but is higher for the correct topology (first row) with weights. (c,d ) In a toy example, we draw α 
from the Beta(0.5, 0.5) distribution (c) and show the joint (T1 . . . T3) and marginal probabilities of topologies with and without weighting with 
moderate bias (β = 0.4) and − ln 0.75 CU length. (e) For eight values of α and every value of β, the band shows the range of CU quartet internal 
branch lengths where unweighted ASTRAL is not consistent, but wASTRAL-s is.
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this definition, we define the weight of each quartet of 
each gene tree to be its support. The goal is to improve 
the accuracy by down-weighting quartets with low sup
port. Although we study this goal in our simulation and 
empirical analyses, we also provide theoretical results.

Making theoretical statements about estimated gene 
trees is difficult because we lack an accepted way of mod
eling gene tree estimation errors. To be able to interrogate 
theoretical properties of weighted ASTRAL, we propose a 
simple model of gene tree estimation error called MSC 
+Error (“Material and Methods”). In this model, for any 
true gene tree topology on a quartet Q, the estimated top
ology is drawn from a distribution that has two features: 
first, each gene G has a gene-specific level of the signal, 
controlled by a parameter αG,Q, and second, all genes can 
be adversarially biased toward any topology by an amount 
bounded by a parameter called βQ . The joint distribution 
of true and estimated quartet gene trees in the most diffi
cult case can be expressed as a function of αG,Q and βQ as 
well as θQ = 1 − e−d, where d is the coalescent unit (CU) 
length of the internal branch of the quartet (table 1 and 
fig. 1b). Under the MSC+Error model, the distribution of 
quartet gene tree topologies, written as a vector with 
the first element corresponding to the species tree, 
changes (in the worst case) from

1
3

1 + 2θQ

1 − θQ

1 − θQ

⎡

⎣

⎤

⎦ for true gene trees to
1
3

αG,Q

1 + 2θQ

1 − θQ

1 − θQ

⎡

⎣

⎤

⎦

+
1
3

(1 − αG,Q)
1 − βQ
1 + βQ

1

⎡

⎣

⎤

⎦ for estimated gene trees. 

The estimated gene tree distribution matches the MSC 
model when αG,Q = 1 and is uniformly random when 
αG,Q = βQ = 0. A choice of αG,Q < 1 adds noise to the 
MSC probabilities, and any βQ > 0 creates an adversarial 
bias toward the second topology (fig. 1b). Note that noise 
and bias parameters can change across genes and quartets, 
creating flexibility. However, quartets are considered 
independent.

Under the MSC+Error model, the unweighted ASTRAL 
is statistically consistent with estimated gene trees under 
limited choices of αG,Q and βQ . Assuming that the support 
of a quartet matches the estimated gene tree distribution, 
we can get our main result. Theorem 1 in “Material and 

Methods” proves that support-weighted ASTRAL 
(wASTRAL-s) is statistically consistent under a strictly lar
ger super-set of αG,Q and βQ parameters than those of un
weighted ASTRAL. Thus, there are levels of bias in gene 
tree estimation (e.g., due to long branch attraction) that, 
combined with low signal, render unweighted ASTRAL in
consistent (as shown by Roch et al. 2019) but keep 
wASTRAL-s consistent.

Examining the marginal probabilities and expected 
weights can illuminate the reason behind the advantage 
of wASTRAL-s (fig. 1b). First, gene trees with higher levels 
of noise (i.e., lower αG,Q) are down-weighted relative to 
gene trees with less noise (fig. 1b: note lighter colors as α 
decreases). Thus, the correct topology benefits from sum
ming weights over gene trees with different αG,Q . For ex
ample, assume some genes have high noise, and others 
have low noise following the αG,Q distribution shown in fig
ure 1c. The less noisy genes will be up-weighted such that 
wASTRAL-s becomes consistent even when unweighted 
ASTRAL is not (fig. 1d). Second, unless gene trees are ex
tremely noisy (i.e., very low αG,Q), wASTRAL-s down- 
weights the species tree topology less than the other 
two topologies; in extreme cases, we have scenarios (fig. 
1b, bottom, highlighted boxes) where the species tree is 
dominant with weighted scores but not with unweighted 
scores. In fact, for fixed α and β, there exists a range of CU 
quartet internal branch lengths for which unweighted 
ASTRAL is not consistent but wASTRAL-s is (fig. 1e); 
note that for branch lengths below this range, neither 
method is consistent and for branch lengths above this 
range, both methods are consistent.

Weighting by length down-weights quartets with long 
terminal branches. Let L be the sum of terminal branch 
lengths in the gene tree induced to a quartet provided 
in substitution-per-site units (SU). We assign e−L as the 
weight of the quartet and offer two justifications. First, 
deeper coalescence events tend to generate longer termin
al branch lengths; thus, gene trees that match the species 
tree are expected, on average, to have shorter branch 
lengths (see proof of Theorem 2). Thus, down-weighting 
gene tree quartets with long terminal branches is expected 
to down-weight genes that do not match the species tree. 
Doing so can provably provide a bigger gap between the 
score of the true species tree and alternatives, as shown 
in Theorem 2. Besides the connection to the MSC model, 
it has also been long appreciated that the so-called long 
quartets are harder to estimate correctly due to long 

Table 1. Joint probabilities (δ) and weights (w) of estimated and true gene tree topologies under the MSC+Error+Support with the worst-case scenario 
when 3p1 = 1 − β, 3p2 = 1 + β, and 3p3 = 1 for all genes; parameters are per quartet and per gene but we omit Q and G superscript for brevity.

E[(·)(·) | α] δG∗ (ab | cd) δG∗ (ac | bd) δG∗ (ad | bc)

δG(ab | cd) 1
3 (1 + 2θ)(α + 1

3 (1 − α)(1 − β)) 1
3 (1 − θ)( 1

3 (1 − α)(1 − β)) 1
3 (1 − θ)( 1

3 (1 − α)(1 − β))
δG(ac | bd) 1

3 (1 + 2θ)( 1
3 (1 − α)(1 + β)) 1

3 (1 − θ)(α + 1
3 (1 − α)(1 + β)) 1

3 (1 − θ)( 1
3 (1 − α)(1 + β))

δG(ad | bc) 1
3 (1 + 2θ)( 1

3 (1 − α)) 1
3 (1 − θ)( 1

3 (1 − α)) 1
3 (1 − θ)(α + 1

3 (1 − α))
wG(ab | cd) 1

3 (1 + 2θ)(α + 1
3 (1 − α)(1 − β))2 1

3 (1 − θ)( 1
3 (1 − α)(1 − β))2 1

3 (1 − θ)( 1
3 (1 − α)(1 − β))2

wG(ac | bd) 1
3 (1 + 2θ)( 1

3 (1 − α)(1 + β))2 1
3 (1 − θ)(α + 1

3 (1 − α)(1 + β))2 1
3 (1 − θ)( 1

3 (1 − α)(1 + β))2

wG(ad | bc) 1
3 (1 + 2θ)( 1

3 (1 − α))2 1
3 (1 − θ)( 1

3 (1 − α))2 1
3 (1 − θ)(α + 1

3 (1 − α))2
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branch attraction (Erdos et al. 1999; Snir et al. 2008). Many 
quartet-based methods focus their attention on the so- 
called short quartets (Warnow et al. 2001; Nelesen et al. 
2012). Our weighting scheme seeks the same impact by 
down-weighting long quartets versus short quartets 
(fig. 1a).

Hybrid weighting combines both weighting schemes 
where each quartet is assigned with weight

e−L 1 −
􏽙

e∈P
(1 − s(e))

􏼠 􏼡

.

This weighting scheme aims to combine the strengths of 
both weighting by support and weighting by length and 
to improve over both; we will empirically show that such 
improvements are obtained.

Although defining weighting schemes is easy, designing 
scalable algorithms to optimize the weighted quartet score 
is not. Adopting the existing ASTRAL-III algorithm to in
corporate per-quartet weights is challenging for reasons 
elaborated in “Material and Methods.” A major contribu
tion of this paper is designing a set of algorithms 
(supplementary Algorithm S1–S3, Supplementary 
Material online) to optimize the weighted quartet using 
a set of new techniques paired with a dynamic program
ming (DP) step similar to ASTRAL. We leave the detailed 
description of the algorithm to the “Optimization algo
rithm” section; see Theorems 3, 4, and 6 for correctness 
and Theorem 5 for the asymptotic running time being 
O(kn1.5+ϵH) where H is the average gene tree height.

Simulation Results
Comparison of Weighting Schemes
We start by comparing the accuracy of weighting schemes 
and branch support types on two simulated datasets (S100 
and S200). Our default method for computing branch sup
port, used unless otherwise specified, is approximate 
Bayesian supports from IQ-TREE (aBayes) normalized to 
range from 0 to 1.

S100

This dataset adopted from Zhang et al. (2018) has gene 
trees inferred from sequences with varying lengths result
ing in various levels of gene tree error (see “Datasets”). In 
most cases, weighting by support (wASTRAL-s) produces 
species trees with higher accuracy than weighting by 
length (wASTRAL-bl), and the improvements are statistic
ally significant (supplementary fig. S1, Supplementary 
Material online); p−value < 10−15 according to a 
repeated-measure ANOVA test (see “Statistical Tests”). 
The improvement in accuracy varies with k (p < 10−15) 
and perhaps sequence length (p ≈ 0.04). The accuracy of 
hybrid weighting (wASTRAL-h) on average is better than 
the accuracy of wASTRAL-s on all model conditions 
(p < 10−10) and the improvement in accuracy may depend 
on k (p ≈ 0.06) and sequence length (p ≈ 0.03). With ≥ 
500 genes, wASTRAL-h is better than both support and 

length, showing that combining the two weightings makes 
wASTRAL-h more powerful.

On this dataset, bootstrap support computed using 
FastTree-2 is provided by Zhang et al. (2018). Thus, we 
also compute wASTRAL trees using bootstrap supports 
(wASTRAL-s* and wASTRAL-h*). For weighting by sup
port, aBayes weighting is much better than bootstrap 
weighting (p < 10−15), but the gap in error significantly 
(p < 10−9 for both) shrinks as k and sequence length in
crease (supplementary fig. S1, Supplementary Material on
line). For hybrid weighting, aBayes weighting is, on average, 
only slightly better than bootstrap weighting (the mean er
ror increases across all conditions by only 0.2%).

S200

This 200-taxon dataset has species trees sampled under 
two birth rates (10−6, 10−7), which control whether specia
tions are dispersed at random or closer to the tips 
(supplementary fig. S3, Supplementary Material online), 
and tree heights, which control levels of ILS (see 
“Datasets”). On this dataset, bootstrapped gene trees are 
not available; instead, local SH-like support (Shimodaira 
and Hasegawa 1999) defined by FastTree-2 is available, 
which we use (wASTRAL-s* and wASTRAL-h*). Patterns 
of accuracy across wASTRAL versions are similar to S100 
(supplementary fig. S4, Supplementary Material online) 
as wASTRAL-h is more accurate than wASTRAL-s on all 
model conditions (p < 10−6), and the improvements de
pend on k (p ≈ 10−4), ILS level (p < 10−7), and birth rate 
(p < 10−10). Using SH-like support with wASTRAL-h is, 
on average, worse than aBayes support, increasing the er
ror by 9%.

Comparison of Topological Accuracy to Other Methods
We next compare wASTRAL-h, the most accurate version 
of wASTRAL, with other methods.

Impact of Gene Tree Estimation Error (S100 dataset)

On the S100 dataset (fig. 2a and supplementary fig. S5, 
Supplementary Material online), wASTRAL-h is more ro
bust to gene tree estimation error than ASTRAL-III, regard
less of whether low bootstrap support (BS) branches 
(≤5%) are contracted. Whereas contracting low support 
branches improves the accuracy of ASTRAL-III, weighting 
improves accuracy even more in most conditions. For ex
ample, the average error with 1,000 gene trees obtained 
from 200 base-pair (bp) alignments goes down from 9% 
with ASTRAL-III to 7% after contracting ≤5% BS branches 
and 6% with wASTRAL-h. Although wASTRAL-h is better 
than ASTRAL-III in all conditions with or without contrac
tion (p < 10−15), the difference in accuracy varies across 
sequence lengths (p < 10−6 without contraction and p ≈ 
0.003 with contraction). Similar to wASTRAL-h, wASTRAL-h* 
has mean error lower than that of ASTRAL-III-5% in every 
condition (p < 10−11).

The clearest patterns are observed when comparing 
wASTRAL-h and concatenation (CA-ML). Although in
creasing the sequence length (and hence reducing the 
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gene tree error) consistently reduces the error of all 
ASTRAL variants, it has a more subdued impact on 
CA-ML. As a result, the relative accuracy significantly de
pends on k (p < 10−15) and gene sequence length 
(p < 10−9) and the choice of the best method varies across 
conditions. Generally, wASTRAL-h tends to be more accur
ate than CA-ML under smaller k and greater sequence 
lengths. With k ≤ 200, wASTRAL-h is more accurate 
than CA-ML for all sequence lengths. With k > 200, 
CA-ML is better for smaller gene alignments, and 
wASTRAL-h is better for longer alignments, with the 
only conditions when CA-ML has noticeable improve
ments over wASTRAL-h corresponding to 200 bp genes.

Impact of ILS Level (S200 dataset)

On the S200 dataset that controls levels of ILS (see 
“Datasets”), overall, error rates of wASTRAL-h are lower 
than that of ASTRAL-III (fig. 2b and supplementary fig. 
S6, Supplementary Material online) and the improvements 
are significant (p < 10−15). The improvements of 
wASTRAL-h compared with ASTRAL-III increase with 
more gene trees (p ≈ 7 × 10−4) but appear to decrease 
with more ILS (p ≈ 0.08). Although Mirarab and Warnow 
(2015) reported no improvement in accuracy when con
tracting branches with low SH-like support, contracting 
branches with aBayes support <90% (ASTRAL-III-90%) 
does improve accuracy in some conditions. Nevertheless, 
wASTRAL-h has yet lower error (p < 10−5) overall. Also, im
provements of wASTRAL-h are significantly larger for the 
10−7 birth rates, which tend to have earlier speciations 

(supplementary fig. S3, Supplementary Material online), 
than the 10−6 rate (p ≈ 1.5 × 10−5).

The comparison between wASTRAL-h and CA-ML sig
nificantly depends on several factors (birth rate: 
p < 10−7; ILS: p < 10−15; k: p < 10−11). Overall, CA-ML is 
less robust to ILS levels and is always worse than 
wASTRAL-h when ILS is high and in several cases when 
ILS is at the medium level. However, with low ILS, the com
parison depends on the birth rate: with 10−6 (more recent 
speciation), wASTRAL-h is better than CA-ML 
(p ≈ 1.7 × 10−5) while with 10−7 (earlier speciation), 
CA-ML is better (p < 10−11). Thus, in some conditions 
with low ILS, wASTRAL-h has reduced but not eliminated 
the gap between ASTRAL-III and CA-ML. For example, gi
ven 1,000 gene trees and low ILS with 10−7 birth rate, 
ASTRAL-III has 5% error, which is not helped by branch 
contraction, whereas wASTRAL-h has 3%, which is much 
closer to the 2% achieved by CA-ML. To summarize, 
wASTRAL-h retains and magnifies the advantages of 
ASTRAL-III over CA-ML for high ILS conditions and re
duces or eliminates the advantages of CA-ML under me
dium and low ILS conditions.

Support Accuracy
We next test whether, by accounting for gene tree uncer
tainty, wASTRAL-h improves support values computed 
using the local posterior probability (localPP) measure 
(see “Branch Support”). We examine the calibration of sup
port (i.e., whether the support matches the probability of 
correctness of a branch), its ability to distinguish correct 
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FIG. 2. Species tree topological error on simulated datasets, measured using false negative (FN) rate. We compare weighted ASTRAL hybrid 
(wASTRAL-h) with ASTRAL-III using fully resolved and contracted gene trees and concatenation using ML (CA-ML). (a) Results on the S100 
dataset with k = {50, 200, 500, 1000} gene trees (boxes) and gene sequence length {200, 400, 800, 1, 600} (x-axis). Gene trees and CA-ML are 
both inferred using FastTree-2. ASTRAL-III-5% contracts branches with <5% BS. (b) Results on the S200 dataset with k = {50, 200, 1000}, rates 
of speciation 1 × 106 and 1 × 10−7, and three ILS levels. Gene trees and CA-ML are both inferred using FastTree-2. ASTRAL-III-90% contracts 
branches with aBayes support <90%. Note the change in y-axis scale across panels and refer to supplementary fig. S2, Supplementary 
Material online for a version where y-axis is kept fixed. See supplementary figs. S5 and S6, Supplementary Material online for box plots.
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and incorrect branches examined through ROC curves, 
and distributions of support (see “Evaluation Criteria”).

Although wASTRAL-h generally gives higher support va
lues than ASTRAL-III (supplementary fig. S8, Supplementary 
Material online), it has fewer cases of highly supported in
correct branches, especially with higher k and shorter se
quences (fig. 3a). For both ASTRAL-III and wASTRAL-h, 
while increased support often leads to increased frequency 
of correctness (fig. 3b), support underestimation or overesti
mation can also be observed for certain sequence length 
and k combinations. For example, wASTRAL-h has a ten
dency to overestimate for large k values and short se
quences. In terms of predictive power, for any desired 
false positive rate (FPR), the recall of wASTRAL-h is as 
good as or better than ASTRAL-III in all conditions (fig. 
3c), though the improvements in ROC can be small. 
Moreover, in most conditions, the minimum FPR obtained 
by wASTRAL-h (e.g., at 1.0 support) is lower than the min
imum FPR obtained by ASTRAL-III. Support values on the 
S200 dataset exhibit similar patterns to S100 (fig. 3d–f). 
The most notable difference is that when k = 1, 000, 
wASTRAL-h has a clear advantage over ASTRAL-III in trad
ing off precision and recall according to ROC curves (fig. 3f
and supplementary fig. S10, Supplementary Material on
line). This advantage shrinks as k decreases.

Comparison of the Optimization Algorithms
Assigning weights to quartets required a new optimization 
algorithm, which can also be used for unweighted opti
mization. We next study whether the new optimization al
gorithm (denoted as DAC) is as effective as that of 
ASTRAL-III (denoted as A3) when no weights are used.

Testing on the S200 dataset, without missing data, DAC 
is in most cases slower than the A3 (fig. 4a and c), a pattern 
that is pronounced with lower ILS levels. The change in 
relative running time with ILS levels is due to the depend
ence of the search space of A3 but not DAC on gene tree 
discordance levels (Zhang et al. 2018). In terms of accuracy, 
DAC and A3 are comparable for low and medium ILS levels 
(fig. 4c). However, in the high ILS case, A3 is clearly better 
with only 50 genes, slightly better with 200 genes, and per
haps slightly worse with 1,000 genes. Cases with reduced 
accuracy also have reduced quartet scores for the 50 genes 
scenario and high ILS (fig. 4a), showing that A3 is prefer
able with few gene trees. Thus, the improved accuracy 
of wASTRAL-h over ASTRAL-III is despite the fact that 
its DAC optimization algorithm is not always as effective 
as A3.

These patterns change when we add low levels of miss
ing data by randomly removing 5% of leaves in each gene 
tree (fig. 4b and d). DAC becomes closer to A3 in terms of 
running time in most cases and is even faster with high ILS 
and k = 1,000 (fig. 4b). Regarding accuracy, A3 and DAC 
are comparable in low and medium ILS levels (fig. 4d). 
However, in the high ILS case, the error of A3 is slightly 
less, comparable, and slightly higher with 50, 200, and 
1,000 genes, respectively. Substantial changes in accuracy 
are caused by changes in quartet scores (fig. 4b). Thus, 

DAC is competitive or better than the A3 in the presence 
of even low levels of missing data found to various degrees 
in biological datasets.

Biological Data
We next study seven biological datasets (“Datasets”). On 
the canis dataset, which was the only input with at least 
5 h of running time for wASTRAL-h (supplementary 
table S2, Supplementary Material online), we also examine 
the running time.

OneKp
Overall, 47 out of 1,175 (4%) branches change between the 
published ASTRAL-III tree and our wASTRAL-h tree. Most 
of these branches had low support in the ASTRAL-III tree 
(mean: 62%, max: 99%) but not in the wASTRAL-h tree 
(supplementary fig. S13, Supplementary Material online). 
OneKP Initiative (2019) focused most of their attention 
on 20 branches, corresponding to nine major evolutionary 
events that have been historically hard to resolve (e.g., 
early Eudicot diversification). Among 47 branches that 
change in wASTRAL-h, four of them are among the 20 fo
cal branches. Beyond topological changes, the support va
lues tend to increase in wASTRAL-h (fig. 5a). In particular, 
all of the 20 focal branches that had less than full support 
in the ASTRAL-III tree have increased support in the 
wASTRAL-h tree, leaving only four with support below 
0.95 (as opposed to 12 branches with ASTRAL-III).

Significantly, all four focal branches that change from 
ASTRAL-III to wASTRAL-h become consistent with CA-ML, 
whereas the ASTRAL-III tree was inconsistent with CA-ML. 
At the base of eudicots, Vitales (grapes) becomes sister to 
Santalales in wASTRAL-h tree with moderate support 
(0.87), which is consistent with CA-ML (fig. 5b). Two 
branches in the so-called TUC clade also change: 
ASTRAL-III breaks down the class Ulvophyceae by uniting 
Bryopsidales with Chlorophyceae while wASTRAL-h recovers 
Ulvophyceae as sister to Chlorophyceae, which is the trad
itional resolution and is in agreement with CA-ML. Finally, 
the early diversification of ferns differs between CA-ML 
and ASTRAL-III but is identical between CA-ML and 
wASTRAL-h. Thus, wASTRAL-h makes coalescent analyses 
more congruent with CA-ML for the focal branches.

Canis
On the canis dataset of Gopalakrishnan et al. (2018) that 
spans a relatively shallow time scale (many branches are 
among populations of the same species), the majority of 
branches of the ASTRAL-III tree are shorter than 0.1 CU 
(fig. 5c). Despite that, due to the large numbers of genes 
used, both wASTRAL-h and ASTRAL-III produce species 
trees with at least 99% support on all branches 
(supplementary fig. S14, Supplementary Material online). 
The ASTRAL-MP tree (on 100k gene trees) is identical to 
the published consensus tree, while the wASTRAL-h tree 
(on 450k gene tees) differs from it in only one branch 
(i.e., placement of the Egyptian dogs).
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The linear running time scaling of wASTRAL-h with re
spect to k enables us to analyze randomly sampled subsets 
of 1,000–450,000 genes (fig. 5c). The shortest branches 
need very many genes to achieve universal full support. 
Using fewer genes (even as many as 100,000) always leaves 
at least one branch with less than 99% support. Since many 
of the shortest branches are within species, a tree-like mod
el of evolution is likely insufficient for such branches 
(Gopalakrishnan et al. 2018). Longer branches, which are 

mostly across species, do not require large numbers of 
genes to reach high support; the 21 longest branches 
have at least 99% support with as few as 1,000 gene trees. 
Furthermore, wASTRAL-h is more scalable compared 
with ASTRAL-III with respect to the number of genes k 
(fig. 5d). As Theorem 3 predicts, the running time of 
wASTRAL-h scales almost linearly with k, while 
ASTRAL-III scales close to quadratically (fig. 5d and 
supplementary fig. S15, Supplementary Material online). 
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FIG. 3. Support accuracy across (a–c) S100 dataset with k = {50, 200, 500, 1, 000} and sequence length {200, 400, 800, 1, 600} and (d–f ) S200 
dataset with k = {50, 200, 1, 000} and levels of ILS from low to high. (a,d ) Change in 100% support branches. Each line shows the portion of 
full-support branches that are wrong (y-axis) and the percentage of all branches that have full support (x-axis) for wASTRAL-h (the arrowhead) 
and ASTRAL-III (other shapes). Arrows pointing downwards indicate less frequent errors in wASTRAL-h. (b,e) Support calibration. Branches are 
binned by their support, and for each bin, the percentage of branches that are correct are depicted versus the center of the bin. The dotted lines 
indicate ideal (calibrated) support. Top (bottom) triangle corresponds to the underestimation (overestimation) of support. (c,f ) Receiver op
erating characteristic (ROC) curves where each dot corresponds to a contraction threshold, (“Evaluation Criteria”). See supplementary figs. S7–S12, 
Supplementary Material online.
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ASTRAL-III fails to finish for k ≥ 2 × 103 within 24 h, and 
ASTRAL-MP with 16 cores takes more than 36 h for 
k = 105. By contrast, wASTRAL-h finishes on k = 4.5 × 
105 within 18 h and 2 h with one and 16 cores, respectively. 
Even when k = 103, ASTRAL-III takes 4× more than 
wASTRAL-h due to the high levels of gene tree discordance 
and abundance of missing data, both of which increase the 
running time of ASTRAL-III but not wASTRAL-h.

Avian
On the avian dataset, the wASTRAL-h tree fully agrees with 
the ASTRAL-III trees after contracting low support 
branches and is very similar to original trees published 
by Jarvis et al. (2014) based on CA-ML (only five branches 
differ) and statistical binning (only two branches differ). 
This is in contrast to the ASTRAL-III tree without contrac
tion from Zhang et al. (2018), which is in conflict with 
strong results from the literature and other methods. 
Moreover, all but one branch in the wASTRAL-h tree has 
higher or equal support compared with ASTRAL-III with 
any thresholds of contraction (supplementary fig. S16, 
Supplementary Material online). Interestingly, the only 
branch that experiences a reduction in support, the 

placement of Caprimulgimorphae as sister to Telluraves 
(core land-birds), is a branch that disagrees with both 
the published CA-ML and statistical binning trees. 
Finally, four branches with 99–100% support in 
wASTRAL-h are found by all coalescent-based methods 
(wASTRAL-h, ASTRAL-III and binned MP-EST) but not 
CA-ML, possibly pointing to a consistent signal that can 
be recovered only using coalescent-based analyses.

Cetaceans
The wASTRAL-h tree (supplementary fig. S17, 
Supplementary Material online) is similar to 
ASTRAL-multi and CA-ML trees reported by McGowen 
et al. (2020) with only a few differences (three branches 
to ASTRAL-multi and four to CA-ML). Interestingly, 
wASTRAL-h agrees with CA-ML and earlier studies 
(McGowen et al. 2009) and disagrees with ASTRAL-multi 
tree on the position of the Lissodelphis with high support 
(though the placement has low support in the 
ASTRAL-multi). On the other hand, both wASTRAL-h 
and ASTRAL-III break the monophyly of the genus 
Tursiops as T. truncatus moves away from T. aduncus 
and Stenella with high support. The question of the 
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monophyly of Tursiops, supported by morphology, has 
been answered differently in two recent analyses and re
mains likely (Moura et al. 2020) but uncertain due to evi
dence for gene flow (Guo et al. 2022). Close to Tursiops is 
also the placement of the two Stenella clymene individuals, 
which is a known hybrid species evolved from S. longirostris 
and S. coeruleoalba. Interestingly, the two S. clymene 

individuals are placed apart, one as sister to S. longirostris 
and the other at the most recent common ancestor of S. 
longirostris and S. coeruleoalba. This placement is in con
trast to CA-ML, which puts both individuals as sister to 
S. longirostris. Beyond Delphininae, two branches, the pla
cements of Orcinus orca and Neophocaena phocaenoides, 
disagree with both ASTRAL-multi and CA-ML, but both 
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FIG. 5. Results on OneKp (a and b) and canis (c and d ) datasets. (a) LocalPP support of all species tree branches shared between wASTRAL-h and 
the published ASTRAL-III. Focal branches (squares) with support less than 100% in one of the two trees are colored and labeled in panel b. (b) 
wASTRAL-h resolutions of focal branches that differ from ASTRAL-III in topology or support. Branch labels: total weights of all quartets around 
each branch for the three possible topologies computed using (7) with weights coming from (5); the species tree topology is shown first. Node 
labels: localPP support when not equal to 100%. Dashed: focal branches that differ from ASTRAL-III. (c) LocalPP of wASTRAL-h internal branches 
versus the number of genes k for each branch found in the wASTRAL-h output tree with all gene trees as input (x-axis). The inset with right y-axis 
scale shows the internal branch lengths in coalescent units on ASTRAL-III tree, sorted from low to high. The leftmost three branches are found 
only with k ≥ 100, 000. (d ) Log–log plot of total running time of ASTRAL-III and wASTRAL-h using both a single core (light colors) and 16 cores 
(dark colors) vs k on the canis dataset for k ranging from 1,000 to 450,000; slopes of fitted lines, which estimate asymptotic growth exponent, are 
labeled. All test cases are performed on a server with AMD EPYC 7742 CPUs.
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branches have very low support in wASTRAL-h and cannot 
be trusted. These two are among 11 species where McGowen 
et al. (2009) used data from existing genomes and tran
scriptomes instead of their own targeted capture, and it 
is possible that differences in the analytical pipeline may 
have caused the low support in wASTRAL-h.

Insect Datasets
On all three insect datasets, the differences between 
wASTRAL-h and ASTRAL-III are minimal and strictly lim
ited to branches with low support. On the Nomiinae data
set, there is no conflict among highly supported branches. 
wASTRAL-h and ASTRAL-III differ in only one low support 
branch, and both trees differ from CA-ML in two low sup
port branches (supplementary fig. S18, Supplementary 
Material online). On the Lepidoptera dataset, only seven 
out of 200 branches differ between wASTRAL-h and 
ASTRAL-III, and all of these branches have support below 
75% (supplementary fig. S19, Supplementary Material on
line). Across the tree, wASTRAL-h has slightly more 
branches with support above 95% than ASTRAL-III (173 
vs. 169). On the Papilionidae datasets, wASTRAL-h tree 
and ASTRAL-III tree share the same topology, and all 
branches in both trees have high (≥99%) support 
(supplementary fig. S20, Supplementary Material online).

Discussion
We introduced a family of new weighting schemes for 
quartet-based species tree estimation, including weighting 
quartets by terminal branch length (wASTRAL-bl), internal 
branch support (wASTRAL-s), or both (wASTRAL-h). We 
saw that the combined method (wASTRAL-h) has the 
best accuracy among the three and dominates unweighted 
ASTRAL in terms of accuracy. We next further comment 
on more subtle patterns observed in the data and end 
by pointing out directions for future research.

Further Observations Based on the Results
The choice between CA-ML and summary methods has 
been a long-standing debate (Giarla and Esselstyn 2015; 
Leaché et al. 2015; Simmons and Gatesy 2015; Edwards 
et al. 2016; Meiklejohn et al. 2016). Although CA-ML is in
consistent under MSC (Roch and Steel 2015), the most 
careful simulation studies have found that the best method 
depends on the dataset: CA-ML has been more accurate 
when gene discordance is low and gene signal is limited, 
and summary methods have been more accurate when dis
cordance is high. Other factors such as deep versus shallow 
radiations, changes in evolutionary rates across genes, het
erotachy, and the number of genes may also matter. Since 
we cannot reliably predict the superior method in practice, 
studies often report both types of analyses. We saw that 
weighting reduced (but did not fully eliminate) the gap 
between CA-ML and unweighted ASTRAL in conditions 
with lower ILS or heightened gene tree error (fig. 2). 
Overall, our results point to wASTRAL-h being a 

reasonable, if not always optimal, choice regardless of the 
condition. Consistent with simulations, on real datasets, 
we observed that wASTRAL-h eliminates many of the dif
ferences between unweighted ASTRAL and CA-ML. Thus, 
using wASTRAL-h can help reduce the long-standing chal
lenge of getting incongruent results from different analyses.

In our simulations, wASTRAL-h matched or improved on 
ASTRAL-III in all model conditions in terms of accuracy, leav
ing no clear incentive to prefer ASTRAL-III in this regard. 
Contracting low support branches improved ASTRAL-III 
trees, but the weighting is more accurate than contracting 
and does not require hard-to-tune (Bossert et al. 2021) 
thresholds. Interestingly, the improvements, which were mo
dest in many conditions but substantial in others, appeared 
more pronounced as the number of genes increased. We 
speculate the reason is that with more genes, not only the 
noise in the frequency of observed quartet topologies reduces, 
but also, the quartet weights become less noisy. Thus, having 
more genes benefits all wASTRAL versions in two ways (less 
topological noise and better weights), only one of which is en
joyed by unweighted ASTRAL.

Although topological improvements of wASTRAL-h 
over ASTRAL-III were marginal in many cases, the improve
ments in support were dramatic. The percentage of full 
support branches that were wrong was reduced in 
wASTRAL-h by half or more in most conditions (fig. 3a 
and d), rendering the full support branches more reliable. 
This increase in precision did not come at the cost of low
ering support. Both real and simulated datasets (e.g., 
supplementary figs. S8 and S11, Supplementary Material
online) saw increased support with wASTRAL. Two aspects 
of how we compute support have changed (“Branch 
Support”). One is the handling of missing data (see eq. 
(8)); it can be easily shown that, all else being equal, this 
change will decrease the localPP. Thus, the increase has 
to be due to the second change, which is the incorporation 
of weights. Since localPP support is a function of discord
ance, the increased support is empirical evidence that 
down-weighted gene tree quartets tend to be those that 
are more incongruent with the output species tree.

Branch support used as input by wASTRAL-s and 
wASTRAL-h can be computed in numerous ways with 
vastly different computational requirements. One prac
tical question is whether one method should be preferred 
and, if so, which? We tested three ways of computing sup
port on simulated data and noticed that IQ-TREE’s aBayes 
has the best accuracy, closely followed by bootstrapping 
(supplementary fig. S1, Supplementary Material online). 
In contrast, SH-like support was noticeably less effective. 
IQ-TREE’s aBayes is a local measure of support (i.e., com
puted for the nearest neighbor interchanges around a 
branch), and a local notion of support is consistent with 
how we interpret branch support (i.e., as independent, 
leading to a product). Moreover, computing local support 
is much faster than bootstrapping. Thus, while bootstrap
ping is a good option in terms of accuracy, IQ-TREE’s 
aBayes support can be used to build an accurate and effi
cient pipeline. Nevertheless, note that in the presence of 
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rouge taxa that move widely across a gene tree, local mea
sures of support may provide high support for most 
branches, whereas global support can result in low support 
for many branches, effectively down-weighting that gene. 
In such situations, global support may be more robust.

Limits and Future Work
We examined statistical consistency of the wASTRAL-s opti
mization problem, when solved exactly, given estimated gene 
trees under our MSC+Error+Support model. Although this 
model is general, our assumptions about support values 
and independence of quartets are strong, and support esti
mation methods do not necessarily fulfill them (e.g., see de
bates in Felsenstein and Kishino 1993; Hillis and Bull 1993; 
Susko 2009). Thus, the proofs of consistency should be taken 
more as a theoretical justification of the weighting approach 
rather than a prediction of behavior on real data. Support va
lues that over or underestimate branch supports (compared 
with our assumptions) may or may not lead to inconsistency 
of the method, as our assumptions are sufficient but not ne
cessary. Future work can seek more forgiving conditions for 
support that retain consistency, or conversely, conditions 
where the method is misleading.

We only studied the statistical consistency of wASTRAL-s 
and wASTRAL-bl under the MSC and MSC+Error+Support 
models, respectively, and left the treatment of wASTRAL-h 
to future work. Even more intriguing is whether any flavor 
of wASTRAL (which can take multi-individual/multicopy 
trees as input) is statistically consistent under combined 
models of GDL and ILS, as ASTRAL-multi is (Hill et al. 2020; 
Markin and Eulenstein 2021). This question is particularly im
portant for datasets where assumptions of MSC are violated. 
For example, on the OneKP dataset, examining the relative 
support for the three topologies around each branch (fig. 
5b) reveals that the quartet frequencies do not always follow 
the MSC expectations (one high frequency and two equal 
low frequencies). We believe weighting by support will con
tinue to be beneficial for models of GDL. However, it is un
clear whether weighting by branch length is profitable 
when gene tree discordance is due to GDL and especially 
horizontal transfer; thus, we caution the use of branch length 
when these processes are suspected. Finally, future work can 
incorporate weighting in the ASTRAL-Pro (Zhang et al. 2020) 
algorithm that natively supports paralogy.

The new wASTRAL software can optimize the un
weighted quartet score using the new optimization algo
rithm (DAC) instead of the old algorithm (A3) of 
ASTRAL-III. In our simulations, DAC tended to be as 
accurate or more accurate than A3 in the presence of miss
ing data (fig. 4b), but slower and less accurate without 
missing data. Our simulation results had no missing data, 
showing that the improved accuracy of wASTRAL-h was 
due to a better optimization objective, not a better opti
mization algorithm. Based on our experiments, we recom
mend that for datasets with substantial missing data, the 
new wASTRAL software package should be used instead 
of the ASTRAL-III package even for optimizing the 

unweighted quartet score. Moreover, similar to A3, DAC 
is also a heuristic method addressing an NP-hard problem. 
Just as the speed and accuracy of unweighted ASTRAL 
changed substantially through tweaks to the heuristics 
from ASTRAL-I to ASTRAL-III, we anticipate that future 
work can further increase our accuracy, speed, or both. 
Unweighted ASTRAL is also finely optimized for CPU, 
GPU, and vectorization (Yin et al. 2019). Currently, the 
wASTRAL software is only trivially parallelized for CPU, 
and future work can further optimize the code and imple
ment GPU parallelization.

Our simulations, like any other, lacked some of the com
plexities of real biological data (Philippe et al. 2017; 
Springer and Gatesy 2018). We did not include recombin
ation, horizontal transfer, gene flow, hidden paralogy, 
alignment error, mistaken homology, violations of the 
model of sequence evolution, or missing data. It can be 
hoped that weighting helps alleviate the effects of some 
of these other sources of error as well. However, since 
many of these can lead to high support for the wrong trees, 
there is no guarantee that weighting would not leave these 
misleading signals intact or even amplified. Methods for 
simulating many of these effects are available and can be 
used in future studies to compare wASTRAL with both 
CA-ML and unweighted ASTRAL. A related promising av
enue for future research is exploring other ways of weight
ing quartets. For example, future work can incorporate 
homology and alignment quality metrics into the weight
ing schemes. The weights could also reflect other factors, 
such as evidence of heterotachy impacting gene trees 
(Braun et al. 2019) and deviations from stationarity 
(Jeffroy et al. 2006). Even more ambitious approaches 
could be imagined where biases in support estimation 
could be predicted using machine learning (Suvorov 
et al. 2020). In designing and testing such weighting 
schemes, one must remember that not every weighting 
method will allow fast optimization using DP.

Finally, several features of ASTRAL-III are missing from 
wASTRAL, but future work can address this limitation. 
Currently, wASTRAL-h does not output branch lengths 
since the natural branch lengths that it could compute 
would be in a hard to interpret unit (e.g., CU + 2 × SU). 
Future work can examine ways to compute branch lengths 
in substitution or coalescent units. Other missing features 
left to future work are the test of polytomy (Sayyari and 
Mirarab 2018), integration with visualization tools such 
as DiscoVista (Sayyari et al. 2018), and completion of 
gene trees with respect to each other. Nevertheless, the 
most valuable features of ASTRAL-III, including handling 
multi-individual datasets, handling polytomies, and out
putting branch support, are all supported.

Material and Methods
Common Notations and Background
Let LS := {1, . . . , n} be a set of n species. Let us suppose 
that we are given a set of input binary gene trees G with 
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k := |G|. For each tree G ∈ G, let its leaf set be LG and its 
edge set be EG. For each branch e ∈ EG, we let lG(e) note its 
length. For a species set A, let G↾A denotes G restricted to 
A. We refer to a set of four species as a quartet and define 
Q(G) := {Q : |Q| = 4, Q ⊆ LG} as the set of all quartets in 
G. We define δG(ab | cd) := 1 when {a, b, c, d} ∈ Q(G) 
and G↾{a, b, c, d} has topology ab | cd; otherwise we define 
δG(ab | cd) := 0. For nodes u and v of a gene tree G, we let 
PG(u, v) denote the set of branches on the path between u 
and v and let lG(u, v) := 

􏽐
e∈PG(u,v) lG(e). For a quartet 

Q = {a, b, c, d}, we denote PG(Q) := PG(u, v), for u and 
v being nodes of g corresponding to the internal nodes 
(called the anchors) of G↾Q; that is, in case that G↾Q has 
topology ab | cd, anchors are the only node on PG(a, b) ∩ 
PG(a, c) ∩ PG(b, c) and on PG(b, c) ∩ PG(b, d) ∩ 
PG(c, d).

We assume each true gene tree G∗ is generated from the 
true species tree S∗ under the MSC model. Branch lengths 
of G∗ are in coalescent units (CUs). For each quartet Q = 
{a, b, c, d} ⊆ Q(S∗) with topology ab | cd in the species 
tree, let θQ = 1 − e−d where d is the CU length of the in
ternal branch of the quartet. Under MSC, for each true 
gene tree G∗, the following holds (Degnan 2013): 
P(δG(ab | cd) = 1) = 1

3 (1 + 2θQ) and P(δG(ac | bd) = 1) = 
P(δG(ad | bc) = 1) = 1

3 (1 − θQ). The input set G is a set of 
estimated gene trees, not true gene trees. In practice, these 
gene trees are estimated from sequence data using meth
ods such as ML with branch lengths lG(e) given in the 
substitution-per-site units (SU). Moreover, input gene 
trees are furnished with support values: sG(e) maps each 
edge e of G to a support value in [0, 1].

Theoretical Results: Improved Consistency and 
Sample Complexity
For a given species tree topology S, we define its score 
against gene tree set G as

W(S, G) :=
􏽘

G∈G

􏽘

Q∈Q(S)

wG(S↾Q), (1) 

where wG is a function mapping a quartet of G to a num
ber. In unweighted ASTRAL, for any {a, b, c, d},

wG(ab | cd) := δG(ab | cd). (2) 

In this paper, we introduce three new ways of defining wG. 
Weighting by support sets:

wG(ab | cd) := 1 −
􏽙

e∈PG({a,b,c,d})

(1 − sG(e))

􏼠 􏼡

δG(ab | cd).

(3) 

Weighting by branch length uses

wG(ab | cd) := e−(lG(a,b)+lG(c,d))δG(ab | cd). (4) 

Finally, the hybrid weighting scheme combines weighting 

by support and weighting by length and uses

wG(ab | cd) := 1 −
􏽙

e∈PG(u,v)

(1 − s(e))

􏼠 􏼡

e−(lG(a,b)+lG(c,d))δG(ab | cd).

(5) 

We study hybrid weighting only empirically but provide 
theoretical justifications for weighting by support (for es
timated gene tree topologies) and weighting by length 
(for true gene tree topologies).

Weighting by Support
Genes have varying levels of signal, and hence gene tree esti
mation error, and estimated gene trees can also be biased to
ward a specific topology due to factors such as long branch 
attraction. When bias goes against the species tree topology, 
unweighted ASTRAL can be positively misleading (Roch et al. 
2019). It is reasonable to assume that gene trees with lower 
signals have lower support regardless of bias. By down- 
weighting those genes, wASTRAL-s can rescue consistency. 
To formalize this intuition, we introduce a model of gene 
tree error that allows us to make a more formal statement, 
showing that wASTRAL-s is consistent under some condi
tions where unweighted ASTRAL is not.

MSC+Error+Support Model

We assume each input estimated gene tree G is a draw 
from a distribution that depends on the true gene tree 
G∗. For each quartet Q = {a, b, c, d} ⊆ Q(S∗) and each 
gene G, let αG,Q ∈ [0, 1] denote a parameter controlling 
the quality of the estimated quartet gene tree G↾Q. We as
sume αG,Q is independently drawn from the topology of G∗

and we let the expected value and variance of αG,Q across 
genes be denoted by α̅Q and σ2

α. For each true gene tree 
topology, with probability αG,Q , we simply set the esti
mated gene tree to the true topology. With probability 
1 − αG,Q, we choose among the three topologies with 
probabilities pG,Q

1 , pG,Q
2 , pG,Q

3 . When these numbers are 
equal, there is no bias in gene tree estimation, and un
weighted ASTRAL remains consistent (easy to prove). 
However, in our model, we allow systematic bias toward 
any topology. Let βQ = maxG ( max (3pG,Q

1 − 1, 3pG,Q
2 − 

1, 3pG,Q
3 − 1, 1 − 3pG,Q

1 , 1 − 3pG,Q
2 , 1 − 3pG,Q

3 )) be the max
imum bias toward or away any topology across genes. 
Under this model, the joint probability of true and esti
mated gene trees would follow the inequalities laid out 
in table 2. For example, in the worst case, where 
3pG,Q

1 = 1 − βQ , 3pG,Q
2 = 1 + βQ , and 3pG,Q

3 = 1, the joint 
distribution of true and estimated gene trees is given in 
table 1 and depicted in figure 1b.

We assume that for each quartet, the quartet support de
fined using (3) matches the probability of that topology being 
observed given the true gene tree. Thus, with our model for 
estimated gene tree distributions, the support of the quartet 
topology i is αG,Q + (1 − αG,Q)pG,Q

i if it matches the true tree 
and (1 − αG,Q)pG,Q

i if it does not, leading to expected top
ology weights wG(·) given in tables 1 and 2.
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We now state our main results. Proofs of all results are 
given in Appendix Proofs.

Proposition 1. For each estimated gene tree G, 
E[δG(ab | cd) − δG(ac | bd)] ≥ θQα̅Q − 2

3 (1 − α̅Q)βQ and 
E[wG(ab | cd) − wG(ac | bd)] ≥ 1

9 θQ(3 + 2βQ)(α̅Q
2 + σ2

α) + 
2
9 ( 3 − βQ)θQα̅Q − 4

9 (1 − α̅Q)βQ .

For consistency of unweighted ASTRAL and wASTRAL-s, 
we need E[δG(ab | cd) − δG(ac | bd)] ≥ 0 and E[wG(ab | cd)− 
wG(ac | bd)] ≥ 0, respectively. Figure 1e depicts the RHS of 
equations of Proposition 1, solving for θQ and setting σ2

α 
to zero (which is the worst-case for wASTRAL-s). It shows 
that wASTRAL-h is consistent for a larger set of species 
tree CU branch lengths, even in absence of any variation 
in gene tree quality. We next state this observation formally.

Theorem 1. Given estimated gene trees furnished with sup
port generated under MSC+Error+Support model, there ex
ist conditions where (3) guarantee a statistically consistent 
estimator of S∗ but (2) does not, and the reverse is not true.

Weighting by length
Our next result shows that using the length-based weighting 
function (4) leads to a larger gap than unweighted ASTRAL 
between the expected score of the true species tree and 
the alternative trees and thus has better sample complexity. 
Shekhar et al. (2017) has established that the number of gene 
trees required by unweighted ASTRAL to recover the species 
tree scales with f−2 as f −→0 where f is the CU length of the 
shortest species tree branch. Following that paper, we focus 
on the regime with k = Θ( f−2) gene trees and show a con
stant factor improvement in sample complexity. All theoret
ical results in this section assume that an input gene tree G 
matches the true gene tree G∗ in topology.

The improved sample complexity essentially follows 
from the fact that under the MSC model, gene trees that 
match the species tree have shorter CU terminal branch 
lengths on average because discordance is caused by deep 
coalescence. However, a theoretical difficulty is that input 
gene trees have SU branch lengths instead of CU length. 
Thus, we need a model to translate CU lengths in G∗ to 
SU lengths in G, capturing the effects of change in mutation 
rates and population sizes. We examine two such models.

Naive Model

We start with a simple choice akin to a strict clock. Under 
this naive model, all branches of G are scaled from 
branches of G∗ using a fixed multiplier λ.

Variable Rate Model

Let branches of the species tree S∗ be broken into segments of 
arbitrary length (supplementary fig. S21, Supplementary 
Material online). For each gene tree G∗, a species tree in SU 
units S† is drawn from a fixed distribution D (which does 
not change with G∗). S† matches S∗ in topology. The length 
of each segment I in S† is scaled from the length of its corre
sponding segment in S∗ using a multiplier ΛI

S† . The set of all 
multipliers can be jointly drawn from any distribution as long 
as for each segment I, ES†[ΛI

S†] = λ. Segments in S∗ can be 
used to divide G∗ into segments defined at the same points 
along each branch (supplementary fig. S21, Supplementary 
Material online). The gene tree G is obtained from G∗ by 
multiplying the CU length of each of its segments by the 
multiplier assigned to that segment in S†. Because segments 
have different multipliers (even though they have the same 
expectation), gene tree G† deviates from ultrametricity. 
Because multipliers are drawn separately for each gene, devia
tions from ultrametricity happen in different ways across dif
ferent genes.

We now state the results. Let XG := wG(ab | cd) − 
wG(ac | bd) and YG := δG(ab | cd) − δG(ac | bd). Then,

Proposition 2. For a true quartet species tree S∗ with top
ology ab | cd and input gene trees G generated under the 
naive model with any multiplier λ, let f be the distance be
tween anchors of S∗. As f −→0, given k = Θ( f−2) gene 
trees, we have Var[XG] = Θ f (1) and

E[XG]
���������
Var[XG]
√ =

1 + 4λ
1 + 2λ

��
3
2

􏽲

f + O( f 2).

Similarly, under the variable rates model and assuming 
limited variance of rates across genes, we prove

Proposition 3. For a true quartet species tree S∗ with top
ology ab | cd and input gene trees G generated under the 
variable rate model, let f be the distance between anchors 
of S∗ and L be the total length of all other branches. 
Assume that for every branch segment I, the variance of 
its multiplier is bounded above: Var(ΛI

S†) ≤ ε2 where ε2= 

Table 2. Joint probabilities (δ) and weights (w) of estimated and true gene tree topologies under the MSC+Error+Support will follow the inequalities 
shown here. We omit Q and G superscript for brevity.

E[(·)(·) | αG,Q] δG(ab | cd) δG(ac | bd)

δG∗ (ab | cd) ≥ 1
3 (1 + 2θQ)(αG,Q + 1

3 (1 − αG,Q)(1 − βQ)) ≤ 1
3 (1 + 2θQ)( 1

3 (1 − αG,Q)(1 + βQ))
δG∗ (ac | bd) ≥ 1

3 (1 − θQ)( 1
3 (1 − αG,Q)(1 − βQ)) ≤ 1

3 (1 − θQ)(αG,Q + 1
3 (1 − αG,Q)(1 + βQ))

δG∗ (ad | bc) ≥ 1
3 (1 − θQ)( 1

3 (1 − αG,Q)(1 − βQ)) ≤ 1
3 (1 − θQ)( 1

3 (1 − αG,Q)(1 + βQ))
E[(·)(·) | αG,Q] wG(ab | cd) wG(ac | bd)
δG∗ (ab | cd) ≥ 1

3 (1 + 2θQ)(αG,Q + 1
3 (1 − αG,Q)(1 − βQ))2 ≤ 1

3 (1 + 2θQ)( 1
3 (1 − αG,Q)(1 + βQ))2

δG∗ (ac | bd) ≥ 1
3 (1 − θQ)( 1

3 (1 − αG,Q)(1 − βQ))2 ≤ 1
3 (1 − θQ)(αG,Q + 1

3 (1 − αG,Q)(1 + βQ))2

δG∗ (ad | bc) ≥ 1
3 (1 − θQ)( 1

3 (1 − αG,Q)(1 − βQ))2 ≤ 1
3 (1 − θQ)( 1

3 (1 − αG,Q)(1 + βQ))2
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(e−λL/[(16 + 32λ) + (6 + 32λ + 32λ2)L])(20(λ + λ2)/9(1+ 
2λ)2)3. As f −→0, given k = Θ( f−2) gene trees, we have 
Var[XG] = Θ f (1) and

E[XG]
���������
Var[XG]
√ ≥

��
3
2

􏽲

1 −
4λ2

(1 + 4λ)2

􏼒 􏼓−1/2

f + O( f 2).

These propositions lead us to the main result.

Theorem 2. Under the conditions of Proposition 2 or 
Proposition 3,

P
􏽘

G∈G
wG(ab | cd) ≤

􏽘

G∈G
wG(ac | bd)

􏼠 􏼡

≤ P
􏽘

G∈G
δG(ab | cd) ≤

􏽘

G∈G
δG(ac | bd)

􏼠 􏼡

.

Optimization Algorithm
The objective of our optimization task is to find S maximiz
ing W(S, G) given in (1) for one of the wG functions (2)–(5). 
For a species tree S, let T S denote the set of tripartitions 
corresponding to the internal nodes of S. For a tripartition 
A|B|C ∈ T S corresponding to an internal node v in S and a 
gene tree G, let W(A|B|C, G) be the total score of all shared 
quartets of S and G that anchor at v. Then,

W(A|B|C, G)=
1
2

􏽘

a∈A∩LG,b∈B∩LG,c∈C∩LG

􏽘

d∈A∩LG−{a}

wG(ad | bc)

􏼠

+
􏽘

d∈B∩LG−{b}

wG(bd | ac)

+
􏽘

d∈C∩LG−{c}

wG(cd | ab)

􏼡

and W(S, G) = 1
2

􏽐
A|B|C∈T S

􏽐
G∈GW(A|B|C, G).

ASTRAL-III uses a traversal of gene trees to compute 
W(A|B|C, G) with weight function (2) without enumerat
ing all n

4

( 􏼁
quartets. At each gene tree node, the total num

ber of shared quartets between that node and v is 
computed using simple combinatorics. When quartets 
are weighted differently using weight functions (3)–(5), 
computing the aggregated weights of quartets around a 
node becomes more difficult as simple combinatorial equa
tions become unavailable in the general case. Thus, we can
not simply use the same algorithm as ASTRAL-III and 
instead propose a new algorithm. In its simplest form 
(called the base version), the algorithm works as follows. 

1) Starting from an empty tree, add each species to the 
tree one-by-one with a random order to obtain a full 
tree (see the “Placement Algorithm” section and 
supplementary Algorithm S1, Supplementary 
Material online). The algorithm also computes and 

stores tripartition scores W(A|B|C, G) for all triparti
tions of the output tree.

2) Repeat the previous step for r rounds; by default r ∈ 
[16, 32] (see details under “Placement Algorithm”).

3) Combine results of the r rounds using a final DP step, 
which reuses the tripartition weights computed in 
step 1; each internal node of the output is con
strained to be in at least one of the r greedy trees (see 
“Dynamic Programming” section and supplementary 
Algorithm S2, Supplementary Material online).

What makes this approach possible is step 1: a new algo
rithm that allows each addition to an existing tree to be 
performed optimally and efficiently. Importantly, while 
the base algorithm is a greedy heuristic, as Theorem 4 
and the remark afterward will show, it retains the statistic
al consistency properties proved in Theorems 1 and 
2. The running time of the base algorithm scales with 
O(kn3 log (n)) in the worst case (Proposition 4) and is bet
ter with respect to k but worse with respect to n compared 
with ASTRAL-III, which is O((kn)2.73) in the worst case and 
roughly O(k2n2) in practice. Thus, we also propose a 
divide-and-conquer (DAC) algorithm for n ≥ 200 that 
uses the base algorithm on subsets of size O(

��
n
√

) (see the 
“DAC Algorithm” section and supplementary Algorithm 
S3, Supplementary Material online). This strategy improves 
the running time to O(n2.5+ϵk) under some assumptions, 
as detailed below under Theorem 5. The DAC algorithm 
also retains the statistical consistency guarantees 
(Theorem 6). We next detail each algorithmic compo
nent mentioned above.

Placement Algorithm
Mai and Mirarab (2022) use the idea pioneered by Brodal 
et al. (2013) to design a quasi-linear algorithm to find the 
optimal placement of a species on a backbone tree that 
minimizes its quartet distance to a set of reference trees 
(e.g., gene trees). This algorithm traverses a binary (or mul
tifurcating) species tree in a top-down manner and colors 
species using three (or more) colors, A, B, and C. When en
tering any node u of the species tree, all species under u are 
already colored A and all other species are colored C. At 
this point, the smaller child of u is recolored with B. The 
recoloring is done one species at a time; for each species, 
the path from the associated leaf in each gene tree to 
the root is visited, and several counters assigned to each 
gene tree node are updated. These counters enable calcu
lating the score for placing the query on each species tree 
branch. After this recoloring is done and before moving 
from u to any of its children v, the sister of v is colored 
C, and if v is the smaller child of u, then v is changed 
back to A. This algorithm performs only O(n log n) species 
recoloring steps due to the smaller-child trick, which reco
lors the larger child of each node less often than the smal
ler child. Moreover, by representing each gene tree using 
an O( log n)-height tree called HDT adopted from Brodal 
et al. (2013), it ensures each recoloring takes O(k log n) 
time.
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We build on the idea by Mai and Mirarab (2022) and 
adapt it to optimally solve the weighted quartet score 
placement problem (supplementary Algorithm S1, 
Supplementary Material online), changing it in three sub
stantial ways. (1) We have created a new set of counters 
that enable us to compute the total weighted quartet score 

of all tripartitions resulting from all possible placements of 
the query. These counters essentially count the total 
weight of all the quartets with the same most recent com
mon ancestor (MRCA) using recursive equations shown in 
figure 6 and supplementary table S1, Supplementary 
Material online. The derivation of these counters is the 
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FIG. 6. Recursive definitions of Counters. For a species tree tripartition (X|Y|Z), and a gene tree node w, we compute the total hybrid weight of all 
quartets anchored at the species tripartition and with w as the MRCA on the gene tree. Each solid colored path is weighed by the negative 
exponent of its length; each dashed path is weighted by one minus its support; each dotted path is weighted by its support. See also 
supplementary table S1, Supplementary Material online.
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heart of the algorithm but is too complex to detail here. 
We leave a full description to Proof of Theorem 3. (2) At 
each node u, we also recolor the query species as A, B, 
and C and recompute the counters; this allows us to com
pute the quartet score for all tripartitions resulting from all 
placements of the query. (3) Since our counters are more 
complex than Mai and Mirarab (2022), we use input gene 
trees instead of HDTs, which would be hard to implement. 
As a result, the cost of a leaf recoloring in our algorithm is 
O(kH) where H is the average height of gene trees instead 
of O(k log n) had we used HDTs. Note that for sufficiently 
balanced gene trees, O(kH) and O(k log n) are similar. We 
next prove that this algorithm finds the optimal solution.

Theorem 3. Let S be a species tree, i be a species not in LS, 
S be the set of possible species tree topologies by placing i 
onto S, and S′ be the output of Algorithm S1 online. Then, 
W(S′, G)= maxŜ∈SW(Ŝ, G).

Although each individual placement is optimal, the 
greedy search is not guaranteed to find the optimal tree. 
We run the greedy search r times each of which produces 
a full tree Si. Empirically, we found r ≥ 4 to have minimal 
impact on the accuracy, but small improvements in the 
quartet score are observed for up to r = 32 rounds in out
lier cases (supplementary fig. S22, Supplementary Material
online). Based on these results, we set r (which the user can 
adjust) using a dynamic heuristic: (1) start with 12 rounds 
and perform the DP algorithm to get an optimal score; (2) 
run another 4 rounds and perform DP using bipartitions 
from all previous rounds; (3) repeat step (2) until no im
provement to the optimal score is obtained or step (2) 
has been repeated five times.

Dynamic Programming
In each greedy search, we add the tripartitions of each Si 
and their weights to a lookup table W∗. The DP step com
putes an optimal species tree restricted to the tripartitions 
of W∗ (supplementary Algorithm S2, Supplementary 
Material online). The DP algorithm proceeds almost iden
tically to ASTRAL-III, with one difference: Although the 
search space in ASTRAL-III is the set of bipartitions found 
in all of the Si trees, here, the search space is the set of all 
tripartitions. With this change, we do not need to com
pute weight scores for any tripartition as those are pre
computed and stored in W∗ in the placement step.

Proposition 4. The time complexity of Algorithm S2
online is O(kHn2 log n).

Since H = O( log n) for balanced trees and H = O(n) for 
caterpillar trees, the time complexity of supplementary 
Algorithm S2, Supplementary Material online is 
O(kn2 log2 n) when gene trees are roughly balanced and 
O(kn3 log n) when they are not. Note that because the 
counters are linearly related to counters of children of a 
node, in theory, the HDT structure can be adopted in our 
algorithm leading to a O(kn2 log2 n) worst-case complexity. 

Since adopting HDT would add much more complexity for 
(potentially) little gain, we do not pursue it further.

Supplementary Algorithm S2, Supplementary Material
online is not guaranteed to find the optimal solution. 
However, a positive theoretical result ensures that this 
lack of optimality does not impede the statistical consist
ency of the solution

Theorem 4. If there exists a species tree topology S∗ sat
isfying that for each quartet subtree ab | cd,

􏽘

G∈G
w(ab |cd) > max

􏽘

G∈G
w(ac |bd),

􏽘

G∈G
w(ad |bc)

􏼠 􏼡

, (6) 

then the output of Algorithm S2 online will be S∗.

Remark 1. For a binary true species tree S∗, as k→ ∞, S∗

satisfies the condition of Theorem 4 with an arbitrarily high 
probability for wASTRAL-s under the assumptions of 
Theorem 1 and for wASTRAL-bl under the assumptions 
of Theorem 2. To see this point, note that due to the con
sistency of the estimator, for a quartet Q to achieve a high 
probability 1 − ϵ′ a certain kϵ′ ,Q must be sufficient. Setting 
ϵ′ = 1 − (1 − ϵ)1/ n

4( ) and using a union bound, it is easy 
to see that k = maxQ kϵ′ ,Q is enough to achieve the prob
ability 1 − ϵ of correctness for all quartets. Thus, by 
Theorem 4, Algorithm S2 online is a statistically consist
ent estimator of the species tree under the assumptions 
of Theorems 1 and 2. We conjecture that wASTRAL-h 
can also be proved statistically consistent under assump
tions similar to Theorem 1 for topology and support and 
Theorem 2 for branch length.

DAC Algorithm
The DAC procedure (supplementary Algorithm S3, 
Supplementary Material online) first computes a back
bone tree on fewer species, adds all the remaining species 
onto the backbone tree, and then locally refines the top
ology around the backbone branch. 

1) To compute a backbone tree Si, we randomly select 
m = ⌈

��
n
√
⌉ leaves and apply the Algorithm S2 online 

with r = ⌈
��
n
√
⌉ rounds of placements to get a back

bone tree with m species.
2) For the remaining n − m species, we independently 

find their optimal placement on Si using the 
Algorithm S1 online. We group species placed on 
the same branch together to obtain 2m − 3 clusters.

3) For each cluster Ce corresponding to a branch e, we 
sequentially place species in Ce onto Si using the 
Algorithm S1 online and remove any “orphan” spe
cies that are not placed on e or its derived branches; 
the result is called Se.

4) All trees in {Se : e ∈ ESi } induce the same scaffold tree 
Si on their shared taxa. Thus, they can be easily 
merged into a uniquely defined tree S′i .

5) If S′i orphan species exist, at the end, we place them 
onto S′i using the Algorithm S2 online.

17

http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msac215#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msac215#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msac215#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msac215#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msac215#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msac215#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msac215#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msac215#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msac215#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msac215#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msac215#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msac215#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msac215#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msac215#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msac215#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msac215#supplementary-data
https://doi.org/10.1093/molbev/msac215


Zhang and Mirarab · https://doi.org/10.1093/molbev/msac215 MBE

The potential for orphan taxa makes it harder to estab
lish the time complexity of the DAC algorithm theoretic
ally, but a result can be proved.

Theorem 5. When the inequality condition in Theorem 4 
is satisfied, then the time complexity of the DAC algorithm 
is O(n1.5+ϵkH) with arbitrarily high probability.

Similar to the base algorithm, the DAC algorithm re
tains statistical consistency.

Theorem 6. Under the conditions of Theorem 4, the DAC 
Algorithm S3 online will output S∗.

Remark 2. Under assumptions of Theorem 1 for wASTRAL-s 
and Theorem 2 for wASTRAL-bl, Algorithm S3 online gives a 
statistically consistent estimator of the species trees.

Branch Support
We adopt the quartet-based metric introduced by Sayyari 
and Mirarab (2016) used for measuring branch support. 
This metric essentially quantifies the probability of the 
true quartet score around a species tree branch being 
more than 13 given the observed quartet topologies assum
ing that gene trees are fully independent, but the quartets 
around the branch are fully dependent. The original metric 
gives all gene trees with at least one quartet around a 
branch of interest an equal weight of one. In 
wASTRAL-h, we instead weight each gene tree by the total 
support of all three topologies and normalize the counts. 
Removing an internal branch e of the species tree and its 
four adjacent branches defines a quadripartition of species 
A|B|C|D, and we assume (A ∪ B) | (C ∪ D) is the biparti
tion defined by e. Note that any quartet (a, b, c, d) ∈ A × 
B × C × D has the same internal branch as e. Let G denote 
the subset of gene trees with at least one element from 
each of A, B, C, and D. We define x1, the normalized quartet 
count for branch e, as

x1 =
􏽐

G∈G
􏽐

(a,b,c,d)∈A×B×C×D wG(ab | cd)
�������������������������������������������������������������������������

1
|G|

􏽐
G∈G (

􏽐
(a,b,c,d)∈A×B×C×D wG(ab | cd) + wG(ac | bd) + wG(ad | bc))2

􏽲 . (7) 

The quartet counts for (A ∪ C) | (B ∪ D) and (A ∪ 
D) | (B ∪ C) are similarly defined and are denoted by x2 
and x3. This form of normalization models the observation 
that gene trees with higher weights also have higher vari
ance in their weights. Using the method of Sayyari and 
Mirarab (2016), we set the localPP support to 
h(x1)/[h(x1) + h(x2) + h(x3)], where h(x)=2xB(x+1, x1+ 
x2 +x3 −x+2λ)(1− I1/3(x+1, x1 +x2 +x3 −x+2λ)), B is 
the beta function, Ix is the regularized incomplete beta 
function, and λ is birth rate in the Yule prior distribution 
(default: 1

2).
When all weights are set to 1, as in ASTRAL-III, the new 

definition is identical to the original one in the absence of 
missing data but can be different with missing data. Let 
Ng = |A ∩ Lg| × |B ∩ Lg| × |C ∩ Lg| × |D ∩ Lg| be the 
number of quartets around the branch of interest present 
in a gene tree g; let ng be the number of those quartets 
that are compatible with (A ∪ B) | (C ∪ D). Then, the 
old definition sets x1 =

􏽐
G∈G ng/Ng , while the new defini

tions uses

x1 =
􏽐

G∈G ng
��������������

1
|G|

􏽐
G∈G N2

g

􏽲 . (8) 

The two definitions are identical only when all Ng values 
are the same, which is the case when there is no missing 
data but can also happen in other scenarios. When pat
terns of missing data are different, the old calculations 
made sure all genes had equal weights (each gene has 

x1 + x2 + x3 = 1). In the new definition, since each gene 
is weighted differently in wASTRAL, to begin with, we 
also allow genes to have a different total vote depending 
on their patterns of missing data. In the new formula, 
each gene votes (contributes to x1 + x2 + x3) proportion
ally to the number of quartets they have around a branch.

Datasets
Simulated Data
S100 Simulated dataset by Zhang et al. (2018), includes 100 
ingroups and one outgroup and is simulated using SimPhy 
(Mallo et al. 2016) with 50 replicates. The species trees are 
simulated under the birth-only process with birth rate 
10−7, a fixed haploid population size of 4 × 105, and the 
number of generations sampled from a log-normal distri
bution with mean 2.5 × 106. 1, 000 true gene trees are si
mulated under the MSC model. The ILS level substantially 
varies across replicates, with a mean of 0.46 when mea
sured by the average normalized Robinson and Foulds 
(1981) (RF) distance between the true species trees and 
true gene trees. Gene alignments of length {200, 400, 
800, 1, 600} bps are simulated using Indelible (Fletcher 
and Yang 2009) under the GTR model after assigning SU 
gene tree branch lengths that deviate from the clock using 
rate multipliers. Gene trees are reconstructed under the 
GTR+Γ model using FastTree-2 (Price et al. 2010). The 
gene tree estimation error, measured by the FN rate be
tween the true gene trees and the estimated gene trees, is 
{0.55, 0.42, 0.31, 0.23} for lengths {200, 400, 800, 1, 600}. 
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The original publication has made BS obtained from 100 re
plicates run using FastTree-2 available for each gene tree.

S200 Simulated dataset by Mirarab and Warnow (2015)
includes 200 ingroup species and an outgroup. Its species 
trees are generated under two different birth rates 
10−6, 10−7 each with 50 replicates and three different ILS 
levels, low (≈10%), medium (≈35%), and high (≈70%), 
controlled by max tree heights 107, 2 × 106, 5 × 105 gen
erations, respectively. The sequence length of each gene 
is uniformly drawn between 300 and 1500 bps, resulting 
in a wide range of gene tree estimation errors across repli
cates (mean: 25%, 31%, and 47%, for low, medium, and 
high ILS). Gene trees are estimated using FastTree-2, but 
because bootstrap replicates are not available, we com
pute aBayes support using IQ-TREE with fixed topologies.

By default, we compute branch length and support 
using IQ-TREE (v 1.6.12) aBayes option (–abayes) under 
GTR+Γ model. As each support value s is between 1

3 and 
1, we normalize support value to (3s − 1)/2 so that the 
minimum is 0. To run wASTRAL (which currently takes 
only binary trees as input), we randomly resolve poly
tomies in input trees with length and support set to 0, 
which is equivalent to a polytomy for wASTRAL-s and -h.

ASTRAL-III version 5.7.4 is used throughout. ASTRAL- 
III-5% (S100 dataset) denotes running ASTRAL-III on 
gene trees with low BS branches (<5%) contracted. The 
5% threshold is used because Zhang et al. (2018) found 
it to have the best accuracy overall. On the S200 dataset, 
because BS is not available, we instead rely on IQ-TREE 
aBayes support, which tends to be much higher than BS. 
Thus, we contract branches with support below a 0.90 
threshold with aBayes, denoted as ASTRAL-III-90%.

CA-ML is performed using unpartitioned ML. On the 
S200 dataset, CA-ML was available from the original study 
(where they used FastTree-2 as the ML method) and is used 
here. On S100, we ran CA-ML using FastTree-2. Thus, on 
both datasets, the same tool is used for gene tree estima
tion and CA-ML, ensuring the comparisons are fair.

Biological Datasets
Seven biological datasets were used.

OneKP (OneKP Initiative 2019) dataset includes 1,178 
species spanning the plant tree of life obtained using tran
scriptomics. The original study has inferred 410 gene trees 
from amino acid alignments of putative single-copy genes 
using RAxML with BS (which we use), an ASTRAL-III spe
cies tree, and CA-ML using RAxML.

Canis (Gopalakrishnan et al. 2018) dataset includes 48 gen
omes across genus Canis with taxon sampling that allows re
construction at both species and population levels. Loci with 
roughly 10 kbp lengths were selected across the genome at 
random, leading to 449,450 gene trees. Since ASTRAL-II could 
not handle this size, the original study partitioned the gene 
tree into 100 subsets and inferred one ASTRAL-II species 
tree per subset and published a consensus of those trees. 
We used wASTRAL-h to analyze all the available gene trees, 
which the original paper estimated using FastTree-2; we 
were also able to analyze up to 100,000 gene trees using 

ASTRAL-MP (Yin et al. 2019) (within 48 h). Due to the large 
number of genes, we simply use the provided SH-like 
FastTree-2 support instead of re-estimating support.

Avian (Jarvis et al. 2014) dataset includes 48 species de
signed to resolve the order-level avian relationships, which 
experience extremely high levels of gene tree discordance 
potentially due to a rapid radiation. The authors studied 
three data types: concatenation of exons per gene (exons), 
concatenation of introns per gene (introns), and ultracon
served elements (UCEs). Here, we analyze all 14,446 input 
gene trees (8,251 exons, 2,516 introns, and 3,679 UCEs) 
with bootstrap-annotated branches available from the ori
ginal study. The main challenge on this dataset is the low 
gene tree resolution, which led to the development of the 
statistical binning method (Mirarab, Bayzid, et al. 2014). 
Without binning, the analyses of all 14,446 loci resulted in 
species trees that were clearly wrong. More recently, species 
tree inferred from ASTRAL-III without dealing with gene 
tree error also resulted in incorrect species trees (Zhang 
et al. 2018); however, contracting low support branches 
(e.g., ≤3, 5, and 10%) appeared to solve the problem.

Cetaceans (McGowen et al. 2020) dataset includes 
targeted-captured exonic data for 100 individuals from 
77 cetacean species and 12 outgroups. The original study 
estimated gene trees using RAxML under the GTRCAT 
model but without support for 3,191 protein-coding 
genes. We computed Bayesian local supports and branch 
lengths for fixed gene tree topologies using IQ-TREE and 
reanalyzed the dataset using wASTRAL-h. We compare 
the results with two trees produced by the original study: 
a CA-ML tree and an ASTRAL-multi tree that forces indi
viduals of the same species to be grouped together.

Insect Datasets

We also tested three insect datasets, in each case, using 
available gene trees. (1) a 32-taxon collection of 853 
RAxML gene trees with BSs obtained from alignments of 
ultraconserved elements focused on the bee subfamily 
Nomiinae and particularly genus Pseudapis (Bossert et al. 
2021), (2) a 203-taxon set of 1,930 RAxML gene trees 
with BS obtained from transcriptomic alignments focused 
on Lepidoptera (butterflies and moths) (Kawahara et al. 
2019), and (3) a 61-taxon dataset of the Papilionidae (swal
lowtail butterflies) with 6,407 IQ-TREE gene trees with sup
ports that we computed using aBayes (Allio et al. 2020) 
and obtained from amino-acid alignments of orthologous 
protein-coding genes.

Evaluation Criteria
To compare topological accuracy, we use the FN rate, 
which is the fraction of bipartitions of the true species 
tree recovered by an estimated tree. Since the true species 
tree and the reconstructed species tree are both binary, 
false-negative rate, false-positive rate, and normalized RF 
are all the same. For measuring the accuracy of support, 
we use three methods with different goals.

Calibration plots ask if support values perfectly indicate 
correctness (i.e., are calibrated). We break support values 
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into these bins: [ 1
3 , 0.5), [0.5, 0.75), [0.75, 0.9), [0.9, 0.95), 

[0.95, 1), and {1} (note that 1 means anything rounded to 
1 by the tool). For each bin, we compute the average accur
acy of branches with support in that range and plot it versus 
the midpoint of the boundaries of that bin. On such plots, 
points above (below) diagonal indicate underestimation 
(overestimation) of branch support. Even when support is 
not calibrated, it can be useful if higher support correlates 
with correctness; for example, if all support values are uni
formly increased or decreased (say, divided by two), it can 
still be perfectly correlated with support. To measure this as
pect, we use ROC curves. For a large number of thresholds 
between 0 and 1, we contract all branches with support be
low that threshold. Then, ROC depicts recall, which is the 
faction of correct branches that are kept, versus FPR, which 
is the fraction of incorrect branches that are kept. Note 
that the ROC curve remains the same with any monotonic 
transformation of support values assuming an infinite 
number of thresholds. We also plot the empirical cumula
tive density function (ECDF) of correct and incorrect 
branches. We expect higher support for correct branches 
than for incorrect branches; thus, the accuracy can be 
judged by the gap between ECDF curves of correct and in
correct branches.

Statistical Tests
We perform repeated measures ANOVA tests between 
two species tree reconstruction methods to test the sig
nificance of topological accuracy differences and whether 
the gap in accuracy depends on simulation model para
meters. We limit the data to only the two methods being 
compared, and for each experimental condition, we use re
plicates as the repeated measures (i.e., the error term). We 
perform double-sided ANOVA tests on reconstruction 
methods vs. experimental conditions and report p-values 
for the difference between methods and the impact of 
other variables on that difference.

Supplementary Material
Supplementary data are available at Molecular Biology and 
Evolution online.
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