Xia et al. Molecular Biomedicine (2022) 3:44

, Molecular Biomedicine
https://doi.org/10.1186/543556-022-00099-8

REVIEW  OpenAcess
®

Check for
updates

The role of Hedgehog and Notch signaling
pathway in cancer
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Abstract

Notch and Hedgehog signaling are involved in cancer biology and pathology, including the maintenance of tumor
cell proliferation, cancer stem-like cells, and the tumor microenvironment. Given the complexity of Notch signaling in
tumors, its role as both a tumor promoter and suppressor, and the crosstalk between pathways, the goal of develop-
ing clinically safe, effective, tumor-specific Notch-targeted drugs has remained intractable. Drugs developed against
the Hedgehog signaling pathway have affirmed definitive therapeutic effects in basal cell carcinoma; however, in
some contexts, the challenges of tumor resistance and recurrence leap to the forefront. The efficacy is very limited for
other tumor types. In recent years, we have witnessed an exponential increase in the investigation and recognition of
the critical roles of the Notch and Hedgehog signaling pathways in cancers, and the crosstalk between these path-

bedside.

ways has vast space and value to explore. A series of clinical trials targeting signaling have been launched continu-
ally. In this review, we introduce current advances in the understanding of Notch and Hedgehog signaling and the
crosstalk between pathways in specific tumor cell populations and microenvironments. Moreover, we also discuss
the potential of targeting Notch and Hedgehog for cancer therapy, intending to promote the leap from bench to
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Introduction

Notch and Hedgehog (Hh) were first described in Dros-
ophila by Thomas Hunt Morgan in 1917 and by Nusslein-
Volhard and Wieschaus in 1980 [1, 2]. Both signaling
pathways exist widely in vertebrates and invertebrates,
are highly primordial and conserved in evolution, and are
intimately involved in the fate determination of cells [3,
4], differentiation of tissues [5], development of organs
[2, 6-9], formation of embryos [10, 11] and homeostasis
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in organisms [12]. Abnormalities in the modulation of
both pathways during embryonic development may con-
tribute to malformations [13—15] and disorders [16—19].
Notch signaling has multiple context-specific features
and plays an essential role in the maintenance and bal-
ance of adult tissues [20]. In contrast, the Hh pathway is
predominantly insufficiently active or even quiescent in
mature organisms. As necessary, under certain condi-
tions, it would be activated, such as wound healing and
tissue recovery [21, 22] in bone [23, 24], intervertebral
disc [25], heart, nerves [26-29], skin [30], muscle [31],
and gastrointestinal mucosa [32, 33]. However, compo-
nential activation of the Hh signaling pathway is respon-
sible for the formation and progression of diverse cancer
types, i.e., basal cell carcinoma (BCC) [34, 35]. In addi-
tion, an interesting characteristic of Notch signaling is its
high sensitivity to dose: both over- and under-activated
Notch signaling generate phenotypes, which can par-
tially account for mutations in the Notch pathway that
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can serve as both carcinogens and suppressors of tumors,
relying on the cellular setting [36].

The Notch pathway is an architecturally linear signal-
ing mechanism. Concisely, the intact Notch receptor is
a heterodimer made up of an extracellular and a trans-
membrane subunit. Subsequent interaction with trans-
membrane ligands presented on the neighboring leads to
subunit receptor segregation and causes the transmem-
brane subunit to be proteolytically hydrolyzed, releasing
a Notch intracellular domain (NICD), which is subse-
quently transported to the nucleus to function as a tran-
scriptional regulator [20, 37]. Pathways in addition to the
canonical signaling pathway are also capable of initiating
signaling and are categorized as noncanonical NOTCH
signaling pathways [38, 39]. Analogously, activation
of Hh signaling pathways also proceeds through both
canonical and noncanonical routes [40, 41]. The former
is activated by the binding of Hh ligand to Ptchl protein
to constitute a complex that relieves the inhibitory effect
of smoothened (Smo), followed by a downstream cyto-
plasmic protein complex consisting of kinesin protein
(Kif7), suppressor of fused (SUFU), and glioma-associ-
ated oncogene homolog (Gli), which transduces signals
to the nucleus and regulates the expression of target
genes [42]. Resembling the noncanonical initiation of the
Notch pathway, the later activation of Hh signaling can
be categorized into three kinds [40]. Nevertheless, con-
trary to Notch and other embryonic signaling pathways,
the Hh signaling pathway is extremely dependent on the
primary cilium [43], a single organelle, with the composi-
tion of vital signaling components varying in distribution
across the cilium depending on whether Hh signaling is
switched on or off [44—46].

Within this review, we summarize current advances in
the understanding of Notch and Hh biology and cross-
talk between pathways in cancer, which will assist in
the design of new reasonable therapeutic options [36].
Recent drug development results and efforts to target
Notch and Hh signaling are also outlined, and the major
categories of investigational drugs thus far described that
directly or indirectly alter Notch and Hh signaling are
characterized.

Architecture of the Notch and Hh pathways
The canonical and noncanonical Notch signaling pathways
Notch signaling is an intercellular communication mech-
anism initiated by binding between a transmembrane
receptor and a membrane-spanning ligand expressed on
adjacent cells. The major components and distinct steps
in the Notch pathway have been investigated widely and
are summarized in brief (Fig. 1) [47, 48].

The canonical Notch signaling pathway is devoid of
intermediate links, as the receptor is transduced straight
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into the nucleus after three cleavage events [12]. The pre-
cursor of the Notch receptor is a single-chain protein
that is initially transported to the endoplasmic reticu-
lum (ER) after production and extensively glycosylates
future extracellular subunits, which modifies the affinity
of the Notch receptor for various ligands (orange penta-
gons represent glycosylation) [49]. The glucosylated pre-
cursors are transmitted to the Golgi compartment and
undergo the first proteolytic procedures at S1 sites in
the Golgi network, yielding noncovalently bound Notch
extracellular subunit (NEC)-transmembrane and intra-
cellular domain (N™I€) heterodimers to be shipped to
the cell membrane as type I transmembrane proteins
(NOTCH1-4 for mammals) [50]. The receptor interacts
with canonical ligands (DLLI, 4, or Jagged 1, 2) located
on juxtaposed cell membranes, exposing a cleavage site
that is masked by the LNR domain in the silent phase
and arousing dissociation of the receptor subunit by NF¢
subunit trans-endocytosis into the ligand-expressing cell
[51-53]. This unveils the S2 site cleaved by an ADAM 10
or 17 (a disintegrin and metalloproteinase) on the extra-
cellular residue of NT™MI€ [54]. Subsequent to S2 cleavage,
another ligand processing step, the intermediate product
of the transmembrane receptor called Notch extracellu-
lar truncation (NEXT) [54], is cleaved by the y-secretase
complex at the plasma membrane or in the endosome
post-NEXT internalization (S3 cleavage) [55]. This phase
releases NICD, which translocates to the nucleus, where
it couples with CSL (CBF1/Suppressor of Hairless/LAG1;
also named RBPJ), a DNA-binding protein, loosening
chromatin [56] and leading to separation of the coin-
hibitory complex from CSL and facilitating coactivation
complex recruitment [47, 57]. The interaction of NICD-
CSL is stabilized by Mastermind-like (Maml), a triad of
the NICD/CSL/Maml complex that amplifies down-
stream gene expression [56]. The pool of target genes var-
ies broadly between cell types.

Notch signaling is also initiated by atypical ligands, the
deficiency of ligands, the absence of the cleaved Notch
receptor, or interactions with other cytoplasmic or cyto-
solic effectors [38, 39]. It is known as noncanonical Notch
signaling, which offers a fascinating new scope for explo-
ration and potentially unmasks new interventional treat-
ment targets. The ligand-independent activation pathway
[58] denotes that due to metabolism, ligand-unbound
NOTCH receptors can be endocytosed into endosomes
containing ADAM and gamma enzymes, triggering S2
and S3 cleavage and thereby activating NOTCH signaling
[59, 60]. This pathway is essential for T-cell development
[61, 62]. In addition to combining with CSL, NICD cross-
talks with signaling pathways such as NF-kB, mTORC,
TGE-B, AKT, Wnt, or Hippo at the cytoplasmic or cyto-
solic level to modulate target gene transcription [63-67].
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Fig. 1 Overview of the Notch and Hedgehog signaling pathways. The blue arrows on the left side of the figure demonstrate the synthesis,
modification, transfer and activation of Notch receptor precursors. The purple arrow on the right shows Hh ligand precursor synthesis, modification
and translocation, and activation effect of Hh receptors. Crosstalk in the Hh and Notch signaling pathways is shown by red and yellow arrows
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Classically, reciprocity between NICD and NF-«kB affects
the properties of multiple malignancies [68-70], sug-
gesting new potential means of blocking noncanonical
NOTCH signaling. Moreover, proper ligands and recep-
tors direct cell proliferation, transition and apoptosis
in a single/unbound form, and details deserve further
elucidation.

Multiple factors act on different components of the
pathway involved in regulating Notch signaling. Spe-
cific signals, such as AKT, CBFB, SIRT6, RUNX1, and
DEC]1, control the transcription of receptors that indi-
rectly regulate the entire Notch signaling pathway [71—
74]. Certainly, glycosylation of the NOTCH receptors
on certain EGF-like repetitive sequences is essential for
receptor maturation [75], ligand binding [76, 77], and S2
cleavage [78], and targeting glycosylation is also thought
to be effective in inhibiting NOTCH signaling. Intracel-
lular trafficking of receptors mediated by ubiquitination
and specific distribution of receptors and ligands across
the cell membrane also influence the regional intensity of

NOTCH signaling [79, 80]. The balance between activa-
tion and degradation following endocytosis is critically
associated with downstream signaling. Ligand ubiquit-
ination in signal senders is a requisite for signal activation
and mediates ligand endocytosis, facilitating exposure
of the negative regulatory region (NRR) domain of the
S2 cleavage receptor [81-83]. Notably, cis-inhibition has
been observed in many tissues and organisms [84], sig-
nificantly driving the horizontal suppression process
and defining sharp boundaries [85]. Subsequent work
is worth extending to explore the potential diversity of
signaling states of cells by the combinatorial action of
diverse receptors and ligands. Noncoding RNAs likewise
occupy a place in the Notch signaling pathway by serving
as regulators of respective target genes [86, 87]. Exclud-
ing ligands and receptors, the level of Notch signaling can
be adjusted by posttranslational modifications of NICD,
including hydroxylation, methylation, acetylation, phos-
phorylation, and sumoylation, which impact the intensity
of Notch signaling [88].
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The canonical and noncanonical Hh signaling pathways

The canonical Ptch1-Smo-Gli axis is achieved by auto-
crine or paracrine patterns. Many excellent publications
have previously described in detail the processes that
regulate Hh signaling (Fig. 1) [89-91]. Simply speak-
ing, three mammalian counterparts of Hh were found:
sonic hedgehog (SHh), Indian hedgehog (IHh) and
desert hedgehog (DHh) [92]. Disparities in the timing of
expression, spatial distribution and action characteristics
among the different ligands were noticed [93]. The matu-
ration and secretion of Hh ligands, glycoprotein precur-
sors synthesized in the ER encoded by a set of vital Hh
genes, undergo self-proteolysis, generating C-terminal
fragments (Hh-Cs) that are transferred to the proteasome
to experience rapid degradation [94], and the N-terminal
peptides (Hh-Ns) continue to undergo dual lipidation in
the ER by cholesterol and palmitic acid in the C-terminal
and N-terminal domains, respectively [95, 96]. The modi-
fied Hh-N molecules are attached to the lipid bilayer in
monomeric form until they are released by one of four
pivotal mechanisms: 1. DISP (a transmembrane trans-
porter-like protein)-mediated and SCUBE2 (a secreted
glycoprotein)-coordinated release of Hh-Ns from the
cell surface as a monomer [97-100]; 2. Self-aggregation
of monomeric HH-Ns to form soluble multimers for
liberation [101]; 3. Interaction of HH-N oligomers with
heparan sulfate chains of glycoproteins, recruiting apoli-
poproteins to shape lipoprotein particles [102, 103]; 4.
Formation of exovesicle [104]. Spontaneously, canonical
Hh signaling is initiated by active Hh ligands. Mature Hh
ligands bind to Ptch1/2 [105], a cholesterol transporter
enriched in primary cilia (PC). HH-PTC conjugation,
facilitated by growth arrest-specific 1 (GAS1), oncogenes
(CDO), brother of CDO (BOC), and low-density lipo-
protein receptor-related protein 2 (LRP2), induces Ptch
to leave the cilium and inactivate, relieving inhibition of
Ptch for a seven-pass transmembrane G protein-coupled
receptor-like receptor known as Smo. The derepressed
Smo subsequently moves to the proximal end of PC to
enrich with Ellis-van Creveld syndrome protein (EVC)
and EVC2, suppressing critical protein kinases, including
protein kinase A (PKA), casein kinase 1 (CK1), and syn-
thase kinase 3 (GSK3p) [106, 107], depriving the ability
to mediate phosphorylation of the SUFU-Gli complex.
The role of SUFU as a key suppressor by sequestering
Gli in the cytoplasm is dismantled, triggering the detach-
ment of SUFU-GIi and releasing the full-length active Gli
(Glil/2/3-A). Subsequently, the translocation of Gli-A
into the nucleus of cells is partially dependent on Kif7
[108], invoking Gli-mediated transcription [109, 110]. Hh
target genes consist of Hh signaling components (Ptch,
Glil, GAS1, Hhip), cell cycle regulators (CCND2, CDK)
[111, 112], and other transcription factors (VEGFA,
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PDGFA, BCL2, Wnt, TGE, SNAIL, ELK1, MSX2, BMI]1,
SOX2, NANOG, Oct4, FOXM1, NR2F1, c-Myc, etc.)
[113].

In the absence of Hh ligands, Ptch impedes the trans-
port and localization of Smo in PC [114], leading to
phosphorylation and protein cleavage of Gli2 and Gli3 by
PKA, CKI and GSK3 to produce repressed forms (Gli2-
R and Gli3-R, respectively) [115-119]. Compared to Gli2
and Gli3, Glil is primarily regulated at the transcriptional
level and is not cleaved into a repressed form. Glil can
also be manipulated by the ubiquitin—proteasome sys-
tem (UPS) [120]. As a result, downstream Hh signaling
is aborted. The current Gli pre-patterning model has suf-
fered from challenges, with studies demonstrating that
Gli inhibition is not the default state for the Hh pathway
[121].

Other than canonical signaling, several pathways acti-
vated by Hh ligands have been recognized as "atypi-
cal" with no need for PC as a mandatory site [122, 123].
Hh signaling can be classified into three types involving
Ptch-Hh-mediated (Type I), Smo-dependent (Type II),
and Gli-activated (Type III) signaling according to their
modulatory mechanisms [124]. The first type is further
divided into two subcategories (Type IA and IB). Ptchl
in Type I can regulate apoptosis by recruiting proapop-
totic elements such as caspase-9, dependence-associated
receptor transmembrane (DRAL) and tumor-upregu-
lated CARD (caspase-associated recruitment domain)-
containing antagonist of caspase nine (TUCAN) to the
C-terminal domain. Hitherto, the majority of the nonca-
nonical Hh signaling axis in Type II has been achieved by
coupling Smo as a G protein-coupled receptor (GPCR)
to a heterotrimeric G protein of the G inhibitory (Gi)
family [125, 126], altering several crucial protein kinase
activities, including PKA, RhoA, Racl, NF-1, Src, PI3K/
PLCy, and calcium/calmodulin-dependent protein kinase
kinase 2 (CaMKK2) [127-132], and promoting actin
rearrangement, immune synapse formation and altered
glycolytic capacity [131, 133]. Furthermore, Smo-depend-
ent noncanonical Hh signaling, such as the Gai-LGN-
NuMA-Dynein axis and LKB1/AMPK axis, can facilitate
canonical signaling by fostering cilia formation [131].
As observed, various signaling cascades can be involved
at the Gli level (Type III), such as RAS-RAF-MEK-ERK
(134, 135], PI3K/AKT/mTOR [136-138], TGFB [139,
140], DYRK family [141], BET proteins, and oncogenic
drivers (EWS/FLI1, SOX9 FOXC1, c-MYC) [142-145],
which are involved in optimizing Gli activity [146].
Apparently, the activity of Gli can be adversely affected
by tumor suppressors (p53, NUMB, SNF5) [147-149],
MAPKKK/MEKK ([150, 151], and miRNAs (miR-324-5p,
miR-361, miR-326) [152-154] in Smo-independent
Hh signaling appear to be a fallback activation pathway
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in canonical Hh signaling and a way for cells to evade
the classical Hh pathway to activate downstream gene
expression in response to abnormal environmental stress.

Crosstalk between the Notch and Hedgehog signaling
pathways in cancer
Studies have shown that Notch and Hh signaling func-
tion synergistically during cell development in several
systems, such as the digestive system [155], the nerv-
ous system [156], and the immune system [157]. Some
studies revealed crosstalk among the Hh, Notch and
Wnt pathways that exert synergistic promotive effects in
tumorigenesis [158, 159]. The developing nervous sys-
tem has been more thoroughly studied (Fig. 1). Primar-
ily, it is widely known that Notch signaling can modulate
Hh [160]. Second, Hh signaling allows direct or indirect
control of Notch through downstream activities [161].
Modulation of the Notch pathway by Hh includes the fol-
lowing: 1. Downstream effectors of Hh govern the tran-
scription of ligands and regulators in the Notch pathway,
such as Fringe proteins. 2. Gli proteins deliver immediate,
Notch-independent transcriptional regulation of certain
Notch target genes [162, 163]. Hh is controlled by Notch
signaling in the following ways: 1. Downstream effectors
of Notch control the transport of Hh components (e.g.,
Ptch and Smo) to PC [164]. 2. Downstream effectors of
Notch manage Gli levels, irrespective of transcription.
3. NICD plays a direct role in controlling Gli gene tran-
scription [165]. In addition, both Notch and Hh signal-
ing are inhibited by NUMB [148], which contributes to
the ubiquitination and degradation of Notchl through
its polypyrimidine tract-binding protein (PTB) struc-
tural domain to directly interact with the WW structural
domain of Itchy E3 Ubiquitin Ligase (ITCH) [166]. Like-
wise, NUMB directly inhibits the Hedgehog pathway,
while ITCH promotes ubiquitination of Glis1 [167].
Evidence indicates the significance of crosstalk between
Hedgehog and Notch in cancer biology and the resistance
of cancer stem cells (CSCs) to treatment [168]. However,
little is known about the specific molecular mechanisms.
A loss-of-function study on Ptchl showed that it accel-
erates Notchl-induced T-ALL pathogenesis [169]. In
contrast, a mutually exclusive interaction between the
Hedgehog and Notch pathways has been found in skin
cancer [170]. Notchl expression deficiency in squamous
cell carcinoma correlates with increased Gli2 expres-
sion, leading to tumorigenesis [171]. Similarly, the overall
activation of Hedgehog and Notch has been described in
the etiopathogenesis of pituitary adenoma and prostate
cancer [172]. A better understanding and explorations of
the regulatory mechanisms of crosstalk between Hh and
Notch in the control of tumor onset and progression are
needed.
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Role in cancer and therapeutic strategies

Cancer inhibitor or promoter?

Undoubtedly, Notch signaling exerts bimodal effects in
cancer [173]. The homologs of the specific Notch com-
ponents involved are different in diverse cancers. Gain-
of-function mutations involved in Notch genes have
been reported in T-ALL [174], splenic marginal zone
lymphoma [175], chronic lymphocytic leukemia [176],
breast cancer [177], an [178]d adenoid cystic carcinoma
[179]. In addition, aberrant activation of wild-type Notch
signaling can be observed in lung adenocarcinoma [180],
colorectal cancer [181], breast cancer [182], ovarian can-
cer [183], HCC [184], glioma [185] and other aggressive
tumors. Carcinogenic roles of Notch signaling include,
but are not limited to, prevention of apoptosis, preserva-
tion of a stem cell-like phenotype, induction of epithelial-
mesenchymal transition (EMT) [186], generation of drug
resistance, promotion of metastasis, facilitation of angi-
ogenesis [187] and mediation of tumor-mesenchymal
interactions. In some situations, Notch can manifest as a
tumor suppressor, and its loss-of-function or conditional
absence results in neuroendocrine tumors [188], squa-
mous cell cancers [189], and pancreatic ductal carcinoma
[190]. The mechanisms involved above are complex and
context-dependent [173]. Intriguingly, in different sub-
clonal populations within a single tumor, Notch can
simultaneously act as both an oncogenic and tumor sup-
pressor [191]. A subpopulation of non-neuroendocrine
tumor cells with high Notch activity in mouse small cell
lung cancer proliferates more slowly than neuroendo-
crine cells, in accordance with the tumor suppressive
effects of Notch. However, this population of non-neu-
roendocrine cells is comparatively chemo-resistant and
generates growth factors that proliferate neuroendocrine
cells with low Notch activity, thus exerting a noncell-
autonomous oncogenic effect. Does this suggest that the
combination of chemotherapy and Notch inhibitors may
be more effective than chemotherapy alone? Less clearly,
Notch activity was upregulated in murine-derived HCCs
with triple knockout of retinoblastoma protein (RB) and
two related RB family members, p107 and p130 [192], but
after a pan-Notch blockade was performed, accelerated
development of HCC and elevated expression of Notch-
related genes were associated with a good prognosis of
HCC. This demonstrates that some of the Notch tumor
suppressive effects in HCC may not be cell-autonomous,
secondary to crosstalk with Wnt in liver-specific tumor-
associated macrophages [193]. From the perspective of
drug discovery, development, and combination therapy,
pan-inhibition or activation of Notch signaling may not
be the best strategy; tumor types, target cell populations,
Notch paralogs, peripheral immunity, treatment timing,
and combination dosing must be considered.
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In contrast to Notch signaling, inappropriate activation
of Hh signaling leads to carcinogenesis. Deregulation of
Hh signaling may be attributed to three key mechanisms:
1. Mutation driver: ligand-independent constitutive
amplifications of signaling owing to deactivating muta-
tions in patched receptor (Ptchl) or SUFU [194, 195],
invoking mutations in Smo [196] (i.e.,, BCC [197, 198],
subtyped medulloblastoma [199], rhabdomyosarcoma
[200]). 2. Ligand dependency: (i) Auto-secretory ligand-
dependent activation, in which tumor cells respond to
increased expression of their HH ligands in a cell-auton-
omous manner (i.e., glioblastoma [201], neck squamous
cell carcinoma [202, 203], and lung [204], breast [205,
206], ovarian [207], stomach [208, 209], esophageal [210],
pancreatic [211], and prostate cancers); (i) Paracrine-
ligand-dependent model, in which Hh ligands produced
and released by tumor cells switch on HH signaling in the
peripheral stroma, in turn facilitating tumor expansion
and metastasis, and creating a positive feedback loop (i.e.,
prostate, ovarian [212-214], pancreatic [215] and colo-
rectal cancers [216, 217]); (iii) Reverse paracrine ligand-
dependent signaling activation, indicates that Hh ligands
are secreted from the stroma and received by tumor cells
(i.e., multiple myeloma, lymphoma [218], and leukemia
[219, 220]). 3. Noncanonical crosstalk: the specific sign-
aling cascade described in the previous mechanism, like
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RAS-RAF-MEK-ERK and TGEFP [139, 140], upregulates
Gli activity and promotes tumorigenesis (i.e., melanoma
[221, 222], bladder cancer [223, 224], clear cell renal cell
carcinoma [225], and HCC [226]). Although strategies to
inactivate the Hh signaling pathway have been intensively
studied, contradictory results have been obtained. The
existence of interrelationships and cross-talk has pinned
hopes for combination therapy. A cell type capable of
both self-renewal by symmetric division and of generat-
ing more "differentiated” cells by asymmetric division is
found in most types of liquid and solid cancers. The field
of CSC has been reviewed extensively.

Cancer stem cells

CSCs, a cell type capable of both self-renewal by sym-
metric division and of generating more "differentiated"
cells by asymmetric division, are found in most types
of liquid and solid cancers [227, 228]. and contribute to
tumorigenesis, expansion, metastasis, drug resistance
and recurrence. Wnt/p-catenin, TGF-, Hedgehog and
Notch are important signaling pathways for the sustain-
ability of self-renewal in CSCs [206, 229](Fig. 2).

Notch signaling plays an essential role in several cancer
CSCs. In HER2 + breast cancers, membrane levels of Jag-
ged 1 can be increased by HER2 inhibitors, thereby acti-
vating ligand-dependent Notch signaling in CSCs that
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transcription of stemness genes (NANOG, Oct4, Sox2, and Bmi1) in CSCs through Hedgehog signaling to maintain stem cell properties. The role of
the Notch and Hedgehog signaling pathways is demonstrated in the zoomed-in CSC on the right side of the figure. STP enhances CSC activity by
binding STPR secondary to Notch activation. The Hedgehog and Notch pathways also increase ABC-transporters, which increases drug efflux and
leads to chemoresistance. The Hedgehog and Notch pathways also increase ROS further affecting the efficacy of subsequent drug and radiation
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are resistant to trastuzumab [227]. NOTCHI1 activity was
enhanced in triple-negative breast cancer (TNBC) CSC
population after treatment with rapamycin complex 1/2
inhibitors, suggesting that combination therapy target-
ing the Notch pathway could be considered for TNBC
with mutations leading to PI3K/mTOR pathway activa-
tion [230]. In estrogen receptor-positive (ER+) breast
cancers, NOTCHI1 activity is correlated with the risk of
tumor recurrence [231]. More importantly, a number of
ER+ breast CSCs are NOTCH4 dependent, and elevated
NOTCH4 expression relies on phosphorylation of Era at
Ser118 in cell lines containing ERa mutations [232-234].
Therefore, blocking ERa Serll8 phosphorylation or
developing targeted Notch4 inhibitors may be valuable
tools for the treatment of endocrine-resistant ER + breast
cancers. In addition to receptor-associated Notch activa-
tion, sphingosine 1-phosphate induces highly oncogenic
Notch activation via its own receptor in the ER + breast
CSC population, which is also a potential therapeutic tar-
get [234]. Indeed, hypoxia, a feature of the CSC micro-
environment, triggers Notch activation in glioblastoma
CSCs by inducing the production of Vasorin-stabilized
membrane-bound NOTCH1, which prevents degrada-
tion guided by the endocytic mediator NUMB [235].

Hh signaling is critical for the existence of subpopu-
lations of tumor cells that exhibit stem cell characteris-
tics [236, 237]. Hh signaling enables CSCs to maintain
a stemness profile in multiple cancers by driving the
expression of stemness-regulated genes such as NANOG,
Oct4, Sox2, and Bmil [238-240]. CD200 + CD45 cancer
cells have been determined to be a CSC population in
BCC that expresses high levels of Glil and depends on
Glil for survival [240]. Combination therapy with anti-
CD200 + -neutralizing antibodies and Notch inhibitors
is a new route to eradicate BCC. Noncanonical Ptchl-
dependent Hh signaling is required for the survival of
colon CSCs, particularly its regulation with crosstalk of
the Wnt/B-catenin signaling pathway [241]. Suppression
of Hh signaling was shown to inhibit pancreatic CSC
growth in both in vitro and in vivo models, reversing the
chemoresistance and stemness acquired by pancreatic
cancer cells to the administration of gemcitabine [242].
The important role of Hh-Notch crosstalk in CSCs con-
cerning cancer biology and chemoresistance has been
confirmed, with conserved oncogenic properties associ-
ated with hypoxia and immunoevasion [243].

Migration and metastasis

Invasion and metastasis are unique properties of malig-
nant tumors, and Notch and Hh are intertwined with
other pathways that control tumor heterogeneity,
stemness, EMT, angiogenic tumor cell dormancy, and
other behaviors associated with tumor invasion and
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distant metastasis. Notch can interact directly or indi-
rectly with ECM components [244]. In addition, can-
cer cell invasion into blood or lymphatic vessels relies
on an actin-based structure called invadopodia that can
be formed by Notch signaling mediated by activation
upon hypoxia [245]. The coordinated response between
NOTCH and EMT provides support for local angiogen-
esis and lymphangiogenesis [246, 247]. It is significant for
the formation of circulating tumor cell (CTC) clusters,
stabilization of CTCs in the bloodstream and extravasa-
tion of CTCs [248—-251]. Several relatively isolated studies
have also indicated a potential role of Notch in metasta-
sis. Studies targeting Jagged ligands, their upstream regu-
lators, or downstream effectors have proven that a high
level of Jagged 1 is tightly associated with metastasis and
recurrence of osteosarcoma [252]. Furthermore, TGER
increases Jagged 1 expression in metastatic breast can-
cer cells, and Jagged 1 activates NOTCH1 in osteoblasts,
causing IL-6 expression to support the survival of meta-
static breast cancer cells and leading to the development
of osteoclasts mediating bone breakdown. In chemo-
therapy-induced heterogeneous conditions within breast
cancer, cancer cells evolve EMT by enhancing Notch
signaling and have a greater ability to migrate and invade
[253]. The relationship between Jagged-mediated Notch
signaling and metastasis can also be observed in pros-
tate cancer. Li et al. identified a novel FAS-ERK-JAG1-
NOTCH1 axis that may be involved in the stemness
and lung metastasis of oral squamous carcinoma [254].
In HCC, NET-4 promotes cell migration and tumor
metastasis by increasing the enzymatic maturation of
ADAMI10, which in turn increases Notch signaling acti-
vated by cleavage of the Notchl receptor catalyzed by the
y-secretase complex [255]. Activation of the Jagged-1/
Notch/CXCR4 axis is also relevant to specific tumors
[256]. NOTCHS3 levels have also been shown to be asso-
ciated with TNBC seeding and metastasis. Phosphoser-
ine aminotransferase 1-specific upregulation intervenes
in the metastasis of ER- breast cancer by prolonging the
half-lives of NICD1 and B-catenin [257]. HOX transcript
antisense intergenic RNA can positively correlate with
the regulation of the Notch signaling pathway associated
with tongue cancer invasion and metastasis [258].
Compared to invasion and metastasis with Notch, Hh
has been relatively poorly studied and poorly linked. A
number of studies revealed that high Hedgehog-Gli char-
acteristics are associated with metastasis in colon cancer
[119, 259, 260]. Glil activity is relevant to tumor aggres-
siveness in papillary thyroid carcinoma. Hedgehog pro-
motes EMT in a variety of solid tumors, including liver,
pancreatic, colon, and breast cancers [261, 262]. Shh
enhanced the locomotion and invasiveness of gastric and
ovarian cancer cells, while no assistance was observed in
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cells treated with anti-Shh monoclonal [263, 264]. The
growth, adhesion and migration of lung adenocarcinoma
cells are associated with activation of the PI3K and SHh
pathways [265]. Degalactotigonin suppresses human
osteosarcoma metastasis by regulating GSK3p inactiva-
tion-mediated inhibition of the Hedgehog/Glil pathway
[266]. Circ-Glil indirectly upregulated Cyr61 through the
activation of the Hedgehog and Wnt pathways, thereby
exacerbating melanoma metastasis and angiogenesis. In
addition, circ-Glil induced GSK3p phosphorylation at
Ser9 under certain conditions, preventing GSK3p from
binding to Glil and P-catenin, thereby increasing Glil
and p-catenin protein expression [267].

Treatment resistance and tumor recurrence

The prominent problem we face with current antican-
cer therapies, including chemotherapy, radiotherapy,
targeted therapy and immunotherapy, is the emergence
of drug resistance leading to the ineffective control of
tumors. The mechanisms of drug resistance are often
multifaceted and complicated, including altered drug
transport, drug metabolism, altered drug targets, block-
ade of apoptosis, alteration of the cell cycle, formation of
EMT, induction of the CSC phenotype, alteration of the
tumor microenvironment (TME), etc [268, 269].

For chemotherapy, Notch and Hh signaling adjust the
expression of membrane transporters to regulate drug
efflux. Upregulation of Notch by doxorubicin in prostate
and breast cancers increased the expression of adeno-
sine triphosphate-binding cassette subfamily B member
1 (ABCBI1) and drug resistance-associated protein 1
(MRP1), which increased drug efflux and led to chem-
oresistance [270, 271]. This chemo-resistant effect is
reversed by Notch inhibitors. Notch controls apoptosis,
which is reflected in ovarian cancer, pancreatic cancer,
HCC, osteosarcoma and glioblastoma that are resistant
to chemotherapy, and inhibition of Notch activity leads
to apoptosis [272-275]. Notch controls the cell cycle by
inducing the expression of several key cell cycle-related
genes to develop drug resistance [276]. Notch affects
chemoresistance by controlling reactive oxygen species
(ROS) levels in CSCs [277]. Similarly, Hh directly modu-
lates ABCB1 and ABCG2 expression, and inhibition of
Glil improves the response to chemotherapeutic agents
in ovarian cancer [278]. Inhibitors of Gli in combination
with temozolomide for glioblastoma induce apoptosis in
already resistant cells [275]. Hh delivers ROS-induced
signaling to regulate chemoresistance in various cancers.
ROS-associated activation of NRF2 upregulates SHh,
leading to sorafenib resistance in HCC [279]. Drug resist-
ance associated with EMT, CSCs and the TME is also
closely linked to both pathways [280, 281]. Activation of
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SHh promotes migration and invasion and drives DDP
resistance in bladder cancer [282].

In radiotherapy, Notch signaling is initiated upon irra-
diation and regulates DNA damage repair by directly
reacting with ATM and disabling its kinase activity [283,
284]. Notch signaling can also influence radio-resistance
by mediating the function of other molecules involved
in cell survival, metabolism, ROS, and the cell cycle. In
glioma CSCs, Notch inhibition does not change the DNA
damage reaction in CSCs but inhibits Akt and Mcll
activities after radiation, making CSCs more sensitive
to radiation [285]. Notch signaling mediated by NRF2
associated with cellular oxidation has been an impor-
tant determinant of radio-resistance in lung cancer cells.
Notch signaling mediated by NRF2 associated with cel-
lular oxidation has been an essential decision factor for
radio-resistance in lung cancer cells. The role of Hh in
tumor radio-resistance has also been mentioned. Glil is
usually upregulated at the HNSCC tumor-stroma cross-
over after irradiation and assists in stroma-mediated
radio-resistance, which can be reduced by pharmacologi-
cal inhibition [286, 287].

In terms of targeted therapies, tumors resistant to
tyrosine kinase inhibitors (TKIs) frequently exhibit Notch
upregulation. In AML with FLT3 mutations treated with
FLT3-TKI, Notch signaling is upregulated, leading to
alternative ERK activation and resistance. This resistance
can be eliminated by Notch inhibitors [288]. Similarly,
resistance to TKIs in lung adenocarcinomas with EGFR
mutations and to BRAFi in melanomas carrying activated
BRAF mutations can be eliminated by Notch inhibitors
[289, 290]. The interaction of Hh with the EGFR signal-
ing pathway is evident in many embryonic developmental
processes and is therefore relevant to the development
of TKI resistance. NSCLC and HNSCC cells with EGEFR-
TKI resistance exhibit hyperactivation of Hh signaling
[291]. Hh pathway inhibitors act synergistically with
TKIs to increase tumor sensitivity to chemotherapy and
prolong survival in tumor-bearing animals [292]. To date,
several mechanisms of resistance to Smo antagonists tar-
geting the Hh pathway have been successively uncovered,
including the following. Hh pathway components include
Smo mutations [293, 294], SUFU deletion [295, 296], and
amplification of Gli or Hh target genes [296]. 2. activa-
tion of nonclassical Hh pathways [141, 297, 298]. 3. loss
of primitive cilia [299].

In the context of immunotherapy, Notch signaling has
a regulatory role in immune cells in the local or systemic
TME, and activation of Notch facilitates immunotherapy
[300]. A significant association between NOTCH1/2/3
mutations and better outcome with immune check-
point inhibitors (ICIs) was found in wild-type genetic
NSCLC patients [301]. Hh affects immune responses in a
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complicated and varied manner. Hh inhibitors in pancre-
atic ductal adenocarcinoma suppress cancer-associated
fibroblast (CAF) proliferation and translation and dimin-
ish the barrier to immune cell infiltration into the tumor
[302]. Tumor cell-secreted Shh induces tumor-associ-
ated macrophage (TAM) M2 polarization and restrains
CD8+ T-cell recruitment to the TME, thereby mediating
immunosuppression [303]. Hh activity is not only a pre-
dictor of resistance to ICIs as a biomarker, but in associa-
tion with PD-L1 expression, it can better forecast clinical
outcomes [304].

The generation of resistance to anticancer therapies is
a major cause of failure of various treatments. Tumors
evolve through these conserved developmental signal-
ing pathways (Notch, Hh) under the selective pressure
of therapy, resulting in drug resistance. Therefore, the
exploration of these pathways is necessary to eradicate
drug resistance.

Tumor microenvironment

Recent evidence suggests that there are intricate interac-
tions between tumor cells and stroma that have a signifi-
cant impact on both tumor progression and regression.
In particular, the mutual interactions between tumor
cells and immune cells and CAFs deserve deeper and
more exploration.

Cancer-associated immune cells

Notch and Hh signaling play an important role in
immune system development and homeostasis. The roles
of Notch and Hh in immune cells have attracted much
attention for immunotherapy reasons. Notch has been
demonstrated to play a dual sword role in the regulation
of immune responses in tumors, a role equal to that of
regular hematopoiesis and the production of immune
effector cells [305](Fig. 3). Upregulation of NOTCHI1
and NOTCH3 (perhaps) in basal- like breast cancer
cell(BLBCC) leads to secretion of cytokines, such as IL1j
and CCL2, which recruit monocytes that mature into
tumor-associated macrophages (TAMs) in stroma. TAM
can secrete TGEP, which combines with the receptor
TGEPR1 in tumor cells to induce Jagged 1 via SMAD2/3.
TAM can secrete TGFp, which combines with the
receptor TGFBR1 in tumor cells to induce Jagged 1 via
SMAD?2/3. Jagged 1 in turn induces NOTCH1 and per-
haps NOTCH3, forming a Jagged-involved tumor-stro-
mal paracrine signaling loop [306, 307]. Myeloid-derived
suppressor cells (MDSCs) enhance the stemness of breast
cancer cells by activating Notch and STAT3 [308]. Dys-
regulation of Notch signaling in immature T cells induces
MDSCs in T-ALL-bearing mice [309]. The absence of
NOTCH2 in CD8+T cells compromises the antitumor
response, which can be enhanced by Notch stimulation of
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DLL1-expressing dendritic cells [310-312]. An additional
potential function of DLL1-mediated Notch activation
is to coculture with activated CD4/8 4T cells to convert
them into stem cell-like memory T cells, which upon res-
timulation leads to a positive antitumor response [313].
Jaggedl-induced Notch stimulation increases the expres-
sion and secretion of multiple cytokines associated with
increased macrophage infiltration and reduced T-cell
activity [314]. High NOTCH3 expression is associated
with low infiltration of CD8+T cells and high infiltra-
tion of immunosuppressive cells in gastric cancer [315].
The Mechanism section mentions TCR-mediated ligand-
independent Notch activation, the intensity of which is
determined by the amount of NOTCH1 and NOTCH2
(possibly) interacting with the immune synapse [61].
Conditional expression of the intracellular domain of
NOTCHI1 under the granzyme B promoter in CD8+T
cells with antigen specificity enhanced the cytotoxic
response and overcame the tolerogenic effect of MDSCs.
This provides new insight into the enhanced anticancer
activity of chimeric antigen receptor (CAR) T cells [316].
Hh signaling facilitates the activation of lymphocyte
functions such as migration, multiplication, and cytotox-
icity [317]. However, Hh was previously proven to pro-
mote TAM polarization to restrain tumor-infiltrating
CD8 T +cell recruitment (mentioned in the drug resist-
ance section) [303]. Hh also promotes Th2 differentiation
in naive human CD4+ T cells [318]. Glil evokes polari-
zation of invading myeloid cells toward MDSCs by induc-
ing Schlafen 4 [319]. Hh signaling is also implicated in
the functions of dendritic cells under hypoxic conditions,
including migration, chemotaxis, phagocytosis, and
cytokine secretion [320]. The above results suggest that
the up- or downregulation of immune cell function and
immune response are dependent on Hh signaling.

Cancer-associated fibroblasts

CAFs are essential components of the TME, yielding and
remodeling an extensive extracellular matrix, accounting
for a substantial proportion of the tumor volume [321,
322]. Conventional fibroblasts are an important source
of CAFs, and other cell types may play a partial role
[323]. Notch is considered to function in CAF activation
and in crosstalk between CAFs and mutant cancer cells.
In ductal carcinoma in situ (DCIS) of the breast, direct
Notch-mediated crosstalk between tumor cells and CAFs
was found [324, 325]. Direct interaction between Jaggedl
on breast DCIS and NOTCH2 receptors on peripheral
fibroblasts is possible [326]. In lung cancer, Notch activa-
tion is induced in CAFs and is associated with poor prog-
nosis [327, 328]. Myofibroblastic CAFs (myCAFs) may be
activated by IL-6/IL-8-mediated Notch/HES1 and STAT3
pathways in the tumor microenvironment to increase
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CSCs [329]. Notch modulates two matrix-degrading
enzymes, MMP2 and MMP4, via NF-«B signaling to
remodel the extracellular matrix in the TME [330]. Simi-
larly, urokinase PA can be directly regulated by Notch
[331].

CAFs are not only a potential source of Hh ligands in
the cancer stroma but may also respond to H signaling
through nuclear Gli-1 activation [332]. However, it has
been mentioned in reviews that CAFs that inhibit tumor
progression through stroma-specific Hh stimulation have
been detected in cancer-bearing mice, including tumor
models of the colon, bladder, and pancreas [333-335].

Inhibition of Hh reduced the number of myCAFs and
increased the number of inflammatory CAFs in pan-
creatic ductal adenocarcinoma, which correlated with a
cytotoxic T-cell reduction and regulatory T-cell incre-
ment, consistent with increased immunosuppression
[336]. Given the heterogeneity of CAFs, a number of
studies have shown that CAF-mediated Hh signal-
ing is biased toward pro-tumorigenicity. SHh is highly
expressed in CAF lysate CAF-derived exosomes, improv-
ing the growth and migration ability of esophageal can-
cer cells in vitro and in vivo. In addition, CAFs secreted
extracellular vesicle-encapsulated miR-10a-5p, which
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activated Hh signaling and promoted angiogenesis and
tumorigenicity in cervical squamous cell carcinoma cells
[337]. In prostate cancer, CAFs expressing high levels of
CD90 play a key role in promoting tumor progression
by activating Hh and altering other signaling pathways
[211].

Tumor angiogenesis

Control of angiogenesis is considered a promising
approach to limit tumor progression and metastasis
(Fig. 4). During physiological angiogenesis, Activation
of DIll4-Notch-VEGFR2 axis is essential for appropri-
ate angiogenesis and couples germinating angiogenesis
to arteriogenesis. Similarities are shown in tumorigenic
angiogenesis, activation of VEGF signaling in the "tip
cells" at the front of the new vascular buds induces the
expression of DLL4, which subsequently triggers the
activation of NOTCHI in adjacent endothelial cells and
suppresses the expression of VEGFR2 and VEGFR3 in
adjacent endothelial cells, giving the cells a "stalk" phe-
notype and stopping the sprouting of new capillary ves-
sel, and eventually forming new vessels [338]. Blockade
of DLL4 causes vascular hypersprouting and disturbed
angiogenesis. mAbs of DLL4 are effective in preclinical
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models of cancer [339]. Nevertheless, chronically inhib-
iting DLL4-NOTCH1 signaling induces hemangiomas
and hemorrhages. Besides, Jagged 1 expressed by tumor
cells mediates Notch activation and inhibits the expres-
sion of soluble VEGFR1, which traps VEGF outside the
cell and antagonizes VEGF signaling activation [340]. It
is suggested that selective intervention with Jagged 1
is an appealing potential strategy for regulating tumor
angiogenesis.

The Hh pathway has been implicated in vascular
development and neovascularization in human embry-
onic development, tissue injury and disease [341-343].
Indeed, the role of the Hh pathway in modulating tumor
angiogenesis still deserves to be further explored [344].
There is a significant association between IHh and VEGF
protein expression in HCC [345]. In pancreatic cancer,
SHh indirectly promotes tumor angiogenesis by inducing
Ptchl and Glil, thereby inhibiting two enriched stroma-
derived antiangiogenic factors (THBS2 and TIMP2), and
directly promotes tumor angiogenesis by activating small
GTPases of the RHO family in the presence of VEGF
[346]. Analogously, inhibition of nuclear translocation
of Glil and transcriptional activity associated with Hh
signaling can also inhibit angiogenesis in TNBC [347].
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Moreover, extracellular vesicle-encapsulated microRNA-
10a-5p detached from CAFs promotes cervical squamous
cell carcinoma cell angiogenesis via the Hh signaling
pathway [337].

Targeting Hedgehog and Notch signaling

Given the critical roles of Notch and Hh signaling in
malignant transformation and oncogenic advance-
ment, several agents targeting these pathways have been
designed to potentiate antitumor effects and have been
tested in animal models. An increasing number of tar-
geted drugs have also been advanced to testing in clini-
cal trials. In this section, we summarize current strategies
targeting Notch and Hh signaling and discuss their anti-
cancer effects, with the aim of promoting the leap from
bench to bedside.

Therapeutic strategies based on Notch signaling

In light of the aberrant expression and wide participation
of Notch signaling in tumor development, widespread
efforts have been made to search for Notch-targeted
therapeutic approaches, and numerous agents are being
investigated in preclinical studies and undergoing clini-
cal trials for cancer treatment [348, 349]. Current tar-
geted strategies tested in the clinic principally converge
on inhibiting or regulating y-secretase and blocking the
ligand-receptor interaction via related monoclonal anti-
bodies (Table 1) [350].

y-Secretase inhibitors and modulators

Originally developed and used for the treatment of Alz-
heimer’s disease, y-secretase inhibitors (GSIs) are cur-
rently extensively studied as anticancer drugs due to
their potential to inhibit the activation of Notch signaling
[351, 352]. In preclinical tumor models, GSIs have shown
antitumor effects in a variety of tumor models, including
lung [353], breast [354], glioma [355], pancreatic [356],
colorectal [357], and ovarian cancers [358]. Although
the application of pan-Notch GSI sometimes results in
unexpected toxicity [359, 360], its antitumor activity has
been shown in many cancer types through diverse mech-
anisms [361-364]. These promising findings motivated
the initiation of a series of phased clinical trials. How-
ever, some of the GSIs (BMS-986115 [365], RO4929097
[366], MKO0752 [367]) were discontinued in phase I clini-
cal trials due to dose-limiting toxicity. Only RO4929097
and PF-03084014 have been included in phase II trials
to date. Regrettably, the antitumor effects achieved were
more limited, with no objective remission responses
observed in the treatment of platinum-resistant ovarian
cancer with RO4929097 [368]. Efficacy was also poor in
metastatic melanoma [369], glioblastoma [370], and met-
astatic colorectal cancer [371]. Promisingly, PF-03084014
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(nirogacestat) in desmoid tumors allowed 29% of
patients to undergo a partial response lasting more than
2 years [372]. A phase III clinical trial of nirogacestat is
expected. In contrast to the paninhibitory effect of GSIs
on y-secretase, y-secretase modulators (GSMs) maintain
a portion of Notch signaling function by altering the cat-
alytic activity of y-secretase [373]. Treatment of T-ALL
cell lines with MRK-560 targeting the catalytic subclass
of the y-secretase complex has been demonstrated to
decrease mutant NOTCH1 processing and lead to cell
cycle arrest, and the toxicity can be tolerated [374].

Antibodies against ligands and receptors

Given that the location of extracellular ligands and recep-
tors facilitates direct drug transport and targeted bind-
ing, enabling the development of antibodies targeting
receptors and ligands was considered [375, 376]. Tar-
geting antibodies against different receptors and ligands
enables precise targeting and reduces serious adverse
effects.

Antibodies against ligands

For the Notch ligands currently being explored and
discovered, Jaggedl, DLL3 and DLL4 are the most
relevant and good quality studies. At the preclinical
stage, 15D11 is one of the most prospective human
monoclonal antibodies targeted against Jagged 1, with
improved chemosensitivity, reduced bone metasta-
ses, and a high safety profile [377]. High expression of
both Jagged 2 and DLL1 is positively associated with
tumor progression and may also be promising targets,
although agents aimed at these ligands have not been
reported [328, 378]. DLL3 is an inhibitory ligand for
NOTCH and is one of the ligands with positive results
in clinical applications [379]. Rovalpituzumab tesirine
(Rova-T) results revealed an objective remission rate of
18.3% and a 38% controlled incidence of severe drug-
related AEs in patients with SCLC and large cell neu-
roendocrine carcinoma (LCNEC) [376]. Rova-T has a
shorter OS and lower safety rate than standard second-
line chemotherapy [380]. The mOS for SCLC patients
receiving Rova-T after at least two lines of treatment
was only 5.6 months, with an ORR of 12.4% [381]. Two
clinical trials on SCLC, AM757 (bispecific antibody)
and HPN328 (trispecific antibody), are still under
recruitment. In addition, patient-derived glioma tumor
spheroids with IDH mutations are susceptible to Rova-
T in vitro, implicating the possibility of further explo-
ration of indications and new drugs [382]. DLL4 is an
important promoter of tumor angiogenesis and main-
tenance of CSCs [339]. It exhibits antitumor effects
in ovarian cancer when blocked in combination with
VEGF [383]. In phase I clinical studies, solid tumors
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Table 1 Recent clinical trials targeting the Notch pathway
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Target Drug name Conditions Combination Phase Current states Trial number
y-Secretase 1Y3039478 (JSMD194) T-ALL/T-LBL Dexamethasone /11 Completed NCT02518113
Advanced Cancer Prednisone I Completed NCT01695005
Advanced or Metastatic Taladegib, Abemaciclib, I Completed NCT02784795
Solid Tumors Cisplatin, Gemcitabine,
Carboplatin, LY3023414
Nirogacestat (PF- Desmoid Tumors / - Il Active, not recruiting  NCT01981551
03084014) Aggressive Fibromatosis
Advanced Breast Cancer - Il Terminated NCT02299635
Advanced Cancer And - I Completed NCT00878189
Leukemia
Progressive, surgically - Il Recruiting NCT04195399
unresectable desmoid
tumors
Advanced Breast Cancer ~ Docetaxel I Terminated NCT01876251
Metastatic Pancreatic Gemcitabine and Nab- Il Terminated NCT02109445
Adenocarcinoma paclitaxel
Desmoid Tumors - Il Active, not recruiting NCT03785964
R0O4929097 (R4733) Breast Cancer Carboplatin, paclitaxel I Terminated NCT01238133
Metastatic Pancreas - I Completed NCT01232829
Cancer
Advanced Solid Tumors Ketoconazole, rifampin, | Completed NCT01218620
Midazolam, Hydrochlo-
ride, Omeprazole, Tolbuta-
mide and Dextromethor-
phan Hydrobromide
Metastatic Colorectal - Il Completed NCT01116687
Cancer
Melanoma - Il Terminated NCT01120275
Metastatic Epithelial - I Completed NCT01175343
Ovarian Cancer, Fallopian
Tube Cancer, or Primary
Peritoneal Cancer
Glioblastoma - Il Terminated NCT01122901
Advanced Solid Tumors - | Completed NCT00532090
Malignant Glioma Temozolomide and radia- | Completed NCTO01119599

AL101 (BMS-906024) Breast cancer

Adenoid cystic carcinoma
Advanced or Metastatic
Solid Tumors

Acute T-cell Lympho-
blastic Leukemia or T-cell
Lymphobilastic Lym-
phoma

Advanced / Metastatic
Solid Tumors

tion therapy

Dexamethasone

Paclitaxel, 5-Fluorouracil,
Carboplatin, Leucovorin,
Irinotecan

Il Active, not recruiting
Il Active, not recruiting

| Completed

| Completed

| Completed

NCT04461600
NCT03691207
NCT01292655

NCT01363817

NCT01653470
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Table 1 (continued)
Target Drug name Conditions Combination Phase Current states Trial number
DLL3 Rovalpituzumab tesirine  Small cell lung cancer Topotecan, Dexametha- Il Completed NCT03061812
(Rova-T) sone
Small cell lung cancer Dexamethasone Il Terminated NCT03033511
Small cell lung cancer - Il Completed NCT02674568
Cancer - Il Completed NCT03543358
Small cell lung cancer - il Completed NCT01901653
Small cell lung cancer Cisplatin, Etoposide I Terminated NCT02819999
Small cell lung cancer Ipilimumab, Nivolumab il Terminated NCT03026166
AMG757 Small cell lung cancer Pembrolizumalb, CRS I Recruiting NCT03319940
Mitigation Strategies
HPN-328 Small cell lung cancer - il Recruiting NCT04471727
DLL4 Enoticumab (REGN421) Advanced Solid Malignan- - | Completed NCT00871559
cies
Demcizumab (OMP- Non-Squamous Non- - I Completed NCT01189968
21M18) Small Cell Lung Cancer
Platinum Resistant Ovar-  Taxol I Terminated NCT01952249
ian
Locally Advanced or Abraxane, gemcitabine I Completed NCT01189929
Metastatic Pancreatic
Cancer
Metastatic Pancreatic Abraxane, gemcitabine Il Completed NCT02289898
Ductal Adenocarcinoma
Non-Squamous Non- Pemetrexed, carboplatin = |l Completed NCT02259582
Small Cell Lung Cancer
Locally Advanced or Pembrolizumab I Completed NCT02722954
Metastatic Solid Tumors
Notch 1 Brontictuzumab (OMP- Solid Tumors - | Completed NCT01778439
52M51) Adenoid Cystic Carcinoma - - Completed NCT02662608
Lymphoid Malignancies - | Completed NCT01703572
Metastatic Colorectal Trifluridine/tipiracil | Completed NCT03031691
Cancer
Notch 2/3 Tarextumab (OMP-59R5)  Pancreatic Cancer Gemcitabine, Nab- /1l Completed NCT01647828
Paclitaxel
Small Cell Lung Cancer Etoposide, Cisplatin or I/11 Terminated NCT01859741
Carboplatin
Solid Tumors - | Completed NCT01277146
Notch 3 PF-06650808 Advanced solid tumors - | Terminated NCT02129205
Pan- Notch CB-103 Advanced or metastatic - /11 Recruiting NCT03422679
(transcriptional solid tumors and haema-
complex) tological malignancies

The relevant clinical trial data were obtained from the registration on ClinicalTrials.gov

exhibited a therapeutic response to both Enoticumab
and Demcizumab, but the latter was associated with
significant cardiotoxicity [384, 385]. Targeting DLL4
and VEGF dual variable domain immunoglobulins,
ABT-165 demonstrated excellent efficacy and safety
in preclinical models, and navicixizumab has shown

modest antitumor efficacy and AEs in a phase I clinical
trial in solid tumors [386, 387].

Antibodies aimed at receptors

NOTCHI serves as a facilitator in various tumors, such
as colorectal cancer and T-ALL, and is regarded as a pos-
sible antitumor target [388, 389]. In a phase I clinical trial
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for refractory solid tumors, the administration of bron-
tictuzumab resulted in partial response in 2 patients and
stable disease at > 6 months in 4 patients [390]. Similarly,
NOTCH2 and NOTCHS3 act as promoters in breast can-
cer, pancreatic ductal adenocarcinoma [391], and lung
cancer [392]. OMP-59R5, a NOTCH2 and NOTCH3
blocker, has been investigated in PDAC [393], SCLC,
and other solid tumors in clinical trials [394]. How-
ever, OMP-59R5 in combination with chemotherapy
has not achieved a good objective therapeutic response.
PF-06650808 is a novel anti-NOTCH3 ADC that has
achieved remission with a controlled safety profile in
breast cancer patients with positive NOTCH3 expres-
sion [395]. The effect of NOTCH4 on tumors is context
dependent, and there is a lack of well-studied agents.

ADAM inhibitors

ADAMI0, or in some cases ADAM17, is the key protein
for S2 cleavage of the ligand-receptor binding domain in
the Notch pathway. A phase I clinical trial of the bispe-
cific ADAMI10/17 inhibitor INCB7839 (aderbasib) is
being conducted in recurrent, high-grade pediatric
gliomas [396]. ZLDI-8, a novel ADAM17 inhibitor, was
found to inhibit Notch and reverse rectal cancer resist-
ance to 5-fluorouracil or irinotecan in vivo and in vitro
[397]. Inhibitors of specific ADAMI10 have not been
reported.

Transcriptional complex inhibitors

Activation of transcription is the final step in signaling.
NOTCH transcription is dependent on a complex com-
posed of CSL, NICD, and Maml. The small molecule
IMR-1 disrupts the recruitment of Mamll and attenu-
ates target gene transcription [398]. CB103 is described
as an inhibitor of the Notch transcriptional complex via
protein—protein interactions and is currently in clini-
cal development with initial success in the inhibition of
breast cancer and leukemia xenografts [399, 400].

Targeting Hh signaling for cancer therapy

It was elucidated that Hedgehog signaling could be
blocked at various sites. Over the past decades, differ-
ent methods aiming to inhibit the Hh pathway have been
widely investigated in both solid and hematological can-
cers. Current targeted strategies mainly focus on inhibit-
ing key components in the pathway cascade, such as SHh,
Smo, and Gli [401-404].

Targeting SHh

The overexpression of SHh contributes to excessive Hh
signaling and is positively correlated with tumor burden
in nearly all cancer types [405]. As such, inhibiting SHh
may represent an attractive therapeutic opportunity.
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Some SHh inhibitors have been developed to delay tumor
progression. For example, 5E1 is a monoclonal anti-Shh
antibody that can block the binding of SHh from inter-
acting with Ptchl. The use of 5E1 was demonstrated to
repress tumor proliferation and enhance the efficacy
of radiation and cisplatin in cervical cancer [406-408].
RU-SKI 43, a dihydrothienopyridine derivative that was
designed to target Hh acyltransferase [409], and previous
studies confirmed its antitumor potential both in vivo
and in vitro [410, 411]. Sulforaphane is the main ingredi-
ent in broccoli/broccoli sprouts and was recently found
to inhibit leukemia stem-like cell growth and prolifera-
tion by modulating SHh signaling [412]. Furthermore,
the N-terminal product of SHh (ShhN) has been shown
to be overexpressed in cancer and thus can be recognized
as a promising target that merits further consideration
[413]. Despite these encouraging findings, none of these
agents has been evaluated in clinical trials, and tremen-
dous efforts are also needed to translate related basic
research into clinical practice.

Targeting Smo

Smo represents a primary and promising target for block-
ing Hh signaling for a long time. Some Smo antagonists
have been tested in the clinic. Mechanically, Smo antago-
nists specifically bind to the transmembrane domain and
the pockets in the extracellular domain of Smo so as to
inhibit Hh signal transduction [344, 414].

Vismodegib (GDC-0449) was the first FDA-approved
inhibitor in 2012 that can bind to SMO to disrupt its con-
sistent activation, primarily for the treatment of patients
with recurrent, locally advanced or metastatic basal cell
carcinoma (BBC) [415, 416]. Several clinical trials have
been conducted to test the anticancer effects of vismod-
egib as monotherapy or in combination with other agents
in various conditions, including metastatic pancreatic
cancer, prostate cancer, gastric cancer, recurrent glioblas-
toma, myelofibrosis, and acute myeloid leukemia [417—
421]. Most of these trials are in stages I and II, as listed
in Table 2. At present, when surgery and radiotherapy are
inappropriate for anticancer therapy, vismodegib remains
the major option for locally advanced BCC patients
[422]. Although some complete or partial antitumor
responses were obtained (NCT00607724, NCT02667574,
NCT01815840, NCTO01367665) [423-427], disap-
pointing results remain (NCT01088815, NCT0160118,
NCTO01537107) [428-430], and unexpected adverse
events associated with vismodegib frequently led to inter-
ruption of treatment, ultimately leading to cancer recur-
rence (NCT00957229) [431]. Moreover, in the course of
vismodegib treatment, researchers found a novel Smo
mutation that was typically accompanied by therapeu-
tic resistance, which limited further clinical application
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Table 2 Recent clinical trials targeting the Hedgehog pathway
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Target Drug name Conditions Combination

Phase Current states

Trial number

SMO  Vismodegib (GDC-0449)  Basal Cell Carcinoma -
metastatic pancreatic cancer Gemcitabine and nab-paclitaxel
Basal Cell Carcinoma -
Advanced or Metastatic Sarcoma R04929097

Recurrent Childhood Medul- -
loblastoma

Basal Cell Carcinoma -

Adult Medulloblastoma -
Medulloblastoma Temozolomide
Medulloblastoma Chemotherapies

Locally Advanced or Metastatic -
Solid Tumors

Multiple Basal Cell Carcinomas -

Locally Advanced Basal Cell Radiation therapy

Carcinoma, Skin Cancer

Basal Cell Carcinoma Radiation therapy

Breast cancer Paclitaxel, Epirubicin, Cyclophos-
phamide

Skin Basal Cell Carcinoma Pembrolizumab

Basal Cell Carcinoma -

Acute Myeloid Leukemia Ribavirin, Decitabine
Intracranial Meningioma Recur-  FAK Inhibitor GSK2256098,
rent Meningioma Capivasertib, Abemaciclib

Basal Cell Carcinoma -

Basal Cell Carcinoma of the Skin ~ Mohs surgery
Recurrent Skin Cancer

Basal Cell Carcinoma -
Basal Cell Carcinoma -

Multiple Basal Cell Carcinomas Aminolevulinic acid %20 topical
solution

Prostate cancer -

Advanced Chondrosarcomas -

Recurrent Pancreatic Carcinoma  Gemcitabine Hydrochloride
Metastatic Pancreatic Canceror  Erlotinib Hydrochloride, Gemcit-

Solid Tumors abine Hydrochloride

Advanced Stomach Cancer or Oxaliplatin, leucovorin calcium,

Gastroesophageal Junction fluorouracil

Cancer

Prostate cancer Goserelin Acetate, Leuprolide
Acetate

Small Cell Lung Carcinoma Cisplatin, Cixutumumab,
Etoposide

Keratocystic Odontogenic Tumor -
Sonidegib (LDE225) Basal Cell Carcinoma -
Advanced solid tumor -
Basal Cell Carcinoma -

Pancreatic cancer Gemcitabine and nab-paclitaxel
medulloblastoma Azacitidine, Decitabine
lung cancer Etoposide, Cisplatin

Prostate cancer -
Recurrent Ovarian Cancer -
Hepatocellular Carcinoma -

Active, not recruiting
Completed
Completed
Completed
Completed

Completed
Completed
Terminated
Recruiting

Completed

Completed
Completed

Terminated

Unknown

Completed
Completed
Unknown
Recruiting

Terminated
Completed

Completed
Terminated
Completed

Completed
Active, not recruiting
Completed
Active, not recruiting

Completed

Terminated
Completed

Completed
Completed
Completed
Completed
Completed
Completed
Completed
Completed
Completed
Completed

NCT02667574
NCT01088815
NCT01815840
NCTO01154452
NCT01239316

NCT01367665
NCT00939484
NCT01601184
NCT01878617
NCT00607724

NCT02639117
NCT01835626

NCT02956889
NCT02694224

NCT02690948
NCT02436408
NCT02073838
NCT02523014

NCT02067104
NCT01631331

NCT01700049
NCT01898598
NCT01556009

NCT02115828
NCT01267955
NCT01195415
NCT00878163

NCT00982592

NCTO01163084

NCT00887159

NCT02366312
NCT01327053
NCT00880308
NCT01350115
NCT02358161
NCT02129101
NCT01579929
NCT02111187
NCT02195973
NCT02151864
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Table 2 (continued)
Target Drug name Conditions Combination Phase Current states Trial number
Esophageal cancer Everolimus I Completed NCT02138929
Multiple Myeloma Lenalidomide Il Completed NCT02086552
Basal Cell Carcinoma Imiquimod Il Recruiting NCT03534947
Pancreatic Ductal Adenocarci- Gemcitabine, nab-paclitaxel /1l Terminated NCT01431794
noma
Advanced pancreatic cancer Fluorouracil; Leucovorin, Oxalipl- | Completed NCT01485744
atin; Irinotecan
Advanced solid tumor BKM120 I Completed NCT01576666
Advanced solid tumor - I Completed NCT01208831
Solid tumors, Ovarian Cancer Paclitaxel | Completed NCT01954355
Advanced or metastatic basal Buparlisib Il Terminated NCT02303041
cell carcinoma
PF-04449913 (Glasdegib) Acute Myeloid Leukemia Low dose ARA-C (LDAC), decit- I Completed NCT01546038
abine, daunorubicin, Cytarabine
Chronic Myelomonocytic - I Completed NCT01842646
Leukemia
Hematologic Malignancies - Il Completed NCT00953758
Solid Tumors - I Completed NCT01286467
Acute Myeloid Leukemia Daunorubicin + cytarabine, Il Completed NCT03416179
azacitidine, placebo, Cytarabine
Acute Myeloid Leukemia Gemtuzumab Ozogamicin Il Recruiting NCT04168502
Acute Myeloid Leukemia Gemtuzumab Ozogamicin Il Terminated NCT04093505
Acute Myeloid Leukemia CPX-351 Il Recruiting NCT04231851
Acute Myeloid Leukemia Decitabine Il Terminated NCT04051996
Hematologic Malignancies Azacitidine I Completed NCT02367456
Acute Myeloid Leukemia Avelumab,azacitidine, gemtu- I/l Active, not recruiting  NCT03390296
zumab ozogamicin, Glasdegib,
glasdegib maleate, venetoclax
LY2940680 (Taladegib) Localized Esophageal or Gastroe- Carboplatin, paclitaxel and radia- I/l Completed NCT02530437
sophageal Junction Cancer tion therapy
Small Cell Lung Carcinoma Carboplatin, etoposide, placebo I/l Terminated NCT01722292
Neoplasm Metastasis - I Completed NCT01919398
Advanced Cancer - I Completed NCT01226485
Advanced or Metastatic Solid Taladegib, abemaciclib, cisplatin, | Completed NCT02784795
Tumors gemcitabine, Carboplatin,
LY3023414
TAK-441 Advanced nonhematologic - Completed NCT01204073
malignancies, Basal Cell Carci-
noma
BMS-833923 Advanced or metastatic cancer - I Completed NCT00670189
small cell lung cancer Carboplatin, etoposide I Completed NCT00927875
Metastatic gastric, gastroesopha-  Cisplatin, capecitabine I Completed NCT00909402
geal, or esophageal adenocar-
cinomas
Leukemia Dasatinib /11 Completed NCT01218477
LEQ506 Advanced solid tumors - I Completed NCT01106508
IP1-926 Advanced Pancreatic Adenocar-  FOLFIRINOX I Completed NCT01383538
cinoma
Recurrent head and neck cancer  Cetuximab I Completed NCT01255800
Advanced chondrosarcoma - Il Completed NCT01310816
Metastatic pancreatic cancer Gemcitabine /1 Completed NCT01130142

Metastatic solid tumor

I Completed

NCT00761696
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Table 2 (continued)
Target Drug name Conditions Combination Phase Current states Trial number
Gl arsenic trioxide Basal Cell Carcinoma - /1 Completed NCT017918%4
Advanced Neuroblastoma or - Il Completed NCT00024258
Other Childhood Solid Tumors
High-Grade Glioma Temozolomide and radiation Completed NCT00720564
therapy
Newly Diagnosed Gliomas Radiation therapy I Completed NCT00095771
Recurrent Malignant Glioma - I Completed NCT00185861
Acute Promyelocytic Leukemia  Tretinoin Il Completed NCT01404949

The relevant clinical trial data were obtained from the registration on ClinicalTrials.gov

of Smo-based therapy [432, 433]. Hence, how to reduce
treatment-associated toxic side effects and Smo mutation
is the next challenge we need to overcome.

Sonidegib, also known as LDE-225, is a synthetically
derived, new molecular entity that exerts its function by
binding and inhibiting Smo receptors and is the second
Smo inhibitor approved by the FDA in 2015 for the treat-
ment of patients with locally advanced BCC not amena-
ble to curative surgery or radiation therapy [434—436].
The use of sonidegib was typically well tolerated and
yielded impressive clinical efficacy with reported objec-
tive responses, and there was a significant association
between the anticancer efficiency and the Hh signaling
activation monitored by gene expression (NCT01350115,
NCTO01327053, NCTO00880308) [437-442]. Consist-
ently, in a recent observational, retrospective, single-
center study, researchers evaluated the clinical efficacy
and safety of sonidegib in patients with BCC. The results
showed that all enrolled subjects benefited from the
treatment, either with a response or stabilization of
the disease, supporting the further application of son-
idegib in the clinic [443]. Nevertheless, in patients with
BCC who were resistant to vismodegib, the same thera-
peutic resistance was also observed, thereby hamper-
ing sonidegib’s anticancer effect (NCT01529450) [444].
Future efforts in targeting Smo in cancer should focus on
approaches addressing and overcoming these resistance
mechanisms [42, 445]. In addition to BCC, previous and
ongoing phased clinical trials have also been conducted
to test the activity and response of sonidegib in other
cancer types, including hepatocellular carcinoma, lung
cancer, pancreatic adenocarcinoma, prostate cancer and
esophageal cancer (Table 2).

PF-04449913 (Glasdegib) is another Smo inhibi-
tor developed by Pfizer and has been approved by the
FDA for treating both solid tumors and hematological
malignancies [446-449]. Previous phased clinical trials
identified its safety, tolerance, and potential antitumor

efficacy in myeloid malignancies, glioblastoma and other
advanced solid tumors [450-452]. Puhlished data sup-
port its further evaluation and motivate the subsequent
initiation of phase III clinical trials as monotherapy or in
combination with standard chemotherapy, which is sum-
marized in Table 2.

Taladegib (LY-2940680) can bind to the Smo receptor,
thereby blocking the propagation of Hh signaling. Cur-
rently, this synthetic small molecule inhibitor is being
tested in several clinical trials to treat patients with
advanced solid tumors [453]. TAK-441 is a highly potent
and oral SMO inhibitor that has activity against both Hh
ligand overexpression and mutation-driven Hh signaling
pathway activation [454].

Furthermore, other Smo inhibitors, including
LDE225, LEQ506, BMS-833923, IPI-926, LY2940680
and GDC0499, are currently under clinical investigation
[455].

Targeting Gli

As previously mentioned, Gli represents a crucial tran-
scription factor that can act as a downstream effector of
canonical and noncanonical Hh signaling. Consequently,
targeting Gli has the potential to overcome therapeutic
resistance caused by Smo inhibitors [456, 457]. Simulta-
neously, extraordinary efforts have been made to discover
and design reagents targeting Gli to achieve Hh pathway
inhibition.

Initially, identified from cellular screening assays in
2007, GANT58 and GANT61 were demonstrated to be
selective inhibitors of Hh-driven tumor growth because
of their capacity to downregulate the transcriptional
activity of Glil and Gli2 [458—461]. Since then, a sub-
stantial number of studies have explored their antitu-
mor effects and have shown that GANT61 can inhibit
malignant behavior, induce autophagy and apoptosis, and
enhance the therapeutic sensitivity of tumor cells both
in vitro and in vivo [462-466]. However, no clinical trials
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using GANT61 for treating human cancer are currently
ongoing.

Arsenic trioxide (ATO) is another Gli inhibitor with
the potential to decrease Gli transcriptional activity by
binding to Glil and Gli2 and has been reported to delay
tumor progression in preclinical studies [467, 468]. Clini-
cally, ATO is evaluated for the treatment of different can-
cer types, including lung cancer, acute myeloid leukemia,
and hepatocellular carcinoma [469-471]. (Table 2) Pirfe-
nidone, an antifibrotic agent, selectively destabilizes Gli2
[472]. Imiquimod, an agonist of toll-like receptors 7 and
8, directly suppresses Hh signaling by stimulating PKA-
mediated Gli phosphorylation [473].

Conclusion and future perspective

Since the first discovery of conserved key signaling path-
ways, such as Notch and Hh, in Drosophila, research-
ers have been persistently exploring their structure,
regulatory mechanisms, physiology, and pathology and
developing therapeutic strategies to target some of the
signaling pathway components. This review summarizes
the work that has been done in both the Notch and Hh
signaling pathways and clarifies the scope for further
basic research and the value of developing clinical appli-
cations for Notch and Hh signaling in cancer, where the
activation of Hh is usually associated with tumor devel-
opment. Inhibitors of its components (SHh, Smo, Gli)
have been quite effective in some tumors (BCC) and
some unsatisfactory. One of the most interesting aspects
of NOTCH signaling is its context-dependent nature,
which means that it possesses pro- or anticancer effects
under different conditions. First, different types of ligands
in the pathway have their own roles or different combina-
tions of ligands and receptors, producing distinct effects.
In addition, Notch function differs in diverse tumor types
or even different subclones of the same tumor, which is
perhaps related to Notch-dependent proximity secretion.
Of course, the downstream gene expression of Notch
contains both positive and negative regulators of tumor
growth, perhaps also related to its double-edged sword
effect.

NOTCH- and Hh-targeted therapies have been stud-
ied for decades but have failed to meet expectations.
The main reasons for this include high pan-inhibi-
tion-induced organismal toxicity, low affinity for drug
delivery systems, upregulation of bypass activation
pathways, and the mechanism-driven group of indi-
vidual drugs whose activity can easily be overestimated
in preclinical models. The development of new drugs
targeting molecules with higher specificity within the
pathway and affinity antibody—drug couples may be
a countermeasure. New immunotherapeutic strate-
gies, including DC pulse vaccines, CAR-T cells and
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DLL3-CAR-NK-cell therapies, are more attractive.
Combination therapies with radiotherapy, chemother-
apy, immunotherapy and other small molecule inhibi-
tors can be considered. miRNAs interfere with both the
Notch and Hh pathways and can be used as potential
biomarkers and therapeutic approaches, although their
delivery still poses technical challenges. As intradermal
lysoviral therapy has entered the standard of care phase
of oncology, viruses could be considered designed to
respond to high Notch and Hh activity within the tar-
get cells. The antitumor effects of natural products of
related pathways should not be underestimated [474,
475].

With the unveiling of findings on the mechanisms
of embryonic development, a complex circuit formed
between the two signaling pathways has been laid out.
Notch and Hh signaling control each other in this
feedback fashion. A tightly controlled loop prevents
uncontrolled proliferation and incorrect patterns. It is
reasonable to speculate whether there is a break in the
control loop in tumor cell populations that proliferate
out of control and whether the re-establishment of feed-
back can in turn gently promote tumor regression, all of
which deserve further exploration. The field of cell signal-
ing crosstalk is rapidly expanding, and one would expect
them all to be part of the same conversation, taking a
more coordinated and comprehensive view of the prob-
lem and solving it.
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