Table 7.
The 30 most cited articles on artificial intelligence in intensive care unit ranked in the descending order of the number of citations.
| Rank | Article | Citations, n | CPYa | Rank by CPY |
| 1 | Matthieu Komorowski, Leo A. Celi et al “The Artificial Intelligence Clinician Learns Optimal Treatment Strategies for Sepsis in Intensive Care” Nature Medicine (2018) | 290 | 73 | 1 |
| 2 | Shamim Nemati, Andre Holder et al “An Interpretable Machine Learning Model for Accurate Prediction of Sepsis in the ICU” Critical Care Medicine,46,4 (2018) | 249 | 62 | 2 |
| 3 | Tom J. Pollard, Alistair E. W. Johnson et al “The eICU Collaborative Research Database, a Freely Available Multi-Center Database for Critical Care Research” Scientific Data,5,1 (2018) | 211 | 53 | 3 |
| 4 | Thomas Desautels, Jacob Calvert et al “Prediction of Sepsis in the Intensive Care Unit With Minimal Electronic Health Record Data: a Machine Learning Approach” JMIR Med Inform,4,3 (2016) | 203 | 34 | 7 |
| 5 | Brendon P. Scicluna, Lonneke A. van Vught et al “Classification of Patients With Sepsis According to Blood Genomic Endotype: a Prospective Cohort Study” The Lancet Respiratory Medicine,5,10, (2017) | 164 | 33 | 9 |
| 6 | Alistair E. W. Johnson, Mohammad M. Ghassemi et al “Machine Learning and Decision Support in Critical Care” Proceedings of the IEEE,104,2, (2016) | 162 | 27 | 11 |
| 7 | Richard Dybowski, Peter Weller et al “Prediction of Outcome in Critically Ill Patients Using Artificial Neural Network Synthesised by Genetic Algorithm” Lancet,347,9009,4 (1996) | 160 | 6 | 28 |
| 8 | Romain Pirracchio, Maya L. Petersen et al “Mortality Prediction in Intensive Care Units With the Super ICU Learner Algorithm (SICULA): a Population-Based Study” The Lancet Respiratory Medicine,3,1 (2015) | 160 | 23 | 15 |
| 9 | Q. Li, G. D. Clifford “Dynamic Time Warping and Machine Learning for Signal Quality Assessment of Pulsatile Signals” Physiological Measurement,33,9 (2012a) | 156 | 16 | 20 |
| 10 | Anton Aboukhalil, Larry Nielsen et al “Reducing False Alarm Rates for Critical Arrhythmias Using the Arterial Blood Pressure Waveform” Journal of Biomedical Informatics,41,3,6 (2008) | 151 | 11 | 23 |
| 11 | Feras Hatib, Zhongping Jian et al “Machine-learning Algorithm to Predict Hypotension Based on High-Fidelity Arterial Pressure Waveform Analysis” Anesthesiology,129,4, 10 (2018) | 147 | 37 | 5 |
| 12 | U. Rajendra Acharya, Hamido Fujita et al “Automated Identification of Shockable and Non-Shockable Life-Threatening Ventricular Arrhythmias Using Convolutional Neural Network” Future Generation Computer Systems,79,2 (2018) | 144 | 36 | 6 |
| 13 | Qingqing Mao, Melissa Jay et al “Multicentre Validation of a Sepsis Prediction Algorithm Using Only Vital Sign Data in the Emergency Department, General Ward and ICU” BMJ Open,8,1 (2018) | 134 | 34 | 8 |
| 14 | Zhengping Che, Sanjay Purushotham et al “Interpretable Deep Models for ICU Outcome Prediction” AMIA. Annual Symposium Proceedings (2016) | 132 | 22 | 17 |
| 15 | Abbas K. Abbas, Konrad Heimann et al “Neonatal NonContact Respiratory Monitoring Based on Real-Time Infrared Thermography” BioMedical Engineering Online,10,1,10 (2011) | 126 | 11 | 21 |
| 16 | Jacob S. Calvert, Daniel A. Price et al “A Computational Approach to Early Sepsis Detection“ Computers in Biology and Medicine,74,7 (2016) | 116 | 19 | 18 |
| 17 | Gilles Clermont, Derek C. Angus et al “Predicting Hospital Mortality for Patients in the Intensive Care Unit: a Comparison of Artificial Neural Networks with Logistic Regression Models” Critical Care Medicine,29,2 (2001) | 112 | 10 | 24 |
| 18 | David W. Shimabukuro, Christopher W. Barton et al “Effect of a Machine Learning-Based Severe Sepsis Prediction Algorithm on Patient Survival and Hospital Length of Stay: a Randomised Clinical Trial” BMJ Open Respiratory Research,4,1,11 (2017) | 112 | 22 | 16 |
| 19 | Jan Claassen, Kevin Doyle et al “Detection of Brain Activation in Unresponsive Patients with Acute Brain Injury” New England Journal of Medicine,380,26,6 (2019) | 111 | 37 | 4 |
| 20 | Sanjay Purushotham, Chuizheng Meng et al “Benchmarking Deep Learning Models on Large Healthcare Datasets” Journal of Biomedical Informatics,83,7 (2018) | 105 | 26 | 12 |
| 21 | Jay L. Kovner. Kyle A. Carey et al “The Development of a Machine Learning Inpatient Acute Kidney Injury Prediction Model” Critical Care Medicine,46,7 (2018) | 105 | 26 | 13 |
| 22 | Alexander Meyer, Dina Zverinski et al “Machine Learning for Real-Time Prediction of Complications in Critical Care: a Retrospective Study” The Lancet Respiratory Medicine,6,12 (2018) | 101 | 25 | 14 |
| 23 | Michel Dojat, Laurent Brochard et al “A Knowledge-Based System for Assisted Ventilation of Patients in Intensive Care Units” International journal of clinical monitoring and computing 9,4 (1992) | 99 | 3 | 30 |
| 24 | Nicos Maglaveras, Telemachos Stamkopoulos et al “An Adaptive Backpropagation Neural Network for Real-Time Ischemia Episodes Detection: Development and Performance Analysis Using the European ST-T Database” IEEE Transactions on Biomedical Engineering,45,7 (1998) | 96 | 4 | 29 |
| 25 | Allison Sutherland, Mervyn Thomas et al “Development and Validation of a Novel Molecular Biomarker Diagnostic Test for the Early Detection of Sepsis” Critical Care,15,3,6 (2011) | 96 | 9 | 25 |
| 26 | Hye Jin Kam, Ha Young Kim “Learning Representations for the Early Detection of Sepsis With Deep Neural Networks” Computers in Biology and Medicine,89,10 (2017) | 96 | 19 | 19 |
| 27 | Michelle M. Clark, Amber Hildreth et al “Diagnosis of Genetic Diseases in Seriously Ill Children by Rapid Whole-Genome Sequencing and Automated Phenotyping and Interpretation” Science Translational Medicine,11,489,4 (2019) | 95 | 32 | 10 |
| 28 | Subramani Mani, Asli Ozdas et al “Medical Decision Support Using Machine Learning for Early Detection of Late-Onset Neonatal Sepsis” Journal of the American Medical Informatics Association,21,2,3 (2014) | 89 | 11 | 22 |
| 29 | K. Ashwin Kumar, Yashwardhan Singh et al “Hybrid Approach Using Case-Based Reasoning and Rule-Based Reasoning for Domain Independent Clinical Decision Support in ICU” Expert Systems with Applications,36,1 (2009) | 86 | 7 | 27 |
| 30 | Qiao Li, Gari D. Clifford “Signal Quality and Data Fusion For False Alarm Reduction in the Intensive Care Unit” Journal of Electrocardiology,45,6,11 (2012b) | 85 | 9 | 26 |
aCPY: citations per year.