Skip to main content
. 2022 Dec 1;10:1068253. doi: 10.3389/fpubh.2022.1068253

Table 2.

Mean error (ME), mean absolute error (MAE), mean square error (MSE), root mean square error (RMSE), and R2 values assessing performance of machine learning regression methods based on Demirjian and Cameriere method, respectively.

Method ML model ME MAE MSE RMSE R2
Demirjian Traditional −0.647 0.982 22.254 4.717
BRR −0.002 0.510 0.404 0.636 0.928
DT 0.011 0.523 0.609 0.780 0.892
KNN −0.027 0.517 0.435 0.660 0.923
Cameriere Traditional 0.592 0.846 0.755 0.869
BRR −0.030 0.535 0.436 0.660 0.923
DT 0.052 0.584 0.601 0.775 0.893
KNN −0.015 0.473 0.340 0.583 0.940