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Abstract
We explored the viability of using air quality as an alternative to aggregated location data from mobile phones in the two 
most populated cities in Uganda. We accessed air quality and Google mobility data collected from  15th February 2020 to  10th 
June 2021 and augmented them with mobility restrictions implemented during the COVID-19 lockdown. We determined 
whether air quality data depicted similar patterns to mobility data before, during, and after the lockdown and determined 
associations between air quality and mobility by computing Pearson correlation coefficients ( R ), conducting multivariable 
regression with associated confidence intervals (CIs), and visualized the relationships using scatter plots. Residential 
mobility increased with the stringency of restrictions while both non-residential mobility and air pollution decreased with 
the stringency of restrictions. In Kampala,  PM2.5 was positively correlated with non-residential mobility and negatively 
correlated with residential mobility. Only correlations between  PM2.5 and movement in work and residential places were 
statistically significant in Wakiso. After controlling for stringency in restrictions, air quality in Kampala was independently 
correlated with movement in retail and recreation (− 0.55; 95% CI =  − 1.01– − 0.10), parks (0.29; 95% CI = 0.03–0.54), 
transit stations (0.29; 95% CI = 0.16–0.42), work (− 0.25; 95% CI =  − 0.43– − 0.08), and residential places (− 1.02; 95% 
CI =  − 1.4– − 0.64). For Wakiso, only the correlation between air quality and residential mobility was statistically significant 
(− 0.99; 95% CI =  − 1.34– − 0.65). These findings suggest that air quality is linked to mobility and thus could be used by 
public health programs in monitoring movement patterns and the spread of infectious diseases without compromising on 
individuals’ privacy.
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Introduction

Human mobility has previously been used as a proxy of 
infectious disease transmission especially of respiratory 
pathogens such as Mycobacterium tuberculosis (Aspler et al. 
2010; Moreno et al. 2017; Robsky et al. 2021) and influenza 
(Engebretsen et al. 2020) and other diseases such as malaria 
(Milusheva 2020). More recently, the COVID–19 pandemic 
has emphasized the role of mobility in disease transmission 
(Badr et al. 2020; Chen et al. 2020; Kartal et al. 2021; K. 
Liu et al. 2020a, b; Rahman et al. 2021; Yang et al. 2020). 
A virus that reportedly originated from Wuhan, China (Y.-
C. Liu et al. 2020a, b), found its way out of the city, spread 
throughout China, and was exported to other countries with 
which China shares a physical border and others overseas, 
starting with sporadic cases in many countries and thereafter 
a widespread community transmission. Thus, on  11th March 
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2020, the World Health Organization (WHO) declared 
COVID-19 a global pandemic. Mobility data have aided 
infectious disease control programs to identify transmission 
hotspots and consequently informed targeted interventions. 
Mobility data have also been used to derive contact matrices 
that are used to parametrize mathematical models used in 
predicting COVID-19 infections that could be observed and 
to assess the effectiveness of interventions (Prem et al. 2020; 
2021).

To date, aggregated location data from mobile phones 
have been the main means to capture mobility patterns 
of individuals at the population level (Badr et al. 2020). 
However, mobile phone location data come with various 
ethical challenges relating to privacy and are thus aggregated 
to ensure anonymity. Its other limitations include the 
relative paucity of mobile phones with enabled Global 
Positioning System (GPS) location devices in developing 
countries (Kibuacha 2021), the ability of users to turn off 
GPS location, and the rather arduous and lengthy process 
of obtaining such data from mobile phone companies. This 
renders them less useful in studying infectious disease 
transmission. An estimated 16% and an average of 30% 
of people have a smart phone in Uganda and sub-Saharan 
Africa, respectively (Kibuacha 2021). Furthermore, air 
quality data provides better resolution. For example, on 
top of having them ground stationed, low-cost air quality 
sensors developed by the AirQo project (Okure et al. 2022; 
Coker et  al. 2021) have been mounted on boda-bodas 
(local motorbike transport) and commuter taxis whose 
ubiquity and agility facilitate more diversified and localized 
measurements. These two are the most used means of 
transport by the vast majority of people in Uganda.

Being less encumbered by the above listed limitations, 
ground monitored ambient air quality data could thus provide 
a viable alternative for understanding mobility patterns at 
population level. Air pollution in most cities is mainly due 
to vehicular movement and fumes from factories. Although 
the correspondence between human vehicular powered 
mobility and ambient particulate matter is in part intuitive, 
it has not been comprehensively tracked and studied using 
objective quantitative spatial–temporal metrics. This is a 
particularly valuable approach in the context of public health 
which has in recent times largely depended on mobile phone 
tracking to quantify human movement that could be related 
to disease spread. Air quality worsens as people move 
from their residences to their destinations such as places of 
work, recreation centers, and grocery shops and becomes 
better as movement lessens. Indeed, air quality improved 
during COVID-19 lockdowns around the world (Sannigrahi 
et al. 2021; Yechezkel et al. 2021; Wijnands et al. 2022; 
Naseer et al. 2022; Benchrif et al. 2021; Mishra et al. 2021; 
Broomandi et al. 2022; Arora et al. 2020; Li et al. 2022; 
Khan et al. 2021; Nicolini et al. 2022; Marinello et al. 2021; 

Bar et al. 2021), with most gains in air quality lost when 
the lockdowns were lifted, indicating that air quality could 
depict mobility patterns of individuals.

Literature review

We conducted a literature review in which we searched 
PUBMED database for the most recent published literature 
on the association between quantitative measures of mobility 
and air quality, filtering for all published articles since the 
first reported case of COVID-19 globally. Literature shows 
that there is a growing number of studies showing the asso-
ciation between quantitative measures of mobility and air 
quality. For instance Cárcel-Carrasco et al. (2022) analyzed 
Apple mobility trend data (both driving and walking) as well 
as nitrogen dioxide  (NO2) pollution levels in the cities of 
Tsuen Wan from Hong Kong (China), Los Angeles (USA), 
London (UK), São Paulo (Brazil), Bangalore (India), Johan-
nesburg (South Africa), and Sydney (Australia) before, dur-
ing, and after the COVID-19 lockdowns instituted in each 
city. There was an overall reduction in driving and walking 
in most of the cities during the lockdown compared with 
the pre-lockdown period.  NO2 levels in Tsuen Wan in 2020 
reduced compared to usual levels. Post lockdown, there was 
an increase in mobility but no increase in air pollution fol-
lowed for all cities. Fan et al. (2020) investigated the impacts 
of traffic mobility reduction on  PM2.5 (fine particulate mat-
ter) and  PM10 (coarse particulate matter) concentrations in 
China with mobility patterns estimated from the intensity 
of residents’ traffic travel of a city. They found that  PM2.5 
and  PM10 declined with reduction in traffic mobility, but 
this relationship varied spatially during the COVID-19 
outbreak. Noda et al. (2021) investigated the relationship 
between reduction in population movement (quantified by 
the “social isolation index” created by the São Paulo State 
Government, as a yardstick for adopting official measures to 
fight COVID-19) in the city and the emission levels of  PM10, 
 PM2.5,  Nox (nitrogen oxides), NO (nitric oxide),  NO2,  SO2 
(sulfur dioxide), and CO (carbon monoxide). In their study, 
air pollution decreased with adherence rate to social isola-
tion. Chang et al. (2021) investigated the impact of COVID-
19 on air pollution in the two largest cities in Taiwan, which 
were not subject to economic or mobility restrictions. They 
found a shift in mode of transport from metro ridership to 
motor vehicle use during the COVID-19 period. This coin-
cided with significant reductions in the levels of  NO2 and 
 PM10 during non-working days. Mohajeri et al. (2021) found 
a significant correlation between the lowering of  NO2 lev-
els and reduction in public transport ( p < 0.05 ) and driv-
ing ( p < 0.05 ) during the COVID-19 lockdown period in 
Greater London, Cardiff, Edinburgh, and Belfast. They 
also found air pollution at a lower level than expected as a 
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result of the mobility restrictions imposed by the COVID-19 
lockdowns. Efe (2022) compared mobility patterns (based 
on Google and Apple mobility data) and  PM10,  PM2.5, and 
 NO2 concentrations during the COVID-19 lockdown period 
with the same periods during non-pandemic years, in Mar-
mara Region, Turkey. The author found that  PM2.5 and  NO2 
concentrations during the lockdown period declined with 
respect to the pre-lockdown period and the previous year. 
Overall, air quality worsened with increase in mobility. 
Sokhi et al. (2021) conducted a global analysis of changes 
in a variety of air quality species and mobility as a result of 
mobility restriction during the lockdown using four mobility 
databases: Apple driving, Google retail, Waze, and Baidu. 
They found reductions in air pollution in most cities as a 
result of the lockdown. Changes in mobility varied largely 
across cities and lockdown phases, with the greatest reduc-
tions observed during the full lockdown. Changes in  NOx 
concentrations were positively correlated with change in 
mobility. Ghahremanloo et al. (2022) investigated the impact 
of COVID-19 lockdowns on changes in  PM2.5 concentra-
tions in eleven metropolitan areas across the United States: 
Washington DC, New York, Boston, Chicago, Los Angeles, 
Houston, Dallas, Philadelphia, Detroit, Phoenix, and Seattle. 
They used Google Community Mobility Reports to study 
people’s mobility changes during the study period. They 
found reductions of  PM2.5 in regions with larger decreases 
in mobility and those in which individuals remained in their 
residential areas longer. Pagsuyoin et al. (2022) computed 
correlations between CO,  NO2,  O3 (ozone),  SO2,  PM2.5, and 
 PM10 concentrations in five metropolitan areas in the United 
States of America (USA) and mobility data obtained from 
Google’s Community Mobility Reports. They found that 
air quality was correlated with mobility but the direction of 
the relationship varied by city. Gorrochategui et al. (2021) 
investigated changes in  NO2,  O3, and  PM10 in Barcelona 
metropolitan area and other parts of Catalonia during the 
COVID-19 lockdown with respect to pre-lockdown and to 
previous years (2018 and 2019). They computed correlations 
between air quality and mobility data obtained from Goog-
le’s Community Mobility Reports. In their study, correlation 
between mobility and air pollution was positive for  NO2 and 
 PM10 and negative for  O3. Orak and Ozdemir (2021) inves-
tigated correlations between  SO2 and mobility using data 
obtained from Google’s Community Mobility Reports. They 
found positive correlations between  SO2 with restaurant/café 
mobility ( R = 0.32 , p < 0.001 ), transit mobility ( R = 0.26 , 
p < 0.001 ), and workplace mobility ( R = 0.39 , p < 0.001 ) 
and a negative correlation with stay-at-home ( R = −0.16 , 
p = 0.007 ). Zhu et al. (2020) computed correlations between 
human movements (mobile phone data from Baidu location-
based services) and concentration of air pollutants. In their 
study, human mobility index was positively correlated with 
 PM2.5 ( R = 0.06 , p < 0.05 ),  PM10 ( R = 0.08 , p < 0.05 ),  NO2 

( R = 0.05 , p < 0.05 ), and CO ( R = 0.04 , p < 0.05 ) and neg-
atively correlated with  O3 ( R = −0.04 , p < 0.05 ) and  SO2 
( R = −0.03 , p > 0.05 ). It is evident from the above review 
that majority of the studies above have been conducted in 
cities of developed economies with the exception of a few 
(see, e.g., Noda et al. 2021; Cárcel-Carrasco et al. 2022).

In this study, we explored whether air quality data could be 
a viable alternative to aggregated location data from mobile 
phones, as a measure of human mobility using air quality 
and Google mobility data (Google LLC 2021) from the two 
most populated cities in Uganda, i.e., Kampala and Wakiso 
(UBOS 2019), for the period  15th February 2020 to  10th 
June 2021. It is this period that spanned the period before, 
during, and after the first major lockdown for both mobility 
and air quality data. As of  15th October 2022, Community 
Mobility Reports are no longer being updated. We augmented 
these data with various COVID-19 restrictions implemented 
during this period including the timing of their institution 
and when they were relaxed or lifted to enable us to study 
air pollution and mobility patterns before, during, and after 
the lockdown. Prior to lockdown, economic activity which is 
largely characterized by vehicular movement was booming 
globally. However, as COVID-19 struck, economies shut 
down and movement reduced as restrictions on movement 
were implemented (Li et  al. 2022). As lockdowns were 
lifted, economies started booming although some activities 
have never returned to pre-COVID-19 levels. We aimed 
to determine how mobility patterns were affected by 
COVID-19 mobility restrictions in two urban cities in 
Uganda and examine if air quality data depicted similar 
patterns. To quantify COVID-19 mobility restrictions, we 
made use of the government response stringency index—a 
composite measure of the strictness of policy responses 
(such as mobility restrictions) over time (Hale et al. 2021). 
We analyzed mobility data as well as the air quality data, 
determined how mobility restrictions impacted both mobility 
and air quality patterns, and determined the association 
between human mobility and air quality. The results from this 
study could provide infectious disease control programs with 
a high-resolution tool for studying human movement patterns 
and thus enable near-real time tracking of infectious disease 
spread without compromising on the privacy of individuals 
while avoiding several other limitations that come with the 
use of aggregated location data from mobile phones.

Methodology

Study setting

In order to study the association between human mobil-
ity and air quality, we needed three things, i.e., (1) human 
mobility data, (2) high-resolution air quality data that 
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actually depicts movement of persons and is less associated 
with single point pollution events concentrated at factories, 
and (3) a control variable that affects both human mobility 
and air quality so as to determine if both mobility and air 
quality data depict similar patterns in reaction to changes 
in the control variable. The emergence of COVID-19 and 
its related restrictions on movement of persons presented a 
rare large-scale experimental control opportunity, to study 
and calibrate the relationship between human mobility and 
ambient air quality on an unprecedented scale. That oppor-
tunity coincided with the recent availability of community 
movement data from Google (Google LLC 2021).

Uganda was the ideal country to do this study because it 
implemented some of the most stringent mobility restrictions 
in the region and the world at large. For example, the coun-
try instituted a lockdown on  18th March 2020 days before 
confirmation of her first case of COVID-19 on  21st March 
2021 and went on to suspend public gatherings, instituted 
a national-wide curfew, instituted stay-at-home and work-
from orders, put restrictions on private and public transpor-
tation and on some days of the lockdown suspending both 
public and private transport except for health personnel and 
“essential services,” and maintained closure of educational 
institutions the longest in the world (The East African 2021; 
UNICEF 2021). This unique implementation of COVID-19 
restrictions including instituting tight restrictions before a 
single case was confirmed enabled us to study air pollution 
and mobility patterns in the period before, during, and after 
the lockdown. Furthermore, this study draws insights from 
a developing economy context for which only a few similar 
studies have been conducted.

The cities of Kampala and Wakiso are found in the central 
region of Uganda and are part of the Kampala Metropolitan 
Area (KMA) which has become the country’s commercial, 
industrial, and education center with a highly mobile popula-
tion commuting within, to, and from the area for trade, going 
for, and leaving workplaces and many students commuting to 
and from school. The area has experienced significant urban 
growth for many decades and was one of the fastest growing 
urban areas in Africa pre-COVID-19. Kampala is the capital, 
with a population of over 1.5 million people according to 
the Uganda Bureau of Statistics (UBOS 2019). Wakiso on 
the other hand partly encircles Kampala with the city head-
quarters lying approximately 12 miles, by road, northwest 
of Kampala, with a population of over 1.9 million people 
(UBOS 2019). Wakiso and Kampala are the first and second 
most populated districts in Uganda, respectively. Since the 
start of the COVID-19 pandemic, Google has availed human 
mobility data, in the form of Google Community Mobility 
Reports (Google LLC 2021), pertaining to movement in six 
kinds of places, i.e., grocery and pharmacy, parks, residen-
tial, retail and recreation, transit stations, and work places. 
Google mobility data for most districts in Uganda is sparse 

except for Kampala and Wakiso. This could be because these 
two most populated cities in the country are also urban cent-
ers with most smart phone users having phones with enabled 
GPS location devices being in these cities.

On top of having them ground stationed, low-cost air 
quality sensors developed by the AirQo project (Okure et al. 
2022; Coker et al. 2021), an extensive air quality monitoring 
project that has a high-resolution network of low-cost air 
quality sensors, are mounted on boda-bodas (local motor-
bike transport) and commuter taxis whose ubiquity and 
agility facilitates more diversified and localized measure-
ments. These two are the most used means of transport by 
the vast majority of people in Uganda. Thus, particulate mat-
ter detected by these sensors are an excellent representation 
of movement in this locality. Until 2022, which is outside 
the study period, when the project received funding from 
Google to expand across the entire country and in other Afri-
can cities, most of these ground stationed air quality sensors 
and those mounted on boda-bodas and commuter taxis were 
located in Kampala and Wakiso.

The data

Air quality data

AirQo (Okure et al. 2022; Coker et al. 2021) has deployed a 
number of air quality monitors across urban areas in Uganda, 
Kampala and Wakiso inclusive. Hourly data for air pollutant 
concentrations of particulate matter ≤ 2.5 μm and ≤ 10 μm 
 (PM2.5 and  PM10, respectively) for two cities (Kampala the 
capital and Wakiso her close neighbor) were obtained for 
the period  15th February 2020 to  10th June 2021. Across the 
entire available period, for each city, the 24-h average con-
centration (corresponding to a given day) for each pollutant 
was calculated. The average for each city was obtained by 
averaging overall air quality monitors (sensors) in each city.

Human mobility data

Human mobility data for Uganda was obtained from Google 
COVID-19 Community Mobility Reports (Google LLC 
2021). Since the beginning of the COVID-19 pandemic, 
Google has been collecting data relating to change in visits 
to places classified as retail and recreation (places such as 
restaurants, cafés, shopping centers, theme parks, museums, 
libraries, and cinemas), supermarket and pharmacy (places 
such as supermarkets, food warehouses, farmers markets, 
specialty food shops, and pharmacies), parks (places like 
national parks, public beaches, marinas, dog parks, plazas, 
and public gardens), public transport (places that are public 
transport hubs, such as underground, bus, and train stations), 
workplaces (places of work), and residential (places of resi-
dence). These data are available as COVID-19 Community 
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Mobility Reports that show how visits to different places 
change compared to a baseline. Changes for each day are 
compared to a baseline value for that day of the week. The 
baseline is the median value, for the corresponding day of 
the week, during the five-week period  3rd January 2020–6th 
February 2020. We obtained Google mobility data for the 
period  15th February 2020 to  10th June 2021.

We explored the possibility of using other sources of 
mobility data such as Apple mobility data. However, there 
is no Apple mobility data for Uganda just like for many 
countries in Africa (Cárcel-Carrasco et al. 2022). This is 
because most Ugandans (over 75%) are android phone users 
(UBOS, 2019). As of April  14th, 2022, Apple is no longer 
providing COVID-19 mobility trend reports.

COVID‑19 lockdown measures instituted in Uganda 
during the study period

The government of Uganda instituted a lockdown on  18th 
March 2021 days before confirmation of the first case of 
COVID-19 in the country on  21st March 2021. This went on 
to be one of the toughest lockdowns in the region and the 
world at large. A report by the United Nations International 
Children’s Emergency Fund (UNICEF) stated that Uganda 
is one of the top countries that maintained closure of edu-
cational institutions the longest in the world (The East Afri-
can 2021; UNICEF 2021). The lockdown included 32 days 
suspension of mass gatherings both political and cultural 
including public rallies, conferences, elections, cultural wed-
dings exceeding 10 people, monthly markets, bars, music 
festivals, sports activities, cinemas, and concerts. All out-
bound movement by Ugandans to or through category one 
countries (Italy, France, South Korea, China, USA, United 
Kingdom, Netherlands, Switzerland, Sweden, Belgium, 
Germany, Spain, Norway Austria, Malaysia, Pakistan, and 
San Marino) was also banned for 32 days. Non-agricultural 
work places including factories, hotels, large plantations, 
markets, and taxi-parks were allowed to continue function-
ing but with observance of Standard Operating Procedures 
(SOPs) stipulated by the country’s Ministry of Health. Bur-
ial was to be done by only nearby relatives. If the deceased 
was, however, suspected of dying from COVID-19, the state 
took over without the involvement of the family as the case 
is with Ebola victims.

All schools were closed for 30 days on  20th March 2020 
and the country’s international borders (air, land, or water) 
were closed on  21st March 2020 except for cargo and goods 
following the confirmation of the first case. On the  25th of 
March 2020, public transport (taxis, boats, buses, all pas-
senger trains, and passenger motor cycles locally known 
as “boda-bodas” carrying passengers) was suspended for 
14 days and private vehicles were restricted to carrying 
maximum 3 persons including the driver. Markets for 

non-food items including clothes, phones, and shoes were 
closed. Government offices were restricted to only “essen-
tial staff” while the non-essential staff were instructed to 
work from home except for those in critical agencies like 
the Uganda Revenue Authority, the country’s tax collec-
tion body. Following a surge in cases, all people movement 
was banned on  30th March 2020 including those using pri-
vate vehicles. Gatherings of more than 5 persons were 
also prohibited. All non-food shops like shopping malls, 
arcades, and hardware shops were closed for 14 days start-
ing  1st April 2020. Grocery stores were allowed to con-
tinue operations but with clear SOPs that restricted num-
bers that entered and left the site at a given time and the 
handling of trolleys. Food markets were allowed to con-
tinue operations. Factory operations and construction sites 
were restricted to only crucial employees and these were to 
camp around the factory area for the 14 days without being 
allowed to go home otherwise production and construc-
tion, respectively, were suspended for 14 days. Essential 
services like medical, agriculture and veterinary, telecom-
munication, door-to-door delivery, financial institutions, 
all media, private security companies, cleaning services, 
garbage collection, fire brigade, fuel stations, and water 
departments were allowed to continue operations. Cargo 
transport within Uganda and between Uganda and other 
countries by train, plane, lorries, pick-up trucks, “boda-
bodas,” and bicycles was restricted to minimal numbers as 
follows: cargo—aircraft—only the crew; lorry—not more 
than 3 persons including the driver and his crew. Govern-
ment employees were instructed to stay at home for the 
14 days, except for the army, the police, health workers, 
and electricity, water, and telephone agencies. On the  31st 
of March 2020, the president declared a nationwide curfew 
from 7:00 pm to 6:30 am prohibiting all movement except 
for cargo planes, lorries, pick-ups, and trains. “Boda-
bodas” were instructed to stop operations at 2:00 pm. 
Saloons, lodges, and garages were shut for 14 days from 
the 1st of April 2020. Stay-at-home orders and all previous 
measures were sustained for another 21 days, starting  15th 
April 2020 to  5th May 2020.

A government response stringency index—a composite 
measure of the strictness of policy responses (such as 
mobility restrictions) over time, developed by the University 
of Oxford (Hale et al. 2021) was used as a measure for 
the strength of lockdown policies (including mobility 
restrictions) implemented by Uganda over time. The index 
on any given day is calculated as the average score of nine 
response (policy) indicators including school closures, 
workplace closures, restrictions on public gatherings, 
transport restrictions, stay-at-home requirements, and travel 
bans, each rescaled to a value from 0 to 100 (100 = strictest 
response). We obtained stringency index data for the period 
 15th February 2020 to  10th June 2021.
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A phased opening of the country begun  4th May 2020 
with several restrictions relaxed and others lifted. In the 
first phase of opening, hardware shops, garages, ware-
houses, whole-sellers, metal and wood workshops, insur-
ance providers, and legal services were allowed to re-open. 
Restaurants were allowed to resume operations but with 
only allowed take-away services. All the other measures 
announced earlier were stayed for another 14 days. The 
second phase of opening started on  26th May 2022 where 
private cars were allowed to move but with only 3 per-
sons and in only non-border districts. General merchan-
dise shops excluding those in shopping malls, arcades, 
and food markets were re-opened but with strict social 
distancing. However, this relaxation of restrictions on pri-
vate transport does not extend to the 40 border districts. 
Market vendors were relieved from camping at their stalls 
and were allowed to commute daily. Hotels and food res-
taurants were re-opened with social distancing and no air 
conditioning.

All other restrictions including closure of international 
borders and the airport, curfew from 7:00 pm to 6:30 pm, 
suspension of bars, night clubs, gyms, saunas, public 
swimming pools, and hair salons remained in place for 
another 21 days. On the  4th of June 2020, public transport 
in non-border districts resumed but carrying half capacity. 
On  22nd June 2020, capacity for private vehicles increased 
from 3 to 4 persons. “Boda-bodas” should continue with 
only the transportation of goods. Public and private trans-
port was resumed in 33 of all border districts with no 
confirmed COVID-19 cases. On  20th September 2020, the 
airport and land borders were opened for tourists, coming 
in and going out, provided they tested negative 72 h before 
arrival in Uganda and provided the tour operators ensured 
that the tourists did not mix with nationals. Returning 
Ugandans with negative PCR results were allowed to go 
home and followed by the country’s Ministry of Health. 
Restrictions on movements in border districts were lifted. 
Places of worship were opened but restricted to maxim 70 
persons. Outdoor sports activities were re-opened with no 
spectators. However, curfew was sustained from 9:00 p.m 
to 6:00 a.m. and “boda-boda” movements were extended 
to end at 6:00 p.m. Casinos, other gambling centers, bars, 
cinemas, mobile markets, monthly cattle auction, and pro-
duce markets remained closed. Mass gatherings remained 
prohibited. On  15th October 2020, schools were open to 
finalists, while on  1st March 2021, schools were open to 
pre-finalists.

Statistical analysis

All data processing and analysis was done using R version 
4.1.1 (R Core Team 2021).

Effect of mobility restrictions on human movement and air 
quality

To determine the effect of mobility restrictions on human 
movement, we computed Pearson correlation coefficients 
between the government response stringency index and 
mobility in each of the six kinds of places tracked by Google 
and created scatter plots for the two cities (Kampala and 
Wakiso). Similarly, to determine the effect of mobility 
restrictions on air quality, we computed Pearson correlation 
coefficients between the government response stringency 
index and air quality and created scatter plots for the two 
cities (Kampala and Wakiso).

Association between air quality and human mobility

The association between air quality and human mobility 
was determined using Pearson correlation coefficients and 
visualized using scatter plots. We computed daily (24-h) 
averages for air pollutants  (PM2.5 and  PM10) for two cities 
(Kampala and Wakiso) that are well covered by air quality 
monitors and compared those with daily changes in mobil-
ity for Kampala and Wakiso. It is these districts that had 
complete mobility data relating to six types of places (gro-
cery and pharmacy, parks, residential, retail and recreation, 
transit stations, and work places).

Multivariate analysis was performed using a linear 
model, adjusting for the government response stringency 
index. As a robustness check, Generalized Additive Models 
(GAMs) were fit to capture non-linearities in the data. 
For each district, we fit GAMs which were non-linear in 
mobility variables using the loess smoother and others with 
smoothing splines. We also fit models with both a linear 
and a non-linear government response stringency index. 
We compared the model fit for the linear models and the 
GAMs using the ANOVA test. GAMs were fit using the 
gam package in R Statistical Software (R Core Team 2021).

Results and discussion

Observed levels of air pollution in the two cities

During the observation period  (15th February 2020 to  10th 
June 2021), the 24-h average levels for fine particulate 
matter  (PM2.5) in Kampala were consistently higher than 
the WHO recommended threshold (guideline limit) of 
15 μg/m3 with a mean of 48.4 μg/m3 (range = 15.3–116.0), 
while the 24-h average  PM2.5 levels for Wakiso fell below 
the WHO guideline limit in April 2021 with a mean of 
40.5  μg/m3 (range = 5.6–109.0) (Fig.  1). On the other 
hand, the 24-average levels for coarse particulate matter 
 (PM10) were lower than the WHO recommended threshold 
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of 45 μg/m3 on some days in both cities with a mean of 
55.5 μg/m3 (range = 16.9–130) for Kampala and 46.0 μg/
m3 (range = 5.95–122.0) for Wakiso. The difference by city 

in mean levels of both  PM2.5 and  PM10 was not statistically 
significant ( p = 0.2396 for  PM2.5 and p = 0.2396 for  PM10). 
The findings presented here confirm WHO reports that 91% 

Fig. 1  Overall ambient air quality temporal variation for Kampala and Wakiso districts

Fig. 2  Change in mobility patterns in Kampala and Wakiso districts relative to the baseline
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of the world’s population live in places where air pollution 
levels exceed WHO guideline limits (WHO 2022). Although 
high levels of air pollution could indicate isolated air pol-
lution events such as high pollution in city factories rather 
than depict mobility patterns at population level, here, we 
controlled for this by not including air quality data for sen-
sors that showed irregular spikes at notable locations near 
factories in these locations.

The horizontal blue lines are the 24-h average levels rec-
ommended by WHO, i.e., 15 μg/m3 for  PM2.5 and 45 μg/m3 
for  PM10. The red dashed vertical line indicates the date for 
start of restrictions in Uganda when mass gatherings were 
suspended, i.e., 18th March 2020. The first green dashed 
vertical line (from left to right) indicates the date (4th May 
2020) for the start of the first phase of easing restrictions 
where whole sellers, metal and wood workshops, ware-
houses, insurance providers, and hardware shops were 
opened and restaurants were allowed to provide take-aways. 
The second green dashed line is the date (20th September 
2020) when the country’s only International Airport and 
land borders were opened for tourists, restrictions on move-
ments on border districts were lifted, and places of worship 
and sports activities were opened. The space between the 
dashed blue lines indicates the election period from 10th 
November 2020 when campaigns for presidential elec-
tions started to 3rd February 2021 when elections for sub-
county/town/municipal division chairpersons and councilors 
were conducted. The black line indicates how government 
response stringency index varied over time during the obser-
vation period.

There was a very high positive correlation between  PM10 
and  PM2.5 at all air quality observation sites (Supplementary 
Fig. 1), with all Pearson correlation coefficients greater than 
0.99 and all p values < 0.001. This is expected because  PM2.5 
is a subset of  PM10. We therefore used  PM2.5 in subsequent 
analyses determining the association between air quality and 
human mobility.

How the lockdown affected mobility patterns 
and air quality

Institution of the first lockdown in the country on  18th March 
2020 led to an immediate increase in mobility in residen-
tial places and a decrease in mobility in non-residential 
places (grocery and pharmacy, parks, retail and recreation, 

transit stations, and work places) in both cities (Fig. 2). The 
increase in mobility in residential places due to institution 
of the lockdown is expected because lockdown restrictions 
included stay-at-home and work-from-home orders. The 
decrease in non-residential mobility demonstrates that lock-
downs are an effective policy measure for decreasing human 
mobility so as to reduce the spread of infectious diseases 
like COVID-19. Without human movement, infectious par-
ticles would be less likely to be transferred from one person/
location to another. Our findings are consistent with those 
of previous studies that found an increase in residential 
mobility and a decline in mobility in non-residential places 
during COVID-19 lockdown periods (Lawal and Nwegbu 
2020; Sadowski et al. 2021; Saha et al. 2020; Saha et al. 
2021). When a phased lifting of restrictions begun on  4th 
May 2020, mobility in residential places reduced to values 
close to baseline values. The baseline is the median value, 
for the corresponding day of the week, during the five-week 
period  3rd January 2020–6th February 2020 (Google LLC 
2021). On the other hand, mobility in non-residential places 
increased to close to baseline values.

The red dashed vertical line indicates the date (18th 
March 2020) for start of restrictions in Uganda when mass 
gatherings were suspended. The first green dashed vertical 
line (from left to right) indicates the date (4th May 2020) 
for the start of the first phase of easing restrictions where 
whole sellers, metal and wood workshops, warehouses, 
insurance providers, and hardware shops were opened and 
restaurants were allowed to provide take-aways. The second 
green dashed line is the date (20th September 2020) when 
the country’s only International Airport and land borders 
were opened for tourists, restrictions on movements on bor-
der districts were lifted, and places of worship and sports 
activities were opened. The space between the blue dashed 
lines indicates the election period from 10th November 2020 
when campaigns for presidential elections started to 3rd Feb-
ruary 2021 when elections for subcounty/town/municipal 
division chairpersons and councilors were conducted. The 
black line indicates how government response stringency 
index varied over time during the observation period.

Just like the case was with mobility, institution of a lock-
down on  18th March 2020 led to a reduction in air pollution 
levels in both cities with coarse particulate matter  (PM10) 
values going below the recommended WHO threshold in 
March, April, and May 2020 (Fig. 1). The mean concen-
trations of  PM10 reduced from 64.7 μg/m3 to 31.6 μg/m3 
in Kampala and from 47.1 μg/m3 to 29.4 μg/m3 in Wakiso 
following the institution of a lockdown. Similarly, mean con-
centrations of  PM2.5 reduced from 56.6 μg/m3 to 27.6 μg/m3 
in Kampala and from 41.0 μg/m3 to 25.7 μg/m3 in Wakiso 
following the institution of a lockdown. These results are 
consistent with findings from other studies that showed an 

Fig. 3  Correlation between changes in mobility (relative to the base-
line) in Kampala and Wakiso districts and government response strin-
gency index. The baseline is the median value, for the corresponding 
day of the week, during the five-week period 3rd January 2020–6th 
February 2020. Associated Pearson correlation coefficients ( R ) and a 
significance code for the p value ( p ) are shown

◂
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improvement in air quality following institution of lock-
down measures in most cities around the world (Archer 
et al. 2020; Benchrif et al. 2021; Chauhan and Singh 2020, 
19; Hernández-Paniagua et al. 2021; Sannigrahi et al. 2021; 
Yechezkel et al. 2021). However, just like the case was with 
mobility, these gains in air quality were short-lived and were 
promptly reversed when restrictions were lifted, i.e., follow-
ing a phased start of lifting of restrictions on  4th May 2020, 
air pollution levels increased to values above the recom-
mended WHO thresholds until July 2020 onwards when air 
pollution started declining with  PM10 values either reaching 
or falling below the recommended WHO threshold on some 

days. The mean concentrations of  PM10 increased to 63.0 μg/
m3 and 54.4 μg/m3 in Kampala and Wakiso, respectively, 
following the lifting of the lockdown. Similarly, mean con-
centrations of  PM2.5 increased to 54.9 μg/m3 and 47.9 μg/m3 
in Kampala and Wakiso, respectively, following the lifting 
of the lockdown.

For Kampala, the government response stringency index 
was negatively correlated with movement in grocery and 
pharmacy ( R = −0.70 , p < 0.001 ), parks ( R = −0.70 , 
p < 0.001 ), retail and recreation ( R = −0.74 , p < 0.001 ), 
transit stations ( R = −0.61 , p < 0.001 ), and work places 
( R = −0.68 , p < 0.001 ) and positively correlated with 

Fig. 4  Correlation between 
fine particulate matter  (PM2.5) 
in Kampala and Wakiso and 
government response stringency 
index. Associated Pearson cor-
relation coefficients ( R ) and a 
significance code for the p value 
( p ) are shown
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movement in residential places ( R = 0.72 , p < 0.001 ) 
(Fig. 3). Similarly, for Wakiso, the government response 
stringency index was negatively associated with movement 
in grocery and pharmacy ( R = −0.6 , p < 0.001 ), parks 
( R = −0.56 , p < 0.001 ), retail and recreation ( R = −0.75 , 
p < 0.001 ), transit stations ( R = −0.91 , p < 0.001 ), and 
work places ( R = −0.62 , p < 0.001 ) and positively cor-
related with movement in residential places ( R = 0.70 , 
p < 0.001 ) (Fig. 3).

Similarly, air quality improved with stringency of restric-
tions in both Kampala and Wakiso districts, with R = −0.31 
( p < 0.001 ) and R = −0.21 ( p < 0.001 ), respectively 

(Fig. 4). Thus, as movement restrictions were tightened, peo-
ple stayed more at home and movement in all other places 
reduced significantly leading to an improvement in air qual-
ity. This could be a result of reduced road vehicular traffic 
volume. The implication of this finding is that air quality 
closely mirrors movement data and thus may accurately 
depict movement patterns at population level.

Association of air quality with human mobility

In Kampala, air quality as measured by the amounts of 
atmospheric fine particulate matter  (PM2.5) was positively 

Fig. 5  Correlation between 
changes in mobility (rela-
tive to the baseline) and fine 
particulate matter  (PM2.5) in 
Kampala district. The baseline 
is the median value, for the 
corresponding day of the week, 
during the five-week period 
3rd January 2020–6th February 
2020. Scatter plots, associated 
Pearson correlation coefficients 
( R ) and p values ( p ) are shown
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associated with movement to groceries and pharmacies 
( R = 0.24 , p < 0.001 ), parks ( R = 0.25 , p < 0.001 ), retail 
and recreation ( R = 0.24 , p < 0.001 ), transit stations 
( R = 0.3 , p < 0.001 ), and work places ( R = 0.2 , p < 0.001 ) 
and negatively correlated with movement within residential 
places ( R = −0.3 , p < 0.001 ) (Fig. 5). These findings are 
consistent with those of a previous study in Barcelona that 
found a positive correlation between the mobility in places 
classified as retail and recreation with nitrogen dioxide 
and coarse particulate matter (Gorrochategui et al. 2021). 
Only associations between air quality and movement within 

workplaces and residential places were statistically signifi-
cant in Wakiso, with R = 0.14 ( p < 0.001 ) and R = −0.19 
( p = 0.003 ), respectively (Fig. 6).

In a multivariate analysis, air quality in Kampala 
was independently correlated with movement in retail 
and recreation (− 0.55; 95% CI =  − 1.009– − 0.099), 
parks (0.29; 95% CI = 0.033–0.543), transit stations 
(0.29; 95% CI = 0.156–0.424), workplaces (− 0.25; 95% 
CI =  − 0.43– − 0.079), and residential places in Kampala 
(− 1.02; 95% CI =  − 1.4– − 0.638) after controlling for the 
government response stringency index (Table 1). On the 

Fig. 6  Correlation between 
changes in mobility (rela-
tive to the baseline) and fine 
particulate matter  (PM2.5) in 
Wakiso district. The baseline 
is the median value, for the 
corresponding day of the week, 
during the five-week period 
3rd January 2020–6th February 
2020. Scatter plots, associated 
Pearson correlation coefficients 
( R ) and p values ( p ) are shown
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other hand, for Wakiso, only the correlation between air 
quality and movement in places of residence was statistically 
significant (− 0.99; 95% CI =  − 1.335– − 0.652) (Table 2). 
This could be because Wakiso is a more rural city compared 
to Kampala suggesting that air quality captures movement 
patterns more accurately in urban cities relative to less urban 
locations. This could also suggest higher compliance to 
movement restrictions in urban centers where enforcement 
is more concentrated in Uganda. This observation may also 
be attributed to increased domestic emissions due to people 
staying home more.

The results of ANOVA tests comparing linear models 
with GAMs (Supplementary Figs. 2–5) provided statistical 
evidence to suggest that incorporating nonlinear relation-
ships of the mobility variables did not improve the model, 
i.e., the linear model provided a better fit compared with the 
GAMs with p < 0.001 for both Kampala and Wakiso.

Conclusions

Beyond the direct counting of moving persons, several 
analogs could be used to represent quantification of human 
mobility, including road vehicular traffic volume, mobile 
phone tracking, and fuel consumption. However, collecting 
such data on a city or district wide scale would not only be 
prohibitively expensive in money and time, it would also 
offer low resolution and sensitivity. Mobile phone tracking 
comes closest but is also limited by the relative paucity of 
mobile phones with enabled GPS location devices in devel-
oping countries, the ability of users to turn off GPS location, 
and the rather arduous and lengthy process of obtaining such 
data from mobile phone companies.

We observed pollution levels for fine particulate matter 
 (PM2.5) that were above WHO guideline limits in both cities 
in Uganda even during COVID-19 lockdowns despite some 
improvement in air quality during these periods. Thus, more 
work needs to be done to address the problem of air pollu-
tion in this setting as well as other cities around the world. 
The institution of restrictions also led to an increase in resi-
dential mobility and a decrease in non-residential mobility. 
Thus, lockdowns are an effective way of reducing human 
mobility to interrupt infectious disease transmission as well 
as improve air quality.

Institution of a lockdown in the country on  18th March 
2020 led to an increase in mobility in residential places and 
a decrease in mobility in non-residential places in both cit-
ies. Similarly, institution of a lockdown led to a reduction in 
air pollution levels in both cities. When a phased lifting of 
restrictions begun on  4th May 2020, mobility in residential 
places reduced to values close to baseline values and air pol-
lution levels increased. Air quality in both cities improved 
with stringency of movement restrictions which was posi-
tively correlated with movement in residential places and 
negatively correlated with movement in non-residential 
places.

Furthermore, in a multivariable analysis, air quality was 
independently positively correlated with movement in non-
residential places and negatively correlated with residential 
mobility in Kampala and Wakiso. Taken together with grow-
ing evidence from a literature review on the topic, these 
findings suggest that air quality data closely mirrors human 
mobility data and could thus be used as a proxy to human 
movement patterns in these places. Infectious disease control 
programs could thus leverage air quality data to study trans-
mission patterns for infectious diseases and inform control 
measures without compromising on the privacy of individu-
als and other limitations that are associated with the use of 
location information from mobile phones.

Supplementary information The online version contains supplementary 
material available at https:// doi. org/ 10. 1007/ s11356- 022- 24605-1.

Table 1  Effect of changes in mobility on fine particulate matter 
 (PM2.5) in Kampala district. Multivariate analysis using linear regres-
sion for the linear relationship between changes in mobility within 
the six kinds of places tracked by Google and air quality in Kampala 
district controlling for lockdown restrictions, i.e., the government 
response stringency index, with corresponding 95% confidence inter-
vals (CIs) and significance codes for the p values. Statistically signifi-
cant p values ( p < 0.05 ) are shown in bold font

Destination Estimate 95% confidence 
interval

p value

Retail and recreation  − 0.55  − 1.009– − 0.099 p < 0.05

Grocery and phar-
macy

0.23  − 0.111–0.566 p > 0.1

Parks 0.29 0.033–0.543 p < 0.05

Transit stations 0.29 0.156–0.424 p = 0

Workplaces  − 0.25  − 0.43– − 0.079 p < 0.01

Residential  − 1.02  − 1.4– − 0.638 p = 0

Table 2  Effect of changes in mobility on fine particulate matter 
 (PM2.5) in Wakiso district. Multivariate analysis using linear regres-
sion for the linear relationship between changes in mobility within 
the six kinds of places tracked by Google and air quality in Wakiso 
adjusting for lockdown restrictions, i.e., the government response 
stringency index, with corresponding 95% confidence intervals (CIs) 
and significance codes for the p values. Statistically significant p val-
ues ( p < 0.05 ) are shown in bold font

Destination Estimate 95% confidence interval p value

Retail and recreation  − 0.12  − 0.356–0.113 p > 0.1

Grocery and pharmacy  − 0.15  − 0.333–0.025 p < 0.1

Parks 0.13  − 0.003–0.259 p < 0.1

Transit stations  − 0.04  − 0.302–0.213 p > 0.1

Workplaces 0  − 0.155–0.147 p > 0.1

Residential  − 0.99  − 1.335– − 0.652 p = 0
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