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Abstract

Knee osteoarthritis (KOA) as a disabling joint disease has doubled in prevalence since the 

mid-20th century. Early diagnosis for the longitudinal KOA grades has been increasingly 

important for effective monitoring and intervention. Although recent studies have achieved 

promising performance for baseline KOA grading, longitudinal KOA grading has been seldom 

studied and the KOA domain knowledge has not been well explored yet. In this paper, a novel 

deep learning architecture, namely adversarial evolving neural network (A-ENN), is proposed 

for longitudinal grading of KOA severity. As the disease progresses from mild to severe level, 

ENN involves the progression patterns for accurately characterizing the disease by comparing an 

input image it to the template images of different KL grades using convolution and deconvolution 

computations. In addition, an adversarial training scheme with a discriminator is developed to 

obtain the evolution traces. Thus, the evolution traces as fine-grained domain knowledge are 

further fused with the general convolutional image representations for longitudinal grading. Note 

that ENN can be applied to other learning tasks together with existing deep architectures, in 

which the responses characterize progressive representations. Comprehensive experiments on the 

Osteoarthritis Initiative (OAI) dataset were conducted to evaluate the proposed method. An overall 

accuracy was achieved as 62.7%, with the baseline, 12-month, 24-month, 36-month, and 48-month 

accuracy as 64.6%, 63.9%, 63.2%, 61.8% and 60.2%, respectively.
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I. INTRODUCTION

Knee osteoarthritis (KOA) as a disabling joint disease has doubled in prevalence since the 

mid-20th century [1]. The main radiographic characteristics of KOA are the formation 

of osteophytes, periarticular ossicles, narrowing of joint cartilage, small pseudo-cystic 

areas with sclerotic walls, and altered shape of the bone ends [2]. Currently, as there is 

no treatment to permanently cure KOA and the increasing trend in life expectancy and 

body mass index, early diagnosis and longitudinal KOA severity prediction of the disease 

progression have been increasingly important to help improve the life quality of patients 

[3]. For this purpose, the Kellgren and Lawrence (KL) grading system has been widely 

used to quantify the severity of the disease in clinical practice [2], in which radiology 

imaging techniques are utilised for KL grading. However, the grading requires well-trained 

experts for time-consuming and costly annotations, and it can be difficult for human experts 

to perform long-term KOA predictions using merely baseline images. Therefore, it is 

attractive to devise computer-aided automatic longitudinal KL grading methods for KOA 

using radiology images.

Existing studies mainly address the automatic KOA grading task of a given radiology image 

by treating it as an image classification task with multiple classes (i.e., KL grades). Early 

studies follow a conventional machine learning pipeline in which the image pre-processing 

and feature extraction steps are required for a classification model (e.g. [4]). To this end, 

the quality of the extracted features is critical to the grading performance. Owing to 

the great success of deep learning techniques in many visual applications, a data-driven 

approach can be devised in pursuit of more accurate grading algorithms. As many deep 

learning architectures have been proposed for general image classification problems, such 

as convolutiaon neural networks (CNNs) (e.g., VGG [5] and ResNet [6]) and transformer 

based networks (e.g., Visual Transformer (ViT) [7]), some of these architectures have 

been also adopted for KOA grading (e.g, [8]). Besides, there are also a few attempts 

to involve the domain knowledge of KOA into the development of deep learning based 

methods, such as the inclusion of the demographic features and the loss functions using 

the continuous grading property (e.g. [9], [10]). Although these methods have achieved 

impressive performance, the grading is only reported in regard to the baseline scan.

Many attempts have been recently undertaken for KOA progression analysis based on 

clinical assessment characteristic and medical imagining features (e.g., [11]–[14]). However, 

the prediction of the KOA conversion after a period of time is not accurate enough, 

compared to a longitudinal KOA grading scheme. Moreover, different from general image 

classification tasks, the intra-class variance of knee images can be higher than the inter-class 

variance in terms of the KOA grades which present fine-grained patterns. Therefore, it 

is reasonable to devise deep learning algorithms with adequate domain knowledge for 

accurately grading KOA in a longitudinal manner. In addition, although there have been 
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many studies recently on fine-grained learning (e.g. [15]–[19]), these studies are usually 

task-specified, which could not be applicable to longitudinal KOA grading.

Therefore, in this paper, a novel deep learning architecture, namely adversarial evolving 

neural network (A-ENN), with an adversarial training scheme is proposed for fine-grained 

longitudinal KOA grading using X-Ray images collected from clinical assessments. As the 

disease progresses from mild to severe, the longitudinal KOA grades of a patient can be 

investigated from an evolving perspective. By comparing an input X-Ray image to a set 

of template images of different KL grades, evolving traces, which indicate how the input 

image changes to/from templates of individual KL grades, can be helpful to formulate 

fine-grained KOA patterns. In detail, the proposed ENN introduces a set of convolution-

deconvolution structures to transform an input image to the images of different KL grades 

with an adversarial training scheme. The feature maps during the forward propagation can 

be viewed as the trace of each transformation. Then, the representations of these traces and 

the input image can be fused to predict a longitudinal KL grade. Note that the proposed 

ENN can be applied to other learning tasks as well, in which the responses are of progressive 

and continuous properties. The proposed A-ENN method is evaluated on a widely used 

benchmark dataset - the Osteoarthritis Initiative (OAI) Dataset - for KOA grading and 

achieves an accuracy 62.6%.

In summary, the major contributions of this paper are three-fold:

• KOA patterns are formulated in a progressive manner by deriving the evolving 

traces with a set of template images of different KL grades.

• A novel fine-grained deep learning architecture ENN with an adversarial learning 

scheme is proposed to compute the evolving traces and predict the longitudinal 

KOA severity grades.

• Comprehensive experiments have been conducted on the OAI dataset to 

demonstrate the effectiveness of the proposed method.

The rest of this paper is organized as follows. Section II reviews the related work for 

KOA grading and progression prediction methods. Section III introduces the details of our 

proposed method. Section IV presents comprehensive experimental results and their analysis 

to evaluate the proposed method. Lastly, Section V concludes our study with discussions on 

future work.

II. RELATED WORK

In this section, the related studies are reviewed from two perspectives: (1) computer vision 

based KL grading methods and (2) longitudinal KOA progression prediction methods.

A. Computer Vision based KL Grading

Computer-aided KL grading methods identify the KL grade with the given information of a 

subject. When the information is of medical images such as X-ray and MRI scans, computer 

vision based methods can be devised for KL grading [20].
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By following a conventional machine learning pipeline, early computer vision based KL 

grading algorithms mainly relied on hand-crafted features extracted from medical images. 

For example, features in regard to texture and edge were investigated for the classification 

from KL grade 0 to grade 3 [4]; regional features were used to distinguish images of KL 

grade 0 and grade 2 with Naive Bayes and random forest classifiers [21]. Note that obtaining 

KOA relevant features is a key step in these conventional algorithms and can be a key factor 

impacting the grading performance.

In recent years, various deep learning techniques have been introduced for KOA grading, by 

which hand-crafted features are no longer required. Many methods were based on X-ray 

images. In [22], pre-trained CNNs were used to extract deep representations as KOA 

features, and a support vector machine with a linear kernel was further adopted for the 

grading of KL grade 0 and grade 2. An end-to-end deep learning using CNNs for the 

same task treated the grading task as a combination of a regression and a classification 

task since the KOA grades present a continuous property [23]. More recently, a number 

of deep learning architectures such as VGG, ResNet and DenseNet were studied with an 

adjustable ordinal loss for KOA grading from grade 0 to grade 4 [8]. In [24], an X-ray based 

CNN modelling method was reported a performance close to that of a patients questionnaire 

data based modelling approach. An autoencoder based method to learn discriminative KOA 

representations was studied to improve classification performance [25]. Faster R-CNN was 

utilized to generate knee joint regional proposals and reduce the irrelevant information 

in X-ray images and CNNs can be further adopted for the localized classification to 

improve KOA grading performance. In addition, a focal loss was devised to address the 

imbalance issue of the grading classes [9]. Another study also was attempted for the 

localization of key regions with a YOLO algorithm [26]. An ordinal regression module 

was proposed for classification neural networks to perform ordinal regression for KOA 

grading [27]. A high-resolution network capturing the multi-scale features of knee X-rays 

was proposed to improve the grading [28]. Siamese neural networks were studied based 

on the similarities between input images [29], [30]. In [31], a semi-supervised learning 

approach was investigated to reduce the demands of large amounts of data for KOA severity 

assessment.

Besides X-Ray images, MRI images have been explored in a similar manner. For example, 

AlexNet based [32] and DenseNet based [33] CNN architectures were evaluated. In addition, 

a number of studies introduced demographics such as Body Mass Index (BMI), age and 

gender to improve the performance jointly with the medical images. For example, in [10], 

CNN representations and the demographic representations were jointly used for KL grading.

B. Longitudinal KOA Progression Prediction

One type of studies on KOA progression aims to discover the correlation between KOA 

progression and manually obtained clinical assessment outcomes. A group of individuals 

who were of high risks at the baseline visit were studied to predict the radiographic 

or pain progression (based on WOMAC - Western Ontario and McMaster Universities 

Osteoarthritis Index questionnaire) over 8 years [11]. In [12], a Least Absolute Shrinkage 

and Selection Operator (LASSO) regression model was proposed to predict patients into one 

Hu et al. Page 4

IEEE Trans Med Imaging. Author manuscript; available in PMC 2023 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



non-progressive class and three progressive classes by using various clinical assessments 

such as knee symptoms, medication usage, and knee alignment measured on x-ray images. 

Conventional machine learning methods were also utilized for KOA progression prediction 

by using features of X-ray image based assessments (e.g., semi-quantitative readings and 

JSW (joint space width)) [12], [13]. Clinical data including questionnaires and radiographic 

markers (e.g., joint space width and knee alignment) were studied to predict the KL grade 

for the next visit of a subject with an attention based long short term memory neural network 

[34]. By defining the progression based on the changes of both JSW and WOMAC pain 

score in 48 months, a multi-layer perceptron was studied using a wide range of clinical data, 

such as radiographic and symptomatic data, and history of the knee injury and surgery [35].

Medical images have also been analyzed automatically for KOA progression prediction. In 

[36], 344 knees from subjects with no sign of radiographic KOA at baseline visits were 

studied to predict whether a global radiographic KOA happens or not after 48 months, 

where a logistic regression model with trabecular bone texture features extracted from X-ray 

images was adopted. In [14], deep convolutional features of X-ray images together with 

questionnaire features were utilized to predict the probability of KOA progression as a 

multi-class classification task: no KOA progression, fast progression and slow progression. 

By using deep learning architecture DeepLabv3 [37] and U-Net [38] for a segmentation 

pre-processing of X-ray images, multiple JSW measurements can be estimated and further 

used with a gradient boosting machine for KOA progression prediction from KL 0–1 to 

2–4 [39]. Deep learning methods including DenseNet and EfficientNet were adopted to 

predict the progression of the radiographic medial joint space loss [40] and pain [41] over 

48 months for the KOA risk assessment using X-Ray images. MRI imaging also shows its 

effectiveness for KOA progression prediction [42], [43]. Cartilage damage index features 

based on informative regions of MRI images were studied for predicting the progression, 

which was defined by the changes of the KL, JSL and JSN grades in 24 months [44], [45].

Although these methods demonstrated encouraging results for KOA progression prediction, 

fine-grained medical imaging patterns have not been well explored. As deep learning 

techniques have achieved groundbreaking success in a wide variety of computer vision 

related tasks, it is desirable to explore a novel deep architecture to formulate fine-grained 

visual patterns of medical images for KOA progression prediction. To this end, this study 

aims to learn fine-grained representations of different KL grades using deep learning 

techniques in pursuit of effective longitudinal KOA grading for the first time.

III. METHODOLOGY

As illustrated in Fig. 2, the proposed A-ENN architecture consists of three key modules: 1) 

Evolving trace estimation which simulates the process how an input image evolves to the 

images of target KL grades with an adversarial training scheme; 2) Classifiers predicting the 

raw longitudinal KOA grades for the input image and its evolving traces; and 3) a fusion 

scheme obtaining the final grading probability map for longitudinal KL grading. In this 

section, after the formulation of longitudinal KOA KL grading is introduced, the details of 

these modules are explained.
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A. KOA Images and Longitudinal KL Grading

The proposed method uses a baseline scan X-ray image as the input for the longitudinal 

KOA grading of a patient. Particularly, the image is denoted as X ∈ ℝC × W × H, where C, 

W, and H are the number of channels, the width and the height of the image, respectively. 

A ground-truth KL grade at the time of the baseline scan can be scored by clinicians using 

X, which indicates the status of the KOA severity. In detail, KL grade 0 represents definite 

absence of radiographic features of osteoarthritis; KL grade 1 indicates doubtful JSN and 

possible osteophytic lipping; KL grade 2 suggests possible JSN and definite osteophytes; KL 

grade 3 suggests definite JSN, moderate osteophytes, some sclerosis and possible bone-end 

deformity; KL grade 4 suggests marked JSN, large osteophytes, severe sclerosis and definite 

bone-end deformity [46].

Besides the baseline visit, follow-up visits of a patient after 12 months, 24 months, 36 

months and 48 months provide additional X-ray scans to obtain the ground-truth KL grades 

in a longitudinal manner. Thus, for a patient, denote Y = y0, …, yt, …, yT
⊤ = yt, k ∈ ℝT × K, 

where yt denotes the t-th (e.g., t = 0 for the baseline and t = 1 for the 12-month follow-up) 

longitudinal grade. Note that yt is a K-dimensional one-hot encoding vector and K = 5 

represents the number of KL grading levels. The proposed method aims to estimate Y given 

only the baseline X-ray observation X without using the scans from the follow-up visits. 

Particularly, this estimation is denoted as Y = y0, …, yt, …, yT
⊤ = yt, k ∈ ℝT × K.

B. Template-guided Evolving Trace Estimation

Without the future radiology scans, it can be challenging to predict the longitudinal grades 

of KOA. Intuitively, the disease’s evolving traces of a given input image X to different 

severity levels can be helpful for KOA progression prediction by comparing the image with 

the radiology scans of different KL grades.

To achieve this goal, for each KOA severity level i (i = 0, …, K−1), a number of images can 

be identified to construct a template image set T i = Ti, j . In detail, Ti,j is the j-th selected 

template image of KL grade i. Note that there can be many different methods to construct 

the template sets. For example, to construct T i, the most representative images of KL grade 

i in the training set can be identified by clinicians, randomly selecting as a subset of images 

of KL grade i from the training set, or using all the images of KL grade i in the training 

set. Then the input image X is attempted to be evolved to the template images of each KOA 

severity level individually. Particularly, K = 5 traces can be obtained for X.

As shown in Fig. 2, an evolving module is devised by utilising convolution and 

deconvolution filters for each KOA grade i. The feature maps computed by the filters of 

module i are treated as the evolving traces from the input image X to the templates of 

KOA grade i. In detail, a set of convolution layers are first adopted to formulate a latent 

representation of the input image X. This latent representation is expected to include the 

implicit relations between X and target template images of grade i. Mathematically, denoting 

the computations of these convolution layers as fi
e, 1, the latent representation can be derived 

as:
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Hi = fi
e, 1 X , (1)

where Hi ∈ ℝCℎ × W ℎ × Hℎ
, Ch indicates the number of channels, Wh and Hh represent the 

size of the hidden representations.

The latent representation is an intermediate result and its size is reduced compared to 

the original image (template) size. Hence, deconvolution layers, which are also known as 

transpose convolution layers, are further introduced to reconstruct a template image Ti,j of 

KL grade i. This is similar to the existing practices used in other computer vision tasks such 

as image super resolution [47]. Denoting the computations of the deconvolution layers as 

fi
e, 2, an estimation of Ti,j can be derived as:

Ti = fi
e, 2 Hi . (2)

Note that the estimation Ti is expected to be close to any templates in T i, in regardless of j.

Note that the activation functions used in fi
e, 1 and fi

e, 2 are parametric rectified linear unit 

(PReLU) functions [48], which generalize the conventional rectified linear unit:

f zl =
zl, if   zl > 0
alzl, if   zl ≤ 0, (3)

where zl is the l-th channel of a feature map and al is the associated learn-able weights to 

avoid zero gradients in an adaptive manner.

To guide the training of these evolving modules, a mean square error (MSE) is introduced 

to measure the distance between an estimated template Ti and every ground-truth template 

Ti, j ∈ T i in a pixel-wise manner. In detail, an MSE based loss function can be defined as in 

Eq. (4) to be minimized:

argmin
fie

Le = 1
K ∑

i

1
T i

∑
j

fi
e(X) − Ti, j 2

2, (4)

where fi
e = fi

e, 1 ∘ fi
e, 2 is a function composition, T i  is the number of templates in set T i, and 

|| · ||2 represents an ℓ2 norm.

With the template-guided evolving modules, the evolving traces of an input X can be 

obtained for each KL grade i with the convolution and deconvolution feature maps computed 

during the forward propagation through fi
e, 1 and fi

e, 2. Particularly, in this study, the final 

output feature maps derived from fi
e, 2 are adopted as the evolving traces (i.e., Ti, i = 0, …, 

K − 1) for longitudinal KOA severity prediction. Although all the feature maps including 

the intermediate ones can be also used in the subsequent modules, using only the final ones 
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helps reduce the model complexity and is compatible with many existing pre-trained image 

classification backbones in terms of the input channels.

C. KOA Grading with Evolving Traces

A general pipeline for deep learning based KOA grading takes an input image with a 

classification neural network to obtain a grading score. To further leverage the success of 

the existing deep architectures, a simple yet flexible mechanism is proposed to integrate the 

evolving traces for longitudinal grading. In detail, define fi
g, where i = 0, 1, …, K − 1, and 

fg as the computations of particular neural network classifiers. KOA longitudinal prediction 

can be obtained from each evolving trace Ti and the original input image X as:

YTi = yt, k
Ti = fi

g Ti , (5)

YX = yt, k
X = fg(X), (6)

where i = 0, …, K − 1, and yt, k
Ti  and yt, k

X  are the output estimations of yt,k associated with 

their inputs. Note that fi
g and fg can be any existing deep architecture devised for general 

image classification tasks with a softmax activation function for final outputs (e.g., VGG-19, 

ResNet-50 and ViT). This provides the flexibility to integrate any deep learning architectures 

with the evolving traces, depending on the tasks in addition to longitudinal KOA grading.

D. Fusion of the Evolving Traces

To predict longitudinal KOA severity by referring to the results from each evolving trace and 

the original image, a two-stage fusion strategy is devised: 1) pooling from all estimations 

yt, k
Ti , i = 0, …, K−1, based on the evolving hints, and 2) fusing the pooled evolving 

estimation with the general estimation yt, k
X .

Intuitively, at least one severity level of the templates and the associated evolving trace are 

assumed to be dominant in the fine-grained hints for the longitudinal grading at t, whilst 

other evolving traces may contain fewer longitudinal hints for the current time. Therefore, 

a maximum pooling can be conducted on the probability maps obtained from each severity 

level of the templates to select the most important elements as:

yt, k
T = max

i
yt, k

Ti , (7)

which is the longitudinal estimation in line with the evolving traces. Note that in practice Eq. 

(7) is compatible with different numbers of evolving traces rather than a fixed settings. This 

provides the flexibility for other similar tasks, which have the progression property with a 

varying number of grading stages.
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Then, a linear combination of yt, k
T  and yt, k

X , can be adopted for the fusion purpose to derive 

the final estimation Y:

yt, k = ∑
s ∈ T, X

wsyt, k
s ,

(8)

where ws is the weights to combine the predictions and it can be a hyper-parameter selected 

during the validation stage. Note that the overall fusion strategy can be viewed as late fusion 

as it works at the prediction stage of each classifier. The proposed method also works with 

other fusion strategies such as early fusion.

The prediction of longitudinal KOA grades is a multi-class classification task. To optimize 

the the parameters in the proposed methods, a cross-entropy loss function can be introduced:

argmin
fi

g, fg
Lc = − 1

TK ∑
t, k

yt, klog yt, k .
(9)

In regard to the above discussions, a basic evolving neural network (ENN) architecture for 

longitudinal KOA grading is formulated. In line with the evolving traces Ti
, i = 0, …, K−1 

and the input radiology image X, fine-grained longitudinal KOA severity prediction Y can be 

obtained.

E. Discriminator for Evolving

Although the template images in T i can be representative for their corresponding KL grade 

i, an exact pixel-level evolution as guided in Eq. (4) between an input image and a template 

image can be extremely strict. For example, the geometry of the bones between two subjects 

can be very different and it can be difficult to compare the images of the two subjects 

directly. To this end, the pixel-level guidance could result in inaccurate evolving hints and 

negatively affect the longitudinal KL grading performance. Indeed, by treating T i as the 

population subject to a particular probability distribution in regard to the corresponding KL 

grade i, we can formulate the evolving procedure as the transition from an original image 

following a source probability distribution to a destination distribution. This formulation 

is consistent with the design of the widely used generative neural networks which usually 

involve an adversarial training scheme.

In order to achieve this goal, additional classifiers are introduced to differentiate whether 

two images belong to the same distribution or not. In this study, K CNNs with simple 

structures such as ResNet-18 are adopted for this purpose for each evolving module fi
e, i = 

0, …, K − 1. In detail, the computations are denoted as fi
d for the module using template 

images of KL grade i. The response of a real template image Ti, j ∈ T i is viewed as a 

positive sample and the one of a generated evolution image Ti is viewed as a negative 

sample. Therefore, fi
d conducts a binary classification task and outputs a probability with a 
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sigmoid activation function that an input is a real template image. A binary cross entropy 

loss function is introduced to optimize these discriminators as illustrated in Eq. (10):

argmin
fid

Ld = − 1
K ∑

i

1
T i

∑
j

log fi
d fi

e Ti, j

− 1
K ∑

i
log 1 − fi

d fi
e(X) .

(10)

Note that the parameters of the evolving modules fi
e, i = 0, …, K − 1, are frozen during the 

optimization of Ld.

Next with these simple discriminator architectures, the proposed method is able to efficiently 

refine the parameters of the evolving modules fi
e using an adversarial training scheme.

F. Adversarial Training

To let the evolving trace generation modules fi
e and the evolving discriminators fi

d work 

together, an adversarial training scheme is introduced so that the training is not limited to the 
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two independent loss functions: Le and Ld. It was originally studied in [49] and has achieved 

great success for many generation tasks (e.g. [50]).

During the adversarial training, the evolving generators continuously attempt to generate 

better evolution traces to their corresponding KL grades for a given image, whilst the 

evolving discriminators are trained to become a better detective for correctly judging 

whether an image follows the distribution of the real template images with a specified KL 

grade or not. The equilibrium of this game is achieved when the evolving modules are able 

to estimate the evolving traces accurately, and the evolving discriminators are left to always 

randomly guess at 50% confidence for the input images.

In detail, the adversarial training optimizes the loss function La as defined in Eq. (11), which 

further combines Eq. (4) and Eq. (10) to play a minimax game.

argmax
fie

La = − 1
K ∑

i
log 1 − fi

d fi
e(X) . (11)

Maximizing La optimizes the parameters of fi
e to confuse the discriminators. It helps to 

produce evolving traces of which the distributions can be close to the ones of the real 

template images. Note that the parameters of the discriminators fi
d are frozen during the 

optimization of La. With the above discussions, now an end-to-end adversarial training 

scheme for KOA grading can be derived. Particularly, Algorithm 1 illustrates the key steps 

of the proposed adversarial training scheme for ENN.

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS

A. Dataset & Evaluation Metrics

Knee X-ray images from a widely used public dataset - the Osteoarthritis Initiative 

(OAI) [51] were used to evaluate our proposed method. Longitudinal assessments and 

measurements were conducted for 4,796 subjects with ages ranging from 45 to 79 for a 

better understanding of the prevention and treatment of KOA [52]. The outcomes include 

their clinical data, patient reported outcomes, biospecimen analyses, quantitative image 

analyses, radiographs and magnetic resonance images. Note that we followed the same the 

same pre-processing steps as in [8].

Specifically, the baseline cohort of the knee bilateral PA (Posterior-Anterior) fixed flexion 

X-ray images were adopted for the pre-processing pipeline: 1) resizing to obtain the same 

physical resolution of 0.14 mm/pixel; 2) center cropping with a window of 2560 × 2048 

pixels; 3) knee joint patch detection and extraction. Note that only the images with available 

longitudinal KL grades on both knee joints from 0 to 48 months were kept. In total, 

3,294 baseline scan X-ray images of knee joints were obtained. Table II lists the KL grade 

distributions along with the follow-ups. The figures indicate a significant proportion of the 

patients are on the trend that their KOA status progresses to severer stages. Note that there is 

a small proportion of the subjects, whose KL grades decreased during the longitudinal visits 

(e.g., the 36-month grade can be lower than the 24-month’s). These images were further 
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resized to 224 × 224 and treated as the global scale images in this study. The dataset was 

partitioned as training, validation and testing sets with proportions of 70%, 10% and 20%, 

respectively. To evaluate the proposed method in a robust manner, the dataset was randomly 

split five times to conduct the experiments.

For the sake of convenience, a superscript (n) is introduced to indicate the n-th sample in a 

particular test split, which contains N samples in total. By comparing the ground truth yt, k
(n)

and the model prediction yt, k
(n) , an accuracy metric can be obtained, which is the fraction of 

the correct predictions over all predictions:

1
NT ∑

n, t
I argmax

k
yt, k

(n) = argmax
k

yt, k
(n) , (12)

where I is an indicator function. Similarly, longitudinal accuracy metrics can be obtained to 

measure the accuracy at each temporal point independently. In addition to the categorical 

perspective, a KL grade is ordinal indicating the KOA severity. The estimation is expected to 

be close to the ground truth numerically. Thus, a mean absolute error (MAE) can be reported 

as:

1
NT ∑

n, t

1
K argmax

k
yt, k

(n) − argmax
k

yt, k
(n) , (13)

where 1
K  is a normalization factor.

B. Experimental Settings

In this study, two types of architectures in regard to the adversarial learning: ENN 

architecture and ENN architecture with the adversarial training scheme (A-ENN), were 

deployed to evaluate the performance of the proposed methods. Details of the two 

architectures are as follows:

• ENN architectures – these involve the template-guided evolving traces and 

KOA grading modules optimized by Eq. (4) and Eq. (1) only. The evolving 

module involves a convolution layer with 56 output channels and a kernel size of 

5 for the latent trace representations, a convolution layer with 12 output channels 

and a kernel size of 1, and a deconvolution layer of a kernel size 9 to generate 

template images. Three different deep grading classifiers (i.e., backbone) were 

studied. 1) VGG-19 achieved the best performance in [8] for baseline KOA 

grading. The last layer of VGG-19 was subsituted as a fully connected layer 

with an output dimension 5 × 5 in consistent with the KL grading scores and 

the longitudinal duration. 2) ResNet-50 was adopted by altering its output layer 

similar to VGG-19. 3) ViT as one of the visual transformer models was also 

utilized, which have achieved the state-of-the-art performance in many computer 

vision tasks.
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• Adversarial ENN architectures – these architectures are based on the ENN and 

additionally introduce ResNet-18 models as the discriminators. ResNet-18 is a 

simple architecture with less model complexity and computational costs. Note 

that an A-ENN contains 5 independent discriminators for the evolving traces 

using the templates of 5-level KL grades.

Pre-trained weights on ImageNet [53] were applied to initialize the VGG-19, ResNet-50, 

ResNet-18 and ViT networks. Overall, the ENN architectures were trained in an end-to-end 

manner using stochastic gradient descent optimizers [54] with a momentum 0.9, an initial 

learning rate of 5 × 10−4 and a weight decay of 5 × 10−4 every 5 epochs. The batch size was 

set to 1, 1 and 8 for the ENN of VGG-19, ResNet-50 and ViT backbones, respectively. 

The template sets were based on all training data in line with their KL grades. This 

could be helpful to formulate a comprehensive understanding of each evolution pipeline 

by considering adequate amount of data. Initially the evolving modules were independently 

trained for 10 epochs only with the loss function defined in Eq. (4). Then, the other losses 

were also estimated and the parameters of all modules were optimized. During the training, 

data augmentations were adopted to reduce the overfitting risk. In detail, the jitters of 

brightness, contrast, saturation and hue were set to 30%. The experiments were conducted 

using PyTorch 1.9.0 with an Nvidia GTX 3080 GPU.

C. Overall Performance

Table I lists the overall performance of the proposed methods. The A-ENN with VGG-19 

Backbone achieves the best overall accuracy 62.7%. Compared to the ENN without 

the adversarial training scheme, of which the accuracy is 61.4%, it demonstrates the 

effectiveness of the adversarial training. Without the evolving traces as the fine-grained 

patterns for the KOA longitudinal progression hints, the conventional VGG-19 network 

achieves a less precise performance of accuracy 59.8%. As the experiments were evaluated 

five times based on different random splits of the dataset, the paired sample t-test was 

conducted to demonstrate the significance of the improvement of the (A-)ENN method 

compared to the backbone (baseline) method. p-values are listed in Table I, which suggest 

that the improvement is statistically significant. Standard deviation values are listed in Table 

I as well.

Similar trends can be found from the ResNet and ViT networks and the ENNs based 

on them. Note that the ViT based methods are not as good as the VGG-19 based ones, 

although it showed the state-of-the-art performance in general image classification tasks. 

The potential reasons could be that training transformer based neural networks for vision 

tasks usually requires a huge amount of data, whilst the size of the current OAI dataset is 

small. It indicates the necessity to devise proper architectures to formulate visual patterns 

from X-Ray images for KOA. The MAE metrics perform the same trend as the accuracy 

ones, except that the MAE of the VGG-19 based ENN increases compared to the VGG-19 

itself. As MAE is not the objective to optimize the loss, this could be the reason leading to 

the outlier.

Fig. 3 visualizes the performances of longitudinal prediction accuracy at each temporal 

point. Overall, the ENNs with adversarial training achieve the best performance for the 
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predictions of the baseline and follow-ups. Note that downward trends can be noticed for 

all series (methods). For example, the accuracy values at the 36-month follow-ups decrease 

compared to those at the 24-month ones for all VGG-19 based methods. The trends indicate 

that predicting KOA grades can be more challenging for a follow-up after a longer time from 

the baseline visit.

Fig. 4 illustrates the evolution traces of an example image to different KL grades. It can be 

observed that each channel formulates its own feature map, which represents a particular 

perspective of the relation between the input image and the target KL grade in regard to the 

bone shape and texture.

D. Demographic based Performance

Tables III - V list the performance of the methods based on the demographic groups in terms 

of gender, age and BMI at the baseline visit. Overall, an increasing trend of the accuracy can 

be observed from a backbone model to its ENN models for each group.

For the two gender groups, the accuracy of the female group is consistently superior 

compared to that of the male group for all methods. In terms of different age groups, the KL 

grade prediction is more accurately identified for the elderly population. With the increasing 

BMI from normal to obesity, the KL grade predictions tend to be more accurate. This study 

mainly focuses on deep architectures for accurate visual patterns from medical images. 

Nonetheless, such inter-group variations suggest that these demographic information could 

be potential predictors for longitudinal KOA grading and a proper mechanism to consider 

them with radiology scans jointly is an encouraging future research direction.

E. Discriminator Analysis

A discriminator determines whether an input image belongs to the distribution of genuine 

template images or not. It is expected that it would be challenging to distinguish the 

representations from the generated evolving traces and the genuine template images. As all 

discriminators in this study conduct a binary classification, ROC curves and their associated 

AUC values can be used to analyze their effectiveness. Fig. 5 illustrates the AUC values 

of these discriminator ROC curves along their every 100 iteration steps for the A-ENN 

with a VGG-19 backbone. Along the iterations, all discriminators’ AUC values vary around 

0.5, which suggests that they are not able to tell the difference between the distributions. 

These findings confirm that the adversarial learning is helpful to reduce the gap between the 

generated evolving traces and the genuine template images, which increases the performance 

of the ENN in regard to the accuracy.

F. Feature Space Analysis

To further understand the improvements of the feature space obtained from A-ENNs and 

their associated backbone models, t-SNE (t-distributed stochastic neighbor embedding) [55] 

was conducted on the inputs of the last fully connected layers in these models. t-SNE 

creates a single map that reveals the structure of the feature space at different scales. Fig. 

6 illustrates the comparisons of the t-SNE visualization between three groups of models: 1) 

ResNet-50 vs. A-ENN (ResNet-50 Backbone), 2) VGG-19 vs. A-ENN (VGG-19 Backbone) 
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and 3) ViT vs. A-ENN (ViT Backbone). For each method, in a 2-dimensional space, the first 

two major components of the t-SNE results obtained from the test set are visualized.

The colors of the data points represents the KL grade of each sample. It can be observed that 

for both comparison groups, A-ENNs present a more separable data distribution among the 

five categories, whilst the backbone models without evolving traces present dispersed data 

points over an extensive intersection area of the five categories. That is, the ENNs with an 

adversarial training scheme contribute to the robustness of the feature space, and thus the 

model’s performance is superior to those of the backbone models.

G. Longitudinal Conversion Analysis

Longitudinal conversion is to predict how a patient could convert to more serious stage 

of the KOA disease in the future. By defining the case that the average longitudinal 

KL grades (i.e., from 12 months to 48 months) increase higher than 1 compared to the 

baseline assessment as a positive case, an evaluation based on a binary classification can be 

conducted for a change detection purpose. In detail, we have the score for the change as:

yc = 1
T − 1 ∑

t = 1

T − 1
∑
k = 0

K − 1
kyt, k − ∑

k = 0

K − 1
ky0k, (14)

which can be viewed as a weighted score in line with the KL grades. As yc presents 

its continuous property, a threshold can be identified in practice according to specific 

applications. To evaluate the diagnostic ability of yc derived by different methods, the ROC 

curves and their associated AUC values are shown in Fig. 7 and Table VI, respectively. It 

can be observed that the A-ENN methods perform better than the backbone only methods. 

For example, the A-ENN with a VGG-19 backbone achieves an AUC 0.637, whilst VGG-19 

achieves an AUC 0.561.

V. CONCLUSION

In this study, a novel deep learning architecture - evolving neural network with an 

adversarial training scheme is presented for a fine-grained learning task - longitudinal KOA 

grading. ENN is devised based on the fact that the disease presents progressive properties 

from mild to severe. It involves the evolving patterns of an input image by comparing it to 

the template images of different KL grades to formulate evolution traces as the fine-grained 

domain knowledge. Comprehensive experimental results demonstrated the effectiveness of 

the proposed method on a widely used public dataset - the Osteoarthritis Initiative (OAI) 

Dataset in terms of an accuracy 62.7%. Note that ENN can be introduced to any other 

tasks and deep architectures, in which the responses present progressive representations. 

For our future work, two major directions can be considered: 1) multi-task learning 

methods by investigating different progression objectives such as the perspectives from 

pain and JSN jointly for a robust medical imaging KOA representation; and 2) multi-modal 

learning methods by considering other commonly used modalities such as MRI scans and 

demographics for longitudinal modelling.
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Fig. 1: 
Illustration of longitudinal KOA severity prediction. Comparing and evolving an input image 

to the template images of different KL grades, fine-grained KOA patterns are obtained to 

predict the longitudinal grades of the disease from the baseline scan to up to 48 months.
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Fig. 2: 
Illustration of the proposed ENN architecture with an adversarial learning scheme for 

longitudinal KOA severity prediction. It consists of three major components: 1) Evolving 

trace estimation with a discriminator for adversarial training; 2) Classification of raw 

longitudinal KOA grading probabilities from multiple evolving traces and the original input 

image; and 3) Fusion of the raw probabilities for producing the final KL longitudinal grade 

probability map.
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Fig. 3: 
Illustration of the longitudinal accuracy over time of different modelling methods.
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Fig. 4: 
Illustration of the evolution traces of the three channels C1-C3 for each KL grade. For a 

particular channel, different proportions are enhanced based on the pixel brightness when 

comparing the traces, which suggests that specific patterns are focused in line with their 

target KL grade.
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Fig. 5: 
Illustration of the AUC values of the discriminators for different KL grades along the 

iteration steps.
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Fig. 6: 
Visualization of the feature distributions by t-SNE for the comparisons between A-ENNs 

and their backbone only counterparts.
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Fig. 7: 
Illustration of the ROC curves for identifying KL grade change during the longitudinal 

progression.
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TABLE II:

Statistics of KL grades in regard to the baseline and follow-up visits

KL Baseline 12-Month 24-Month 36-Month 48-Month

0 502 440 422 394 379

1 560 482 456 406 375

2 1,451 1,486 1,480 1,485 1,465

3 658 725 748 783 786

4 123 161 188 226 289
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TABLE III:

Accuracy by gender groups

ResNet ENN (ResNet) A-ENN (ResNet)

Gender Gender 0.568±0.011 0.576±0.009 0.591±0.023

(Male) (Female) 0.591±0.006 0.595±0.013 0.602±0.019

VGG19 ENN (VGG19) A-ENN (VGG19)

Gender (Male) 0.589±0.032 0.606±0.02 0.618±0.019

Gender (Female) 0.605±0.025 0.619±0.021 0.635±0.015

ViT ENN (ViT) A-ENN (ViT)

Gender (Male) 0.573±0.009 0.586±0.013 0.595±0.010

Gender (Female) 0.598±0.020 0.605±0.020 0.608±0.013
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TABLE IV:

Accuracy by age groups

ResNet ENN (ResNet) A-ENN (ResNet)

Age (< 50) 0.524±0.043 0.534±0.024 0.515±0.039

Age (50–59) 0.597±0.017 0.595±0.017 0.610±0.009

Age (60 – 69) 0.584±0.014 0.578±0.022 0.597±0.005

Age (≥ 70) 0.573±0.019 0.606±0.008 0.605±0.026

VGG19 ENN (VGG19) A-ENN (VGG19)

Age (< 50) 0.537±0.046 0.525±0.053 0.580±0.051

Age (50–59) 0.587±0.033 0.621±0.016 0.627±0.031

Age (60 – 69) 0.615±0.024 0.612±0.019 0.627±0.022

Age (≥ 70) 0.607±0.023 0.634±0.025 0.640±0.032

ViT A-ENN (ViT) ENN (ViT)

Age (< 50) 0.548±0.048 0.570±0.048 0.579±0.032

Age (50–59) 0.588±0.019 0.600±0.012 0.599±0.026

Age (60 – 69) 0.583±0.021 0.595±0.026 0.597±0.026

Age (≥ 70) 0.603±0.034 0.599±0.023 0.620±0.030
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TABLE V:

Accuracy by BMI groups

ResNet ENN (ResNet) A-ENN (ResNet)

BMI (Normal) 0.578±0.032 0.581±0.036 0.597±0.031

BMI (Pre-obesity) 0.564±0.016 0.573±0.023 0.586±0.009

BMI (Obesity) 0.599±0.017 0.604±0.019 0.608±0.026

VGG19 ENN (VGG19) A-ENN (VGG19)

BMI (Normal) 0.566±0.022 0.622±0.026 0.622±0.02

BMI (Pre-obesity) 0.596±0.017 0.594±0.021 0.613±0.027

BMI (Obesity) 0.616±0.034 0.632±0.032 0.646±0.019

ViT A-ENN (ViT) ENN (ViT)

BMI (Normal) 0.578±0.04 0.585±0.038 0.585±0.019

BMI (Pre-obesity) 0.572±0.013 0.575±0.011 0.592±0.026

BMI (Obesity) 0.606±0.03 0.625±0.039 0.623±0.034
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TABLE VI:

Longitudinal conversion analysis

Methods AUC

ResNet-50 0.587

ENN (ResNet-50 Backbone) 0.578

A-ENN (ResNet-50 Backbone) 0.588

VGG-19 0.561

ENN (VGG-19 Backbone) 0.626

A-ENN (VGG-19 Backbone) 0.637

ViT 0.546

ENN (ViT Backbone) 0.596

A-ENN (ViT Backbone) 0.630
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