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Optimal deep brain stimulation sites and
networks for stimulation of the fornix in
Alzheimer’s disease
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Deep brain stimulation (DBS) to the fornix is an investigational treatment for
patients with mild Alzheimer’s Disease. Outcomes from randomized clinical
trials have shown that cognitive function improved in some patients but
deteriorated in others. This could be explained by variance in electrode pla-
cement leading to differential engagement of neural circuits. To investigate
this, we performed a post-hoc analysis on a multi-center cohort of 46 patients
with DBS to the fornix (NCT00658125, NCT01608061). Using normative
structural and functional connectivity data, we found that stimulation of the
circuit of Papez and stria terminalis robustly associated with cognitive
improvement (R = 0.53, p < 0.001). On a local level, the optimal stimulation site
resided at the direct interface between these structures (R = 0.48, p < 0.001).
Finally, modulating specific distributed brain networks related to memory
accounted for optimal outcomes (R = 0.48, p < 0.001). Findings were robust to
multiple cross-validation designs and may define an optimal network target
that could refine DBS surgery and programming.

Alzheimer’s Disease (AD) is the most common neurodegenerative
disease and thefifth leading cause of death in adults older than 65 years
with an increasing total healthcare burden currently above $300billion
per year in the US1, thus, finding effective treatment options for AD has
great socioeconomic relevance. The pathophysiology of AD has been
associatedwith amyloid beta (Aβ) protein depositions, phosphorylated
tau protein tangles, neuronal and synaptic loss, as well as neuro-
transmission deficits. Neuronal loss, in particular, results in gross cer-
ebral atrophy with a predilection for structures implicated in memory
function, including the Papez circuit2 and components of the default

mode network (DNM)3,4. Clinically, these neurodegenerative processes
manifest as disturbances in memory, language and executive func-
tions, as well as progressive loss of day to day functional abilities5.
Given the well described patterns of Aβ6 and tau depositions7, these
have been the target of therapeutic efforts for over 20 years. However,
these efforts have so far been without significant success leading to a
range of alternative approaches to modify the disease. One promising
approach has been based on observed network alterations throughout
the brain3,4,8, such as decreased connectivity in precuneus, para-
hippocampal gyrus, thalamus and post central gyrus9, as well as white
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matter disruptions10, in addition to Aβ and tau patterns5, which led to
conceptualizing AD as a “circuitopathy”11.

Deep brain stimulation (DBS) has been shown to successfully
alleviate symptoms in circuit disorders of the human brain such
as Parkinson’s Disease12, Essential Tremor13, and—more recently—
obsessive-compulsive disorder14 and other neuropsychiatric
disorders15. In addition to evidence of sensory stimulus producing
gamma entrainment and subsequent reduction of amyloid pathology
and improvement in spatial and recognition memory in an AD-mice
model16,17, research that investigates neuromodulation in the treat-
ment of AD has accumulated. DBS to the fornix (fx-DBS) has emerged
as an investigational treatment targeting associated circuit disrup-
tions with the aim ofmodulating associative and limbic networks that
subserve memory function, and most specifically the Papez’ circuit18.
In addition to evidence of fornix atrophy in mild cognitive impair-
ment (MCI)19, as a diagnostic or prognostic marker in AD20–22, and as
an essential component of memory formation and consolidation21,
its potential utility as a DBS target was considered after a serendipi-
tous observation of flashback-like episodes during DBS of the hypo-
thalamic region in a patient with morbid obesity23. Although
the occurrence of suchmemory events had been reported previously
in the context of temporal lobe stimulation24, the observation of
flashback phenomena after hypothalamic region stimulation, in
proximity to limbic structures such as the fornix, led to a first series of
six AD patients receiving fx-DBS25. While alternative DBS target
regions including the ventral capsule/ventral striatum26 and the
nucleus basalis of Meynert27 have been proposed, the fornix has
become the most studied region with over 101 patients that under-
went this intervention to date28. There are now completed phase I25

and II29 clinical trials (NCT00658125, NCT01608061), as well as
an ongoing international randomized-controlled trial (Advance
II, NCT03622905). In addition, recent studies investigated the
neural substrates underlying memory flashbacks30,31 and autonomic
response32 reported in this patient population.

Fx-DBS has been hypothesized to impact circuits by modulating
glucosemetabolism impairment in temporal and parietal regions, and
there is evidence of hippocampal volume increase in mildly affected
AD patients after 6 months of stimulation25. Nevertheless, the clinical
benefits of fx-DBS remain unproven with promising outcomes for
somepatients, but no benefit for others. Age has emerged as a possible
treatment effectmodifier in theADvance trial.Here, among individuals
in the early-on arm during phase 1 (but not in phase 2), participants
below the age of 65 worsened on the Alzheimer’s Disease Assessment
Scale—cognitive subscale (ADAS-cog 13) significantly more than older
participants33.

A competing explanation for differences in clinical outcomes
across patients could be variance in electrode placement, as demon-
strated across multiple disorders treated with DBS12,14,34–36. This effect
of lead location could be even stronger in investigational DBS targets
where the exact target is not yet precisely defined (leading to more
variance in placement) and the neural substrates driving clinical out-
come remain poorly understood14,34,36,37.

In the present study we leverage a unique, multi-centric, large
dataset (N = 46) of patients treated with fx-DBS (NCT00658125,
NCT01608061), to investigate variability in DBS electrode placement
applying a state-of-the-art DBS electrode localization method35 and
subsequent DBS fiber filtering38, sweetspot and network mapping
approaches12 across three levels: (i) effects of focal electric fields on
white matter tracts traversing the stimulation volumes, (ii) optimal
stimulation sites on a localized voxel level, and (iii) impact of fx-DBS on
distributed whole-brain functional networks, identifying (i) the circuit
of Papez and stria terminalis (ii) the intersection between fornix and
bed nucleus of the stria terminalis and (iii) functional connection to
precuneus, prefrontal regions, cingulate, thalamus, basal ganglia and
insula as potential drivers of clinical improvement.

Results
Patient demographics and clinical results
Weperformed a post hoc analysis on a series of 46 patients (mean age:
67 ± 7.9 years, 23 females) with mild AD (Alzheimer’s Disease Assess-
ment Scale 11—cognitive subscale (ADAS-cog 11) of 12–24 points;
Clinical Dementia Rating Scale (CDR) of 0.5 or 1.0) who underwent
bilateral DBS (electrode type: Medtronic 3387, Medtronic, Minneapo-
lis, MN) targeting the fornix region across seven international centers
between 2007 and 201925,29, following a standardized stimulation
protocol (see supplementary Fig. 1 for patient selection flow, supple-
mentary tables 1 and 2 for inclusion/exclusion criteria, and supple-
mentary table 3 for patients scores). All patients received DBS at a
frequency of 130Hz and pulse width of 90ms. AD patients had an
ADAS-cog 11 score of 18.5 ± 5.6 (mean± SD) at baseline and 23.6 ± 10
one year after stimulation (−38.6 ± 48.8 % change). In each patient,
electrode placement was reconstructed using the revised pipeline of
Lead-DBS (www.lead-dbs.org35). Electrode localization confirmed
accurate placement within the ventral diencephalon in all patients
(supplementary Fig. 2). However, differences in electrode placement
could be observed across patients: 73/92 active contacts featured a
radius ≤2mm to the closest voxel of the fornix, informed by39. Simi-
larly, 85/92 active contacts were located ≤2mm apart from the closest
voxel of the Bed nucleus of Stria Terminalis (BNST), informed by39.

To investigate differential DBS effects on structures more delib-
erately, electric fields were estimated for the chronic DBS stimulation
parameters using a finite element modeling (FEM) approach as imple-
mented in Lead-DBS35. Based on the electric field magnitude (E-field),
DBS effects were investigated on the white matter (DBS fiber filtering38,
Fig. 1a), focal (DBS Sweetspot Mapping40, Fig. 1b), and distributed net-
work (DBS network mapping12, Fig. 1c) level, results were then cross-
validated using Leave-one-patient-out and k-fold (3, 5, 7 and 10-fold)
designs. For fiber filtering and network mapping, normative con-
nectivity data estimated in healthy subjects was used to define
streamlines and regions of interest in this cohort (see supplementary
table 4 for underlying data of normative connectomes).

Tracts associated with optimal DBS response (DBS Fiber
Filtering)
As the core analysis of this study, we determined the stimulation of
which fiber tracts was associated with maximal clinical improvement.
This analysis should be seen as the main analysis of the present work
since (i) the fornix constitutes a network target aiming to modulate
distributed network activity within the circuit of Papez, (ii) the target is
a white-matter structure readily identifiable by structural imaging and
tractography, and (iii) tractography could be used to define tract-
targets in prospective clinical trials, as has been done previously41. We
applied the DBS fiber filtering approach, introduced in38 and metho-
dologically generalized for use with E-fields in42. While themethod has
led to robust results that were predictive across DBS cohorts and
surgeons in multiple reports and indications14,38,42, it should still be
considered an experimental approach and fiber filtering results hence
warrant multiple levels of validations. To do so, patients were first
pseudorandomly split into a training (N = 28) and hold-out (N = 18)
cohort. We then performedDBS fiber filtering on the training set using
an ultra-high resolution normative connectome calculated from a
760 µm resolution whole-brain diffusion scan43 to identify a set of
white matter streamlines connected to the stimulation volume (thre-
sholded E-field followingAstromet al.44) of each patient and correlated
degrees of overlap with clinical outcome improvements (Fig. 2a, see
supplementary table 5 for fiber filtering parameters).

The tracts that accounted for optimal improvement in the training
cohort followed the trajectory of the fornix, a parallel bundle
ascending from the BNST, which likely corresponds to the stria ter-
minalis, as well as projections connecting to the anterior portion of
the thalamus, and an additional anterior orbito-frontal projection.
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To validate this set of connections, we first cross-validated the model
within the training cohort. To this end, the model was iteratively re-
calculated in a leave-one-out design, each time estimating an indivi-
dual patient’s improvement based on the streamlines defined in the
remaining cohort (Spearman’s R =0.69 at p < 10−16; Fig. 2b). The dis-
crepancy with the actual improvement was quantified using the root
means square (RMS= 53.16) and the median absolute error (MAE =
26.07, which is not as susceptible to outliers), shown on supplemen-
tary Fig. 3. To further test robustness, we cross-validated the model
within the training cohort using k-fold designs that again led to posi-
tive and significant correlations between predicted and empirical
scores (3-fold: R = 0.52 at p =0.002; 5-fold: R =0.58 at p < 10−16; 7-fold:
R = 0.65 at p < 10−16; 10-fold: R =0.56 at p < 10−16, see supplementary
Fig. 3 for additional metrics); additionally, 1000 permutations were
computed for the training cohort, obtaining an R =0.69 at p =0.003
for non-permuted improvement scores (Fig. 2a). This demonstrated
high robustness of findingswithin the training cohort. Figure 2b shows
two example patients of the training cohort with optimal (and corre-
spondingly high E-field overlap with tract model calculated based on
all but that one patient) and poor outcome (with minimal overlap),
respectively.

Next, we used the fiber model calculated on the entire training
cohort (N = 28) to estimate clinical outcomes inpatients from the hold-
out cohort (N= 18), which had been left as a completely naïve hold-out
set. This cross-cohort-prediction revealed a significant relationship
(R = 0.45 at p = 0.031, R2 = 0.102, RMS = 41.621, MAE = 25.452; Fig. 2c)
indicating robustness of the generated model. It should be empha-
sized that for out-of-sample testing, we calculated the coefficient of
determination R2 (coefficient of determination) based on the sum
of squared errors, and not by squaring the correlation coefficient45.
Figure 2c again features two example patients—this time from the

hold-out cohort—with either optimal clinical outcome (and corre-
spondingly maximal E-field overlap with the tract model calculated on
the complete training cohort) or poor outcome (with minimal over-
lap), respectively.

As further evaluation, we calculated the predictive tract model
based on the training-, hold-out- and combined cohorts, separately.
This allowed a direct comparison of results calculated in each cohort
by visual inspection, and overlayed the identified bundle with struc-
tures of interest from atlases available in MNI space39,46 (Supplemen-
tary Fig. 4). Importantly, we ruled out that this set of connections does
not simply represent the average connectivity site from electrodes but
indeed a specific subset of connections associated with clinical
improvements. This was confirmed by repeating the analysis after
permuting improvement values across patients, which isolated dif-
ferent connections in each run (Supplementary Fig. 5), demonstrating
the identified and robust set of connections specifically account for
improvements following DBS.

As a final validation step, we carried out a leave-one-out cross
validation across the entire cohort which yielded an R =0.66 at
p < 10−16, RMS= 50.32, MAE = 33.23 between estimated fiber scores and
empirical improvements. Further cross-validation k-fold designs led to
similar results (3-fold: R = 0.44 at p =0.002; 5-fold: 0.50 at p < 1016;
7-fold: R = 0.48 at p = 0.001; and 10-fold: R =0.52 at p < 1016).

These analyses show robustness and predictive utility of tracts
associated with optimal clinical outcomes across cohorts and may
constitute a finding of great importance that could influence clinical
practice (see discussion), especially with respect to guiding DBS pro-
gramming after surgery. However, a practical clinical question before
surgery is which target coordinate to use during surgical planning.
To analyze this question, we carried out a voxel-wisemapping analysis
to identify an optimal target sweet spot.

Fig. 1 | Overview of the three methods applied. A pre-requisite to run these
analyses is to reconstruct the electrode trajectory and localization to then estimate
the stimulation volume following the finite element method (FEM). a DBS fiber
filtering. Stimulation volumes as E-fields were pooled in standard space and
overlaid on an ultra-high resolution normative connectome43. Peak E-field magni-
tudes along each tractwere aggregated for each stimulation volumeand Spearman
rank-correlated with clinical outcomes. This led to weights that were assigned to
each fibertract. b DBS Sweetspot mapping. For each voxel, the E-field magnitudes

and clinical outcomes were Spearman rank-correlated, leading to a map with
positive andnegative associations (sweet and sour spots). cDBSnetworkmapping.
Seeding BOLD-signal fluctuations from each E-field in a normative functional
connectome consisting of rs-fMRI scans from 1000 healthy participants47 yielded a
functional connectivity “fingerprint” map for each patient. Maps were then
Spearman rank-correlated with clinical improvement in a voxel-wise manner to
create an R-map model of optimal network connectivity.
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Optimal stimulation site mapping (Sweetspot Analysis)
Sweetspot analysis revealed a consistently symmetric map across the
two hemispheres with optimal stimulation sites located at the
axial level of the anterior commissure (AC) extending into the des-
cending columns of the fornix bilaterally (Fig. 3). Non-linear flipping of
stimulation volumes along the intercommissural plane (which doubles
the N of correlations and would be sensible under the assumption of a
symmetric DBS effect) led to a similar finding. Peak coordinates and
centersof gravity of each cluster are given in supplementary table 6 for
both analyses (see also supplementary Fig. 6 for cluster center).
The optimal stimulation site was located on the lateral and posterior
portions of the columns of the fornix with peak R-values of −0.80
(sourspot) and 0.93 (sweetspot) with unmirrored data and −0.66
(sourspot) and 0.77 (sweetspot) with mirrored data. Note that these

correlation coefficients should notbeconsidered significant due to the
mass-univariate (voxel-wise) design. Instead, spatialmaps consistingof
sweet- and sour-spots were cross-validated across the entire cohort in
a leave-one-patient-out design,which led to significant results (R =0.33
at p = 0.016, RMS = 50.60, MAE = 27.94). Further cross-validation
designs led to similar results (3-fold: R =0.27 at p = 0.037; 5-fold:
R = 0.30 at p = 0.016; 7-fold: R =0.39 at p =0.005; 10-fold: R =0.33
at p =0.011).

DistributedWhole-Brain Networks associated with optimal DBS
response (DBS network mapping)
Structural connectivity analyses are limited to identification of mono-
synaptic connections and probabilistic mapping provides insights on a
local level. Hence, in an additional analysis, we investigated modulating

Fig. 2 | Validation of tract models predictive of clinical improvements as
evaluated using ADAS-cog 11. a Left: Optimal set of tracts to be modulated as
calculated from the entire training cohort (N = 28 subjects), red intensity codes for
R-values ranging from 0.2 to 0.6, with darker colors indicating higher R-values.
Right: permutation analysis calculated on the entire training cohort (R =0.69 at
p =0.003). b Top left: stimulation volume of a patient with top clinical improve-
ment overlapping the tracts associated with optimal clinical improvements (cal-
culated leaving out the subject, N = 28-1 = 27 subjects). Fibers displayed in white
correspond to the portion of optimal fibers intersecting with the patient’s stimu-
lation volume. Bottom left: Same analysis carried out with a poor-responding
example patient. Right: Cross-validation within the training cohort (N = 28) using a
leave-one-out design (top, R =0.69 at p < 10−16), Spearman correlation between the
degree of stimulation of positive fibertracts (aggregated R-scores under each E-
field) and clinical improvements, and within-fold analysis, reporting root mean
square error (RMS) and median absolute error (MAE). The boxplot displays the

interquartile range in the box with themedian percentual absolute predicted error
as a vertical line, whiskers extend to 1.5 times the interquartile range, outlier points
outsideof this range are plotted (bottom). The two example patients aremarked in
the correlationplotwith circles. cOptimal tracts calculated from the entire training
cohort (as shown in panel a, N = 28) were used to cross-predict outcomes in N = 18
patients of the hold-out cohort (R =0.45, p =0.031). Left: two example cases from
the hold-out cohort are shown, a top responding patient’s stimulation volumewith
corresponding connected (white) optimal fibers defined by the training cohort;
and a poor-responding patient’s stimulation volume with corresponding con-
nected (white) fibers. The two example patients are marked in the correlation plot
with circles. Right: Spearman correlation between the degree of stimulating posi-
tively correlated tracts from the training cohort by the hold-out cohort and clinical
improvements of the latter, gray shaded areas represent 95% confidence intervals.
Fiber tracts and example stimulation volumes were superimposed on slices of a
100-µm, 7T brain scan in MNI 152 space83.
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which functional whole-brain networks was associated with optimal
outcomes. To this end,weapplied theDBSnetworkmappingmethod12,13

using E-fields as seed regions in a normative connectome calculated
from resting-state fMRI scans acquired in 1,000 individuals47,48 to iden-
tify regions correlated and anti-correlated to the stimulation volume
area (Fig. 1c). For each patient, this led to a fingerprint of functional
connectivity seeding from their respective stimulation sites. Voxel-wise
values denoted by these connectivity fingerprints were then correlated
with clinical improvements following the approach described by Horn
et al.12. The resulting R-map would show maximal positive values for
regions to which connectivity was associated with optimal response,
and negative values to regions yielding no clinical benefit (Fig. 4). The
map was largely symmetric across hemispheres with R-values ranging
from −0.45 to 0.43. Optimal response most strongly correlated with
connectivity toprecuneus, prefrontal regions, cingulate, thalamus, basal
ganglia and insula. To validate these results, we again carried out leave-
one-out (R =0.38 at p=0.006, RMS=48.69, MAE =30.99) and several
k-fold cross-validation designs (3-fold: R =0.32 at p=0.018; 5-fold:
R =0.14 at p =0.195; 7-fold: R =0.44 at p < 1016; 10-fold: R =0.29
at p=0.026). Moreover, repeating the analysis on the training, hold-
out and combined cohorts led to highly similar results by visual
inspection (Fig. 4). To allow a certain degree of reverse inference
from these network results49, they were spatially compared to
maps associated with a total of 1307 terms present in the Neurosynth
database (https://neurosynth.org/)50. After excluding purely anatomi-
cal/functional terms (such as “prefrontal”, “cingulate” or “default”), 7
out of the first 8 cognitive terms related to memory functions or
Alzheimer’s Disease, namely: “retrieval”, “memory”, “memory retrieval”,
“episodic”, “task”, “demands” and “working memory”. The only outlier
term not related to memory, “pain”, ranked at #5. Functional network

results and their relationship to cognitive terms are summarized
in Fig. 4.

Figure 5 summarizes the three levels (fiber filtering, sweetspot
mapping, and network mapping, also see supplementary Fig. 7 for in-
fold analysis) of analyses across all the patients and the comparable
amount of variance explained by each method on a circular (leave-
nothing-out) basis, as well as multiple cross-validation designs across
the entire cohort. Results (including the same cross-validations)
remained highly consistent when repeating all analyses using absolute
(instead of relative) improvements on the ADAS-cog 11 scale (Supple-
mentary Fig. 8) and when analyzing the subset of patients enrolled in
the ADvance trial (N = 40), in which improvementsmeasured by ADAS-
cog 13 were available and applied (Supplementary Fig. 9).

Effects of age
Prior results had shown differences in clinical improvements related to
age groups, where among individuals in the early-on arm during phase
1 (but not in phase 2), participants below the age of 65worsened on the
ADAS-cog 13 significantly more than older participants, while those
showed improvement33. The robustness ofmodels in the present study
to successfully cross-estimate clinical improvements across the entire
group regardless of age (and regardless of slicing up the data into
leave-one-out, 10-, 7-, 5- and 3-fold cross-validation designs) does not a
priori confirm such an effect (i.e., the same model seemed to be pre-
dictive in both age groups). An alternate reason for age differences
could be (potentially atrophy related) systematic shifts in electrode
placements as a function of age. However, as can be seen in supple-
mentary Fig. 10, no apparent difference in electrode placements was
observed between the groups, if at all more variability on the z-axis in
the young cohort. Furthermore, there was no significant difference in

Fig. 3 | Probabilistic mapping of sweet and sour spots associated with clinical
outcome. a Identified clusters of sweet (red) and sour (blue)-spots in a 3D view,
superimposed on slices of a 100-µm, 7T brain scan in MNI 152 space83. Since the
result was symmetric, on the bottom of the panel, we flipped stimulation volumes
across hemispheres to further increase robustness on a voxel-level (effectively
doubling the number of electrodes used in each hemisphere). b Axial, coronal, and
sagittal views of sweet and sourspot peak coordinates (also see supplementary
table 6). Projections of cluster center coordinates are marked by a black asterisk

and directly project onto the intersection between fornix and bed nucleus of stria
terminalis (BNST, see also supplementary Fig. 6). c Axial, coronal, and sagittal
sections showing DBS fiber filtering results obtained from thewhole cohort atMNI:
X = −3.6, Y = −1.5, and Z = −3.6. Put Putamen, Cdt Caudate, ALIC Anterior limb of the
internal capsule, AC Anterior commissure, GPe/i external/internal pallidum, Thal
thalamus, RN red nucleus, MBmamillary bodies, Fx Fornix. Fornix is shown in blue-
green color, informed by the CoBrALab Atlas46. Bed nucleus of the stria terminalis
shown in light brown color, informed by Neudorfer et al.39.
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fiber scores obtained across the two age groups (p = 0.790). This does
not suggest a systematic shift between groups (such as stimulation in
younger participants systematically modulating optimal fiber con-
nections less strongly than in older participants). Of note, in the pre-
sent study, both arms of the original study were combined.

Analysis of Flashback phenomena
In a sub analysis concerning the original hypothesis that led to fx-DBS
in AD, we carried out DBS fiber filtering by contrasting stimulation
settings that did or did not induce flashback-like phenomena during

the surgical procedure30,31. On a localized level, this effect had been
studied before30,31, but not on a tract level. The sub-cohort in which
this informationwas available included 39 patients in which different
DBS parameters were probed, leading to a total of 2054 stimulation
volumes, of which 66 resulted in experiential flash-back episodes. In
contrast to clinical improvements, flashback-like phenomena were
significantly associated with modulation of the posterior limb of the
anterior commissure (Fig. 6), which interconnects the middle and
inferior gyri of the bilateral temporal lobes51. Critically, electrical
stimulation of these cortical regions has been associated with

Fig. 4 | Functional network results. A Functional networks associated with opti-
mal improvements across training (left), hold-out (middle) and combined (right)
cohorts. Brain regions are color-coded by correlations between degree of func-
tional connectivity with DBS electrodes and clinical improvements across the
cohorts. Since results were highly symmetric, only the left hemisphere is shown.

B Optimal network associations to Neurosynth database terms, left: highlighted
relevant regions for the most similar networks identified; right: similarity plots
between same networks and the optimal network identified by DBS Network
Mapping results (x-axis = specific network meta-analysis, z-score, y-axis = DBS
Network Map).
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flashback-like phenomena in multiple historical and contemporary
reports24,52.

Discussion
A three-level post hoc analysis, at the local, structural, and functional
connectivity level, was carried out in a cohort of 46mildly affected AD
patients treated with fx-DBS across seven international centers. The
results obtained from these analyses provide insights into (i) the fiber
tracts associated with optimal outcomes, (ii) optimal stimulation
coordinates (sweetspot maps), and (iii) functional whole-brain net-
works associated with optimal outcomes.

There were many factors that could have led to variability in DBS
electrode placements within the fornix region across cases and cen-
ters. These factors included decreased fornix volume in AD or its
preclinical stage MCI19, the complexity of reaching this target using
electrodes (transventricular approach)53 and the possible variations in
placement due to surgeon to surgeon variability. Consequently, elec-
trode localizations varied within the diencephalic region. Considering
these variations in DBS lead placement, we sought to examine which
white matter pathways were modulated in top-responding but not
poor-responding patients. We addressed this question using the DBS
fiber-filtering method on tracts defined by an ultra-high-resolution
connectome, which was acquired at an isotropic 760 µm resolution,
and contains proper definition of fine bundles (such as the stria ter-
minalis) frequently obscured in single-patient scans. Given the histor-
ical development of fx-DBS, we hypothesized that fiber tracts
associated with optimal response would include memory-relevant
connections, specifically the structures of the Papez’ circuit, whose
role is crucial in episodic memory54 and for which changes have been
described as early as in prodromal AD or MCI. This hypothesis was
supported by our analyses. Indeed, both fornix and stria terminalis
were strongly associated with optimal clinical response. Given the

Fig. 5 | Results summary including the models from DBS fiber filtering,
sweetspotmapping and networkmapping.The three levels of analysis were able
to explain a similar amount of variance of clinical outcomes when analyzed in a
circular nature (see scatterplots; ∼16–19%) and led to significant cross-predictions
of clinical outcomes across leave-one-patient-out andmultiple k-fold designs, plots
show fitting of a linear model that represents the degree to which stimulating

voxels (left), functional regions (top-right) and tracts (bottom-right) explain var-
iance in clinical outcomes across the whole cohort (N = 46) using Spearman cor-
relation, gray shaded areas represent 95% confidence intervals. Three level analysis
results were superimposed on slices of a brain cytoarchitecture atlas in MNI
152 space84. See supplementary Fig. 7 for additional metrics on each validation
approach. RMS Root mean square error, MAE Median absolute error.

Fig. 6 | White matter bundle associated with occurrence of flashback-like
phenomena. a Fiber tracts correlated to the presence of flashback-like events,
connected fibers were corrected for multiple comparisons using the False Dis-
covery Rate (FDR) at a 5%α-level. b Brain surface (lateral view) overlaid with results
from a (left), in comparison to Penfield’s original work onmapping the presence of
electrical stimulation-induced “experiential phenomena” in 40 patients suffering
from temporal lobe seizures in a total of 1288 reviewed surgical cases covering a
large fraction of the cortical mantle (right). Adapted with permission from24.
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strong implications for clinical practice that our resultsmight have, we
cross-validated results on multiple levels, which could demonstrate
remarkable consistency of findings throughout subsets of the entire
cohort. Based on this white matter model, we were able to estimate a
significant amount of variance in clinical outcomes both within the
N = 28 training-cohort (leave-one-out and several k-fold designs), and
when estimating clinical outcome of patients in the hold-out-cohort
(N = 18) based on the model calculated exclusively from the training
cohort. Finally, cross-validations across the N = 46 combined cohort
(leave-one-out and several k-fold designs) again showed consistencyof
findings. Predictive fibers calculated on training and hold-out cohorts
alone were remarkably similar, each suggesting a strong involvement
of fornix, anterior nuclei of the thalamus and stria terminalis. Inter-
estingly, our analysis yielded a distinct set of streamlines when inves-
tigating the presence of flashback phenomena reported during
postoperative stimulation programming30,31. Here, the posterior limb
of the anterior commissureemerged as a substrate ofmodulation. This
result supports the main findings from Germann et al.31, previously
associating stimulation of the anterior commissure with the occur-
rence of flashbacks, using a different methodological approach.

A seminal historical article by Wilder Penfield and colleagues24

associated electrical stimulationof specific sites of the temporal cortex
with the occurrence of flashbacks, and this has been recently con-
firmed by other studies52. While the thinner anterior limb of the ante-
rior commissure connects bilateral anterior olfactory nuclei and the
primary olfactory cortices, its thicker posterior limb connects the
bilateral temporal regions associated with the flashback phenomena
reported by cortical stimulation studies24,52. Hence, a direct modula-
tion of temporal cortices and/or their network with other structures
connected to the anterior commissure might provide a potential rea-
son for the occurrence of flashback phenomena following DBS to the
fornix region (i.e., the effect ismediated bymodulating the AC, not the
fornix itself).

These tract-level results enhance our understanding of fx-DBS.
However, in surgical decision making, defining a focal optimal stimu-
lation coordinate or region could provide additional practical rele-
vance. Hence, we performed a focal analysis to identify a specific sweet
spot target associated with clinical improvement. Original surgical
coordinates of the active contacts as described for the surgical
approach by Ponce et al.53 corresponded to an MNI space coordinate55

of x = ±7.02 ±0.68mm, y = 0.82 ± 1.00mm and z = −6.43 ± 0.75mm. In
our analysis, we found that cluster centers of positive correlated voxel
values instead corresponded to x = ±4.8, y = −0.9mmand z = −3.6mm,
with a Euclidean distance of 3.87mm to the original target site.
Expressed in functional (AC/PC) coordinates, our target would corre-
spond to a coordinate 5.56 ±0.88mm lateral to, −2.87 ± 0.91mm
anterior to and 0.65 ± 1.19mm below the anterior commissure55. Ana-
tomically speaking, the optimal site corresponded to the border
between BNST and fornix at a superior (AC level) and posterior portion
of the fornix (Fig. 3 and supplementary Fig. 3). Our data suggest that
coordinates located more superiorly, and slightly more medial to the
current target, may result in better clinical outcomes, a possible
explanation might be that the E-field generated when neuromodulat-
ing inferior regions of the fornix could be reaching other structures
capable of causing side effects, for instance, autonomic responses
after hypothalamic nuclei stimulation32.

We next applied DBS network mapping using a normative func-
tional connectome to study the relationship between modulating
distributed whole-brain networks and clinical improvements. In
patients with an optimal cognitive response, DBS stimulation sites fell
onto a network comprised of regions of the default mode network
(especially the precuneus), previously associatedwith AD pathology3,4.
Furthermore, the network included premotor cortical sites involved in
memory, working memory and retrieval. A common mistake in the
fMRI literature is to infer the actual cognitive function from activation

(or connection) sites56,57. This process, termed reverse-inference, is
controversial since activity in most brain regions is non-specific across
cognitive domains. For example, Broca’s area is involved in language
processing, but also in other forms of hierarchical processing such as
mathematicsormusic58. Hence, (reversely) inferring fromanactivation
in Broca’s area that language is involved would be considered a sub-
optimal approach56,57. To account for this, the creators of the neuro-
synth platform devised a decoding tool facilitating a systematic
comparison of network maps with a large amount of meta-analytic
maps (N = 1307 at the time of writing) associated with specific cogni-
tive terms. Each of these maps represents automatic meta-analyses
that often rely on a high number of studies—for instance, the map
associated with the term memory is currently based on 2744 studies.
The decoding tool compares spatial similarity of a given network with
all maps in the database, and sorts resulting spatial agreement with
term names in descending order. In our case, the functional network
most associated with optimal outcome best resembled the maps built
from cognitive terms such as “retrieval” or “memory”, hence demon-
strating a certain specificity of the identified optimal stimulation net-
work to memory retrieval.

All three levels of analysis (local, tract and network) were highly
robust towards multiple cross-validation designs (summarized in
Fig. 5, in-fold analysis summarized in supplementary Fig. 7). The find-
ings of this study provide a framework for the neural substrates
implicated in successful fx-DBS and offer the potential to refine and
guide both surgical targeting and stimulation optimization in Alzhei-
mer’s disease in future trials.

Limitations
Multiple limitations apply to this work, including the retrospective
nature of the study, due to which a detailed focus on specific clinical
effects was not possible. For this reason, we considered clinical out-
comes as measured by change of the ADAS-cog 11 score but repeated
main results for ADAS-cog 13 scores in the subset of patients in which
the score was available (Supplementary Fig. 9). The retrospective
nature of our study also prevented us from analyzing different effects
of stimulation frequencies, pulse widths, or stimulation patterns,
which would enfold different signals onto the network over time.
Instead, the imaging nature of our study analyzes results in static
fashion (both on a stimulation volume and network level). Future
research is needed to investigate effects of variations in stimulation
parameters, such as the ongoing trial to optimize electrical stimulation
parameters of fornix-DBS for AD (NCT04856072). Alternatively, neu-
romodulation delivered through distinct approaches, namely, the
ongoing trial on gamma entrainment via sensory stimulus at a 40Hz
frequency (NCT04055376) could extend our knowledge on the effect
of diverse parameters in brain stimulation for AD.

An inherent limitation of studies as the present one is imaging
resolution and resulting inaccuracies of DBS mapping in standardized
stereotactic space, which implies co-registration inaccuracies59. This
inaccuracy could be even more pronounced in AD patients, who
characteristically feature structural changes in both white and grey
matter, particularly in early onset AD10,60,61. To address these issues, a
modern DBS imaging pipeline35 with advanced concepts such as brain
shift correction62, multispectral normalization63, and phantom vali-
dated electrode localizations64 was applied. Each processing step was
meticulously monitored and corrected, if necessary. In addition, we
applied a recently introduced manual refinement of normalization
warp fields65, which was crucial to yield accurate registrations due to
large variabilities in patient anatomy. A demonstration of this labor-
intensive manual refinement process is visualized in supplementary
video 1, which shows that upon manual refinements, a good registra-
tion accuracy between patient and template fornices was achieved.
In this regard, we were not able to find apparent differences in (i)
electrode placement or (ii) fiber-score activations between patients
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younger than versus older than 65, which suggests other factorsmight
have influenced the clinical outcome in the younger group (Supple-
mentary Fig. 10). As previously reported, possible explanations for the
decline in early onset subjects include a more aggressive presentation
of the condition, greater brain atrophy and comparably more reduced
glucose metabolism in this subgroup of patients29.

Another limitation was the combination of randomized and open
label outcome data. Due to the exploratory feature of this analysis and
aiming at robustness of results, our cohort included patients from
different studies, namely a phase I study and the randomized phase II
ADvance trial. The inclusion of these two cohorts made it possible to
have a large enough sample size to leave a naïve subset of patients to
cross-predict our fibertract model. Nevertheless, this sample size is
considered small for machine learning approaches, thus, rigorous
evaluation was performed to the results presented in this work,
including cross-validation at several levels.

Moreover, we must emphasize that conclusions about con-
nectivity profiles associated with optimal outcomes were based on
normative connectivity data acquired in healthy participants. While
this concept has led to meaningful and robust models in other
cohorts12–14,38,66, conclusions about networks prevalent in the individual
DBS patients may not be drawn. However, models describing optimal
connectivity based on normative vs. disease-matched vs. patient-
specific data were comparable in other diseases, such as Parkinson’s
Disease and OCD38,67. In the present study, electrodes were placed
within the diencephalic region, a region featuring complex neuroa-
natomical relationships and a multitude of intersecting and delicate
fiber bundles. Hence, it was a crucial pre-requisite of the study to use a
tractogram that exhibits small fiber bundles in accurate anatomical
detail. We used a normative whole-brain connectome calculated from
an unprecedentedly high-resolution in-vivo dMRI dataset that was
acquired across a total scan time of 18 h at 760 µm isotropic resolution
on specialized MR hardware43, as for networkmapping, a connectome
obtained from rs-fMRI data from 1000 healthy subjects was used to
inform regions co-activated with the stimulation volumes of each
patient, allowing an identification of circuits that could be involved in
clinical changes when modulating the fornix.

Based on three levels of analysis, our results point towards a
potential optimal stimulation target for Alzheimer’s Disease treatment
with fx-DBS. At a local level, our findings highlight a circumscribed
region at the intersection of fornix and bed nucleus of the stria ter-
minalis. We further showed that optimal tract connections to this
region contained within the circuit of Papez were important, while
flashback phenomena were associated with modulating the posterior
limb of the anterior commissure. Finally, our results suggest that
modulating specific whole-brain networks is crucial for DBS induced
positive effects on cognition. Though our data identified a specific site
for stimulation, we would like to emphasize that the use of indirect
coordinate systems for DBS targeting is not suitable for DBS to the
fornix region in patients with atrophy in the same region. Direct ima-
ging and fiber-tracking results will be important to determine accurate
targeting in this region.

Methods
Patient cohort and Imaging
We conducted a secondary post-hoc analysis of data from a sample of
46 patients (mean age: 67 ± 7.9 years, 23 females), with a clinical
diagnosis of mild probable AD that underwent bilateral DBS to the
fornix at seven international centers included in the ADvance trial
(NCT01608061)33 and the Toronto-based pilot trial (NCT00658125)25,
all procedures were carried out according to the declaration of Hel-
sinki from 1975, all participants signed an informed consent in person
with theparticipationof a surrogate consenter.While theADvance trial
included 42 patients, imaging data was only available for 40
patients31,32 (also see supplementary Fig. 1). Patients werediagnosed by

standardized criteria after expert examination rated with 0.5 or 1 on
the Clinical Dementia Rating scale (CDR) and scored 12-24 on the
Alzheimer’s Disease Assessment Scale 11—cognitive subscale (ADAS-
cog)68, further inclusion and exclusion criteria for the trials can be
found in supplementary tables 1 and 2, patients received monopolar
stimulation at a frequency of 130 Hertz with a 90microsecond pulse
width for 12 months without adjustment. Patients included in the
ADvance trial were evaluated using the ADAS-cog 13 scale but for
remaining patients, improvements along ADAS-cog 11 was available.
Hence, for consistency across the entire cohort, two tasks were
excluded from this scale (number cancellation and delayed free recall
tasks)69, and only tasks included in ADAS-cog 1170 were included for
analysis.We repeatedmain analyses using ADAS-cog 13 in the subset of
patients in which the score was available. Patients underwent surgery
targeting the descending columns of the fornix using quadripolar
electrodes (Medtronic 3387, Medtronic, Minneapolis, MN). T1- and T2-
weighted volumetric pre- and postoperative scans obtained at 1.5T
across seven sites were used. Intra- and post-operative test stimulation
observations and individual stimulation parameters including elec-
trode contact, stimulation amplitude, frequency, and pulse widthwere
included. The additional post hoc data analysis carried out in the
present study was approved by the ethics board of Charité—Uni-
versitätsmedizin Berlin (master vote EA2/186/18). The clinical outcome
of all patients was evaluated using the ADAS-cog 1170 measured before
and one year after the onset of stimulation. Exclusively for means of
visualization, participants were classified according to their ADAS-cog
11 outcome as poor responders (decrease of 21% or more), middle
responders (0-to--20.99% decrease), top responders (increase in
ADAS-cog 11 score percentual change), as shown in supplemen-
tary table 3. This classification was not used for statistical analyses,
which were carried out on the continuous outcome variable (percen-
tual outcome onADAS-cog 11 one year after stimulation onset) and the
discrete variable TEMPau score71, used to estimate flashback episode
intensities.

DBS electrode localization and stimulation volume (E-field)
estimation
Image pre-processing, electrode localization and estimation of sti-
mulation volume were carried out using default parameters in Lead-
DBS35,62 (www.lead-dbs.org). Briefly, post-operative MRI scans were
linearly co-registered to preoperative T1 images using Advanced
Normalization Tools63 (ANTs; http://stnava.github.io/ANTs/). Sub-
cortical refinement was applied to correct for brain shift.
Co-registered images were then normalized into ICBM 2009b Non-
linear Asymmetric (“MNI”) template space using the SyN approach
implemented inANTs, with an additional subcortical refinement stage
to attain a most precise subcortical alignment between patient and
template space (“Effective: Low Variance + subcortical refinement”
preset). While this method has been shown to yield the best perfor-
mance for subcortical image registrations72, the substantial atrophy in
this particular population resulted in suboptimal automatic registra-
tion results. For the present study, this was crucial, since in the field of
DBS, electrode displacements of a few millimeters will lead to sub-
stantially different effects35,37. To account for this, we applied a
method, termed WarpDrive65, to manually refine registrations into
template space (see supplementary video 1). Briefly, WarpDrive pro-
vides a graphical interface allowing precise alignment of source and
target landmarks by directly visualizing the normalized images,
together with the template and atlases in MNI space (the software is
openly available here: https://github.com/netstim/SlicerNetstim).
WarpDrive allows the user to manually correct misalignments from
the standard normalization and recomputes a refined deformation
field in real time. DBS electrodes were pre-localized using the TRAC/
CORE algorithm62 and manually refined if necessary. Stimulation
volumeswere estimatedusing thefinite elementmethod (FEM)within
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the adapted FieldTrip/SimBio pipeline73 (https://www.mrt.uni-jena.
de/simbio/; http://fieldtriptoolbox.org/) implemented in Lead-DBS35.
In brief, a volume conductor model was constructed based on a four-
compartment mesh that included gray and white matter, electrode
contacts and insulating parts. Gray matter structures were based on
an atlas of the human hypothalamic region39. The electric field (E-
field) distribution was then estimated by solving Laplace’s equation
for the static approximation of Maxwell’s equations on a discretized
domain represented by the tetrahedral four-compartment mesh. For
the purpose of this article, we occasionally use E-field as shorthand for
the voxelized magnitude of the electric field vector. The stimulation
volumesweredefined as thresholded versions of the E-fieldmagnitude
following the approach in44.

Modeling considerations
Estimated after Pakkenberg and colleagues74, each cubic millimeter of
cortex is filled with ~170,000 neurons; for axonal numbers, each fiber
bundle in a standard neuroimaging analysis represents 103−105 tightly
packed axons75. Many DBS studies aimed at modeling discretized and
realistic axonal cable models, in the past59,76,77. However, given these
sheer numbers of axons involved, here, we chose to assume prob-
abilistic axonal populations in each brain voxel to be represented by
eachfiber tract, insteadofmodeling representative single axons.While
single axons fire in an all-or-nothing fashion, activation/modulation
profiles of axonal populations within a voxel may be represented in
probabilistic fashion, which would be dependent on the applied
voltage78–80. In other words, on a population level, the “degree” of
activation will be stronger under higher voltages applied, i.e., closer to
the electrodes. Crucially, there is a large amount of uncertainty about
this exact relationship between voltage and population-level axonal
firing that needs patient-specific calibration even when applying more
realistic biophysical models76. To account for this uncertainty, we
applied Spearman’s rank correlations to our fiber filtering and optimal
stimulation site mapping models (Fig. 1). We propose that this simple
approach could be advantageous, since it would show maximal cor-
relations for any type of monotonically increasing dose-effect func-
tion. In other words, the concept could be robust toward the exact
relationship (be it e.g., linear, cubic, or logistic) between amplitude and
axonal modulation.

For each of the models, the stimulation volume of each patient
was considered the core of the analysis; for fiber filtering, streamlines
from a normative structural connectome that traversed the volumes
were considered for further steps; for sweetspot analysis, areas of
interest were determined based on voxels occupied by stimulation
volumes of the patients; finally, for network mapping, functionally
connected areas to the stimulation volume of each patient were
obtained from a functional normative connectome. Details for each
method are specified in the following sections.

DBS fiber filtering
Model definition (Fig. 1A): Whole brain structural connectivity profiles
seeding from bilateral E-fields were calculated using a state-of-the-art
multi-shell diffusion-weighted imaging dataset acquired across
18 scanning hours of a single individual at 760 µm isotropic
resolution43 using the generalized q-sampling approach (default
parameters) and whole-brain tracking (default parameters) as imple-
mented in DSI studio81. The patients were distributed into two cohorts:
Training (N = 28) andHold-out (N = 18). For each subject of the training
cohort, fibers traversing each voxel of the E-field were selected from
the 5 million tracts in the normative connectome and projected to a
voxelized volume in MNI space. Each of these fibers were weighted
according to the E-field magnitude at each voxel, considering only
fibers that traversed > 20% of stimulation volumes with an E-field
magnitude >0.36V/mm. Each fiber was then appointed an R-value
dependent on the Spearman correlation between its weighting and the

respective clinical outcome scores across the group, i.e., a high R-value
indicates that the modulation of the tract is associated with clinical
improvement. Given the mass-univariate nature of this approach (and
subsequent alpha-error accumulations), the resulting correlation
coefficients were not considered significant, but were rather used to
discriminate and visualize a specific set of bundles that was later vali-
dated by estimating clinical outcome in out-of-sample data (Fig. 1,
supplementary Table 5).

Estimating outcomes using the model: Assuming a patient would
most likely show superior clinical benefit if their E-field modulated
more fibers with high positive R-values and less fibers with negative
scores, wemeasured the spatial Spearman’s rank correlation profile of
the (hold-out) E-field superimposed to the tractmodel. To illustrate by
an example: If an E-fieldpeaked at sites coincidingwith tracts with high
positive R-values and showed low amplitudes at sites filled by tracts
with low R-values, this would lead to a high Fiber-Score for that par-
ticular E-field.

Cross-validation and testing: We first estimated our model by
defining a “Training cohort” including 60% of the participants in a
pseudorandomized fashion, and filtering fibers with positive R-values
across this group; the remaining 40% of the participants (“Hold-out
cohort”) were left to validate the predictive utility of the model. The
Training cohortwasused to estimate anoptimal connectivitymodel. In
an initial training stage (using only data from the training cohort),
model parameters were still manually tuned using the graphical user
interface created for Fiber Filtering within Lead-DBS. Aims were to
obtain a set of fibers that was (i) robust for cross-validations and (ii)
variable when permuting improvement values across patients. The
latter point was crucial, since specific parameter settings exist that
would result in a set of tracts that were simply connected to the
average group of electrodes. In such settings, permuting improvement
values across the cohort would not largely alter results. After several
iterations, settings were obtained (supplementary table 5) that fulfilled
both criteria and showed robust cross-validation results (leave-one-out
and multiple k-fold [k = 3,5,7,10] designs). Then, model parameters
were kept fixed and the model was used to cross-predict outcomes of
patients in the hold-out cohort.

Optimal stimulation sites (Sweetspot analysis)
Model definition (Fig. 1B):Using the E-fields calculated for eachpatient,
an approach to define optimal stimulation sites was applied12. An E-
field represents the first derivative of the estimated voltage distribu-
tion applied to voxels in space and its magnitude is hence stronger in
proximity of active electrode contacts with a rapid decay over dis-
tance. Since not all voxels were covered by the same number of E-
fields, the area of interest was restricted to voxels that were at least
covered by 20% of E-fields with amagnitude above 200V/m, which is a
common approximate assumed to activate axons in the field of DBS42.
For each voxel covered by the group of E-fields across the cohort in
MNI space, E-field magnitudes across patients were Spearman rank
correlated with clinical outcomes. The resulting sweetspot maps
would peak at voxels in which stronger E-fields were associated with
better treatment responses. The map would have negative values for
voxels with the opposite relationship.

Estimating outcomes using themodel: Multiplying each voxel of a
single E-field with the resulting sweetspot map and calculating the
average across voxels led to estimates of how a specific E-field would
perform (i.e., estimates of clinical outcomes following DBS). If the
E-field peaked at similar locations as the sweetspot map, a high esti-
mate would result. If it peaked at a valley of the map, low or even
negative estimates would result. The values of these maps were ana-
lyzed using Multi-image Analysis GUI software82 (http://ric.uthscsa.
edu/mango/) to estimate the peak and center location of clusters in
both positive (sweetspot) and negative (sourspot) correlated voxels,
this analysis was repeated in E-fieldsmirrored toopposite hemispheres

Article https://doi.org/10.1038/s41467-022-34510-3

Nature Communications |         (2022) 13:7707 10

https://www.mrt.uni-jena.de/simbio/
https://www.mrt.uni-jena.de/simbio/
http://fieldtriptoolbox.org/
http://ric.uthscsa.edu/mango/
http://ric.uthscsa.edu/mango/


to obtain a more robust observation of peak voxels. Again, cross-
validation of the model was carried out by means of a leave-one-out
and several k-fold [k = 3,5,7,10] designs.

DBS network mapping
Model definition (Fig. 1C): In a third approach, we calculated whole-
brain functional connectivity estimates seeding from E-fields using a
normative connectome that was calculated from rs-fMRI scans
acquired in 1000 healthy participants, providing a map of coupling
brain regions based on their blood-oxygen-level-dependent (BOLD)
signal47,48, following the approach developed by Horn et al.12. This
method, termed DBS network mapping, allows to investigate func-
tional connectivity profiles of a specific pair of DBS electrodes. We
refer to the maps resulting from an estimation of correlated “active”
brain regions seeded from each stimulation volume using normative
data as connectivity fingerprints66. Similar to the sweetspot and fiber
filtering models, (voxel-wise) correlations between Fisher-z-scored
connectivity strengths and clinical improvements were calculated,
which yielded R-map models of optimal connectivity.

Estimating outcomes using the model: In direct parallel to the
other two approaches, spatial similarities between single connectivity
fingerprints and R-map models were calculated using voxel-wise spa-
tial correlations. This led to positive high correlation values for cases in
which fingerprints graphically matched the (optimal) connectivity
profile represented by the R-map model – and lower or even negative
values for the opposite cases. The R-model obtained by combining all
the single connectivity fingerprints was cross-validated using a leave-
one-out and multiple k-fold [k = 3, 5, 7, 10] designs, and quantitatively
and interactively compared to the Neurosynth database (neuro-
synth.org) to allow comparison of the identified map to functional
networks previously reported by other studies.

Analyses on the three levels (fiber filtering, sweetspot mapping
and functional network mapping) were repeated using absolute
(instead of relative) improvements of ADAS-cog 11 following DBS
(supplementary Fig. 8), as well as improvements measured by ADAS-
cog 13 scores (supplementary Fig. 9). In the latter, only the subset of
patients from the ADvance trial were included (since in other patients,
ADAS-cog 13 improvements were not available).

Analysis of flashback-like phenomena
During the surgical intervention of a subset of the cohort, 39 patients
aged 67.7 ± 7 years old, 19 females (participants from ADvance fx-DBS
trial29,33, NCT01608061), it was tested whether flashback phenomena
could be induced30,31 by means of stimulation with increasing voltages
(1–10) at multiple contacts (0–3), eliciting at least one memory flash-
back in 18 (8 females) of these patients. This resulted in a total of
2054 stimulation volume probes, 66 of which evoked a flashback-like
episode. We investigated the presence of streamlines correlated to
these stimulation volumes in the same fashion as we did for our whole
dataset using the Fiber Filtering Tool (Fig. 1a).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Anonymized derivatives of stimulation data used for the described
analyses are openly available on OSF (https://osf.io/bckuf). The
resulting tract atlas, sweet spot and fMRI network pattern are openly
available within Lead-DBS software (www.lead-dbs.org).

Normative data:
Structural connectome: https://datadryad.org/stash/dataset/doi:

10.5061/dryad.nzs7h44q2
Functional connectome: https://dataverse.harvard.edu/dataset.

xhtml?persistentId=doi:10.7910/DVN/25833

Neurosynth database: https://github.com/neurosynth/neuros
ynth-data.

Code availability
All code used to analyze the dataset is openly available within Lead-
DBS/-Connectome software (https://github.com/leaddbs/leaddbs).
Code to reproducemain results and figures is openly available on OSF
(https://osf.io/bckuf).
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