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Acute respiratory distress syndrome (ARDS) is themost common form of acute severe hypoxemic respiratory failure in
the critically ill with a hospital mortality of 40%. Alveolar inflammation is one of the hallmarks for this disease. β-
Glucans are polysaccharides isolated from a variety of natural sources including mushrooms, with documented
immune modulating properties. To investigate the immunomodulatory activity of β-glucans and their potential as a
treatment for ARDS, we isolated and measured glucan-rich polysaccharides from seven species of mushrooms. We
used three models of in-vitro injury in THP-1 macrophages, Peripheral blood mononuclear cells (CD14+) (PMBCs)
isolated from healthy volunteers and lung epithelial cell lines. We observed variance between β-glucan content in ex-
tracts isolated from sevenmushroom species. The extracts with the highest β-glucan content foundwas Lentinus edodes
which contained 70% w/w and Hypsizygus tessellatus which contained 80% w/w with low levels of α-glucan. The
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extracts had the ability to induce secretion of up to 4000 pg/mL of the inflammatory cytokine IL-6, and up to
5000 pg/mL and 500 pg/mL of the anti-inflammatory cytokines IL-22 and IL-10, respectively, at a concentration of
1 mg/mL in THP-1 macrophages. In the presence of cytokine injury, IL-8 was reduced from 15,000 pg/mL to as low
as 10,000 pg/mL in THP-1 macrophages. After insult with LPS, phagocytosis dropped from 70–90% to as low 10%
in CD14+ PBMCs. After LPS insult CCL8 relative gene expression was reduced, and IL-10 relative gene expression in-
creased from 50 to 250-fold in THP-1 macrophages. In lung epithelial cells, both A549 and BEAS-2B after IL-1β insult,
IL-8 levels dropped from10,000 pg/mL to as low as 6000 pg/mL. TNF-α levels dropped 10-fold from100 pg/mL to just
below 10 pg/mL. These results demonstrate the therapeutic potential of β-glucans in inflammatory lung conditions.
Findings also advance bio-based research that connects green innovation with One Health applications for the better-
ment of society.
THP-1 macrophages
Lung injury
ARDS
Medicinal mushrooms
One-health
1. Introduction

Acute respiratory distress syndrome (ARDS), is the most common form
of acute severe hypoxemic respiratory failure in the critically ill (Rezoagli
et al., 2017). The syndrome is defined by: acute onset of hypoxemia
(PaO2:FiO2 ratio <300) and bilateral pulmonary opacities not explained
by cardiac failure or fluid overload (Bellani et al., 2016). ARDS is a diffuse
inflammatory reaction and can be characterised by an explosive acute in-
flammatory response in lung parenchyma (Crimi and Slutsky, 2004),
impairing the principal function of gas exchange, which can lead to
hypoxaemia. Treatment is mainly focused on clinical management as
there remains no effective direct pharmacological therapy for this condition
(Rezoagli et al., 2019). There is an urgent need for treatment as mortality
and morbidity are unacceptably high at 40% (Horie et al., 2020). Further-
more, infection by severe acute respiratory syndrome coronavirus-2
(SARS-CoV-2) has led to further incidences of COVID-19-related ARDS,
which is associated with 70% of fatal cases (Rezoagli et al., 2021; Li
et al., 2020; Zhou et al., 2020). In both ARDS and in COVID-19-induced
ARDS there is a marked increase in serum levels of inflammatory cytokines
and chemokines, which is a major contributor to disease severity and ulti-
mately death (G. Chen et al., 2020; X. Chen et al., 2020; Huang et al.,
2020; Mehta et al., 2020; Qin et al., 2020). The pathophysiology of ARDS
is associated with numerous target immune cells including macrophages.
The lung microenvironment during injury determines the functional phe-
notype of macrophages, which can promote either wound healing or in-
flammation (Nanchal and Truwit, 2018). Thus, in developing potential
therapeutics it is important to understand the potential effects of these ther-
apeutics on lung tissue and on macrophages. An ideal treatment for this
conditionwould aim at reducing the effects of the proinflammatory cascade
and would seek tomaximize the anti-inflammatory immunomodulatory re-
sponse (Zambelli et al., 2021).

β-Glucans are defined as complex polysaccharides that are found in an
abundance of sources including fungi, yeast, grain, bacteria, and algae
(Murphy et al., 2021). β-Glucans can be classified structurally as either
1,3 1,4-linked or 1,3 1,6-linked, which is dependent on their source (Cui
et al., 2011; Pogue et al., 2021; Murphy et al., 2020). These molecules are
widely marketed as biologically active molecules (bioactives) (Wang
et al., 2017a). There are over 200 clinical trials registered for their use for
a range of applications. There are also licenced drugs containing β-glucans
on the market since 1980 in Japan, for the treatment of cancer (Novak
and Vetvicka, 2008; Takeshita et al., 1991; Yang et al., 2019). β-Glucans
as pharmaceutical agents have also been authorised in several countries, in-
cluding the United States of America, Canada, Finland, Sweden, China and
Korea (van Steenwijk et al., 2021). The diverse functional effects of these
molecules include alteration of lipid and glucosemetabolism, cholesterol re-
duction, obesity regulation and reduction of cardiovascular and diabetic
risk, modulating the gut microbiome, altering lipid and glucose metabolism
and beneficial effects on gastrointestinal conditions such as irritable bowel
syndrome (Drozdowski et al., 2010; Maki et al., 2003; McRorie and
McKeown, 2017; Sima et al., 2018; Tiwari and Cummins, 2011). β-
Glucans, specifically from non-cereal sources, are widely documented for
their immunomodulatory properties, with the ability to stimulate the im-
mune response and initiate inflammatory properties, and to promote resis-
tance to infections (Ooi and Liu, 2012). (Bohn and BeMiller, 1995).
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Mushroom-derived β-glucans are the most potent immune modulators
(Borchers et al., 1999; Ooi and Liu, 2012; Lorenzen and Anke, 1998; Ooi
and Liu, 1999; Tzianabos, 2000; Wasser and Weis, 1999). Moreover, they
have demonstrated therapeutic effects in alleviating infective respiratory
conditions (Fuller et al., 2012; Jesenak et al., 2013; Yamauchi et al.,
2008). They have also been documented to reduce pro-inflammatory cyto-
kines, increase anti-inflammatory cytokines, increased formation of antiox-
idants as well reduction of inflammatory cells in preclinical lung injury
models (Bedirli et al., 2007; Jedinak et al., 2011; Johnson et al., 2009;
Kofuji et al., 2012; Soltys andQuinn, 1999; Yamada et al., 2007). These ben-
eficial effects can also be seen in clinical trials. When patients were admin-
istered β-glucans for the prevention of nosocomial pneumonia and sepsis,
the treatment group compared to the control group had lower incidences
of pneumonia as well as a lower mortality rate (De Felippe et al., 1993).

We have previously investigated the effects of a commercial β-glucan
and an in-house extract of β-glucans from the mushroom Lentinus edodes
(Masterson et al., 2020; Murphy et al., 2020a, 2020b, 2020c). Specifically,
Murphy et al. (2019) showed that β-glucans from the same mushroom, one
isolated by hot water extraction and one sourced commercially had differ-
ent effects, namely reduction in inflammatory cytokines, reduction in
phagocytic activity of macrophages after LPS insult and reduction of in-
flammatory response in in-vitro lung cells. Thus, to continue this work
and understand the potential immunomodulatory properties of othermush-
room β-glucans as a potential treatment for inflammatory lung conditions
like ARDS we decided to replicate the assays and include additional test pa-
rameters. In the current study, we first extracted and measured β-glucans
from seven species ofmushroom to determine BRMvariance among species
by applying them to amonocytic cell line and an in-vitro lung injurymodel.
Second, we isolated CD14+ monocytes from healthy volunteers and ex-
posed the cells to the extracts, then measured phagocytic activity. Third,
we simulated an injurious environment on two types of alveolar cell lines
using IL-1β and measured cytokine expression. Finally, we extended this
assay to a monocytic cell line, which was inflamed with different insults
(LPS and cytomix). It has recently emerged that macrophages are reduced
and equally as inflamed as lung cells during COVID-19 infection. Therefore,
after injury wemeasured cytokine release, gene expression, and phagocyto-
sis of these cells to determine immune-modulatory potential in an inflam-
matory micro-environment.

2. Materials& methods

Commercial Lentinan (CLE) was sourced from Carbosynth (FL33321,
Compton, Berkshire, UK). Fruiting bodies of mushrooms were kindly gifted
by Garryhinch Wood Exotics Ltd. Garryhinch, Portarlington, Co Offaly,
Ireland. The fruiting body of Agaricus blazeii was kindly gifted by Professor
Leo van Griensven,WageningenUniversity, TheNetherlands. Other species
of mushroom included; Lentinus edodes (L.E), Pholiota microspora (P.M),
Pleurotus ostreatus (P.O), Pleurotus citrinopileatus (P.C), Pleurotus eryngii
(P.E), Hypsizygus tessellatus (H.T) and Agaricus blazeii (A.B).

2.1. β-Glucan extraction

To extract β-glucans from the fruiting bodies of the mushrooms, the
method used previously by Murphy et al. (2019) was employed. Briefly –
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the fruiting bodies were washed and dried. The samples were blended into
a fine powder. Roughly, 100 g of dried blended biomass was placed in 1
Litre of water and autoclaved. After autoclaving the polysaccharides were
precipitated from supernatant using 100% Ethanol. Precipitates were
dried and solubilised in PBS for analysis.

2.2. β-Glucan quantification

Extracts were analysed for 1-3 1-6 β-glucan content using the
Megazyme yeast and mushroom kit (K-YBGL) (Megazyme Ltd., Bray, Co.
Wicklow, Ireland). Assays were carried out according to manufacturer's in-
structions. After milling, samples were placed in 12 M H2SO4 at−4 °C for
2 h to solubilize the β-glucans. Samples were then hydrolysed in 2MH2SO4

at 100 °C for a further 2 h. Any remaining β-glucan fragments were quanti-
tatively hydrolysed to glucose using a mixture of exo-1,3-β-glucanase and
β-glucosidase which gives a measurement of total β-glucan content after
substrate addition. The α-glucan content of the sample was determined
by hydrolysing specifically to D-glucose and D-fructose. Glucose was mea-
sured with amyloglucosidase and invertase using a glucose oxidase peroxi-
dase GOPOD reagent. β-Glucan content was determined by the difference
between the two measurements.

2.3. Blood donor cell collection

Blood sample collection was approved by the Athlone Institute of Tech-
nology Ethics Committee. Blood samples were obtained from healthy vol-
unteers for isolation of immune cells. A total of 15 mL was collected from
each donor. Individual cells were isolated from 5 mL aliquots of collected
blood. Samples were magnetically labelled with whole blood microbeads
(Miltenyi Biotec, Germany) to isolate cells based on specific surface mole-
cules according to themanufacturer's instructions, using the autoMACS sep-
arator (Miltenyi Biotec).

2.4. Cell culture

A549 cells (used at passage 90), BEAS-2B cells (used at passage 10), and
THP-1 monocyte cells (used at passage 20), were obtained from the
American Type Culture Collection (ATCC, Rockville, MD, USA). Cells
were cultured in RPMI-1640 (Sigma-Aldrich, St. Louis, MO, USA), supple-
mented with 10% fetal calf serum (Sigma-Aldrich), 1% penicillin G
(100 U/mL) and streptomycin (100 μg/mL) solution (Sigma-Aldrich), at
37 °C a 5% CO2 environment. For differentiation into macrophages, THP-
1 monocyte cells were treated with phorbol 12-myristate 13-acetate
(PMA) for differentiation into THP-1 macrophages. (Peprotech EC,
London, UK), at a concentration of 100 ng/mL, for 48 h.

2.5. CD14+ PBMCs

CD14+ cells were positively isolated based on the surface molecule
CD14, which is primarily found on monocytes (Shin et al., 2019). Isolated
cells were cultured in RPMI-1640 (Sigma-Aldrich, St. Louis, MO, USA), sup-
plemented with 10% fetal calf serum (Sigma-Aldrich), 1% penicillin G
(100 U/mL)/streptomycin (100 μg/mL) solution (Sigma-Aldrich) and
50 ng/mL of macrophage colony stimulating growth factor (MCSGF)
(RnD Systems MN, USA) at 37 °C in a 5% CO2 environment.

2.6. Cell injury and β-glucan treatment

All cell types were treated with 1 mg/mL of β-glucan in PBS based on
other published work (Jung et al., 2007; Murphy et al., 2020a, 2020b,
2020c; Sari et al., 2020; Sivinski et al., 2020). For injury assays THP-1
PMA differentiated macrophage cells were seeded at a density of 4 × 105

cells/well in 96-well plates, and 24 h later were injured with two different
types of insult: either LPS (100 ng/mL) (Sigma) or cytomix (TNF-α, IFN-Υ,
IL-1β), at 25 ng/mL (Immunotools), in RPMI supplemented with 1% peni-
cillin/streptomycin. After 24 h cells were washed three times in PBS and
3

treated with 1 mg/mL of extracts for a further 24 h before analysis. Pulmo-
nary alveolar type II A549 cells were seeded at a density of 4 × 105 cells/
well in 96 well plates. After 24 h cells were injured with 1 ng/mL of IL-1β
(Peprotech, Rocky Hill, NJ) in RPMI supplemented with 1% penicillin/
streptomycin.

2.7. Enzyme linked immunosorbent assay (ELISA)

A human Duoset sandwich ELISA kit (RnD SystemsMN, USA) was used
to measure cytokine levels in the medium after β-glucan exposure. All
ELISA assays were performed according to the manufacturer's instructions.
Results were expressed either in pg/mL or in ng/mL.

2.8. Phagocytosis assays

To determine Phagocytic activity, THP-1macrophages (PMA differenti-
ated) and CD14+ cells were seeded into 96-well plates at 4 × 105 cells/
well. After 24 h, cells were either injured or treated with PBS. After a fur-
ther 2 h, cells were treated with β-glucan extracts. After a further 24 h
cells were washed with PBS and incubated with Alexa Fluor 488-
conjugated E.coli (K-12 strain) Bioparticles (E13231; Life Technologies)
for 2 h, afterwhich cells werewashed three timeswith PBS to remove resid-
ual particles before resuspension in FACS flow buffer and measured for
fluorescent particles by flow cytometry (Miltenyi Biotec, Germany).

2.9. RNA extraction

For RNA extraction from THP-1macrophage cells, Media was removed,
the cells were washed 3× with PBS, and RNA was extracted using the
Purelink RNAMini kit (Thermo-Fisher), according to themanufacturer's in-
structions. RNA was analysed using a NanoDrop 1000 spectrophotometer
(Thermo Fisher Scientific, DE, USA) to determine RNA concentrations
and A260/A280 ratios.

2.10. cDNA synthesis and real-time PCR

cDNAwas prepared for the replicate samples using the SensiFAST cDNA
Synthesis kit (Bioline), according to the manufacturer's instructions. RNA
input for all samples was normalized to the sample, so that 325.5 ng of
total RNA were used in each reaction. Real-time quantitative PCR was per-
formed using pre-designed TaqMan Gene Expression Assays for the respec-
tive genes, together with the TaqMan Gene Expression Master Mix
(Thermo-Fisher). The transcripts examined were: TLR2, IL-10, CCL8,
CLEC-7a and MCSGF. Reactions were carried out on the LightCycler 96
equipment (Roche), using the GAPDH transcript as endogenous control.
Relative gene expression was calculated using the 2^-ddCq method.

2.11. Statistical analysis

Continuous data were expressed as mean and standard error of the
mean (SEM). Differences of continuous variables between species of mush-
rooms and PBS and injury (i.e. LPS or Cytomix or IL-1 β) were assessed by
one-way analysis of variance for independent measures. Post-hoc compari-
sons were investigated by controlling the False Discovery Rate using the
two-stage step-up method of Benjamini, Krieger and Yekutieli test. Statisti-
cal significance was considered with a p-value < 0.05 (two-sided). Statisti-
cal analyses were performed using STATA/MP 16.0 for Windows
(StataCorp LLC, College Station, TX 77845, USA) and GraphPad Prism 8
for Windows (Version 8.0.2, FraphPad Software, Inc.).

3. Results

3.1. β-Glucans quantification

β-glucans were extracted from seven species of mushrooms as previ-
ously described (Murphy et al., 2020a, 2020b, 2020c). After extraction
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and isolation, the Megazyme 1,3 1,6 kit was used to determine the concen-
tration of α- and β-glucans.

There was variance between species as can be seen in the relative con-
centrations of β-glucan and α-glucan displayed in Fig. 1. P.E appeared to
have the purest concentration of β-glucan compared to other extracts. A.B
and P.O appeared to have high levels of contaminating α-glucan present.
H.T yielded the highest concentration of β-glucan with little contaminating
α-glucan. H.T yielded the highest concentration of β-glucan with little con-
taminating α-glucan.

3.2. Effect of β-glucans on macrophages

3.2.1. The direct effect of β-glucans on THP-1 macrophages
To understand the effects of β-glucan extracts on macrophages, THP-1

macrophages were treated with each of the extracts and cytokine secretion
levels were measured by an ELISA. Results show (Fig. 2) that each extract
had a different effect on the cytokine release profile from THP-1 macro-
phages. Extracts had the potential to increase secretion of both inflamma-
tory cytokines (IL-6, IL-8, TNF-α) and anti-inflammatory cytokines (IL-10
and IL-22). CLE is a commercial source of β-glucan, and its extraction
method is unknown; all other extracts were processed as described in the
methods Section 2.1. Although the extracts have different effects on the cy-
tokine secretion profile, the pattern was generally similar except for CLE.
CLE induced lower secretion levels of IL-6 (Panel A), IL-22 (Panel C), and
IL-10 (Panel E), compared to the other extracts and lower levels of IL-2
(Panel F) compared to the PBS control. The remaining extracts increased
IL-6, TNF-α (Panel B) and IL-10 secretion and maintained IL-22 and IL-2
compared to PBS control. CLE and some of the extracts (L.E, C.L.E and P.
C) appeared to increase the secretion of the chemokine IL-8 compared to
control (Panel D).

3.2.2. Effect of β-glucans on phagocytosis by THP-1 and CD14+ PBMC
macrophages

To compare the effects of β-glucan extracts on a macrophage cell line
(THP-1) and on fresh PBMCs (CD14+), cells were treated with extracts,
and after 24 h phagocytic activity wasmeasured and displayed in Fig. 3. Re-
sults varied: Panel A shows the effects on THP-1 macrophages; LPS signifi-
cantly increased phagocytosis relative to untreated cells. Four extracts (P.
M, P.C, P. E and H.T) were able to significantly reduce phagocytosis, with
PM showing by far the greatest reduction. CD14+ PBMCs (Fig. 3, Panel
B) showed varying responses to the extracts in terms of phagocytosis, as ex-
pected due to donor variability. The extract A.B significantly reduced the
Fig. 1. The percentage w/w α-glucan and β-glucan content in mushroom extracts
using Megazyme. Commercial Lentinan (C.L.E.), Lentinus edodes (L.E), Pholiota
microspora (P.M), Pleurotus ostreatus (P.O), Pleurotus citrinopileatus (P.C), Pleurotus
eryngii (P.E), Hypsizygus tessellatus (H.T) and Agaricus blazeii (A.B).
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phagocytic activity, although the overall percentage phagocytosis was
low in these cells. The extracts showed a tendency toward reduction in
PBMCs, however, the results do not show significance, potentially due to
donor variability.

To gain a further understanding of the mechanism, expression levels of
four genes were measured. Two genes were related to cytokine/chemokine
response: IL-10 (Fig. 4; Panel B), and CCL8 (IL-8; Fig. 4, Panel D). Two genes
corresponded to cell surface ligands associated with β-glucan recognition:
toll-like receptor 2 TLR-2 (Fig. 4, Panel A), and dectin-1 (CLEC7a, Fig. 4,
Panel C).

Expression of TLR2 in THP-1macrophages showed no significant differ-
ence in induction between LPS and the β-glucans. However, compared to
PBS control, P.O induced expression of TLR2. All the extracts significantly
inhibited the relative gene expression levels of CLEC7a compared to both
PBS control and LPS in THP-1 macrophages. IL-10 expression showed no
significant increase in gene expression compared to controls except for
with P.M. The extracts did not significantly induce the expression of CCL8
compared to PBS controls and induction was significantly lower compared
to LPS.

To determine the effect of β-glucans on macrophages after injury, THP-
1 macrophages were injured with Cytomix (IL-1β, TNF-α & IFN-γ), and
then treated with β-glucan extracts (Fig. 5). ELISA assay results show the
β-glucan extracts from L.E, P.E, H.T and A.B significantly increased the se-
cretion of IL-6 after insult (Panel A). P.O and P.C did not have the same in-
duction profile as when directly treated with injury (Fig. 2 Panel A), which
induced ~2000 pg/mL secretory levels of IL-6. After insult with cytomix P.
O and P.C induced~1000 pg/mL secretory levels of IL-6. IL-8 secretionwas
increased after cytomix treatment alone (Fig. 5, Panel B). However, the
strongest inducers of IL-8 secretion with direct treatment were L.E, C.L.E
and P.C (Fig. 2 Panel D), all of which significantly reduced the secretion
of this inflammatory chemokine after injury except for LE which was not
significant. There was no significant effect of β-glucan treatments on TNF-
α secretion after cytomix insult (Fig. 5, Panel C).

Both THP-1 macrophages and PBMCs were analysed for phagocytic ac-
tivity (Fig. 6) after injury with LPS. The THP-1 macrophages after injury
(Fig. 6, Panel A) had a very similar response to those with β-glucan extracts
alone (Fig. 3 Panel A) compared with treatment after injury. When CD14+
cells were treated with β-glucan extracts, only A.B significantly reduced
phagocytosis (Fig. 3 Panel B). However, when administered after LPS, all
β-glucan extracts reduced percentage phagocytosis (Fig. 6, panel B). Panel
C displays the phagocytosis percentage of THP-1 macrophages after
cytomix insult; C.L.E, P.M, P.O, P.C and P.E reduced the phagocytic activity
after insult and treatment.

Inflammatory gene expression and anti-inflammatory gene expression
markers were analysed after both types of injury, as displayed in Fig. 7.
The inflammatory marker CCL8 was measured after LPS injury (Panel
A) and cytomix (Panel B). In the presence of LPS, CCL8 relative gene expres-
sion was significantly reduced after treatment with all extracts. In the pres-
ence of cytomix insult, L.E, P.O, P.C and H.T all increased the relative gene
expression of CCL8. The anti-inflammatory marker IL-10 was measured
after LPS injury (Panel C) and cytomix (Panel D). After LPS insult L.E, H.T
and A.B all significantly increased the expression of IL-10 gene compared
to injury alone. All the extracts increased the expression of IL-10 compared
to injury alone.

3.3. Effect of β-glucans in an in-vitro lung injury model

In previous work carried out by this group, we established that β-glucan
extracts (L.E) have the potential to reduce inflammation in alveolar A549
cell lines (Murphy et al., 2019). To further expand on this work, the same
assays were repeated with another alveolar cell line BEAS-2B, using six
new extracts.

3.3.1. A549 cells
To determine the direct effects of the β-glucan extracts on lung cells, ex-

tracts were incubated with A549 cells for 24 h and supernatant was
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Fig. 2. The effect of the β-glucan extracts on cytokine expression in THP-1 macrophages (PMA differentiated) measured using ELISA. Panel A; IL-6, Panel B; TNF-α, Panel C;
IL-22, Panel D; IL-8, Panel E; IL-10 Panel F; IL-2. p < 0.05 versus PBS. Cells were treated with 1 mg/mL of extracts for 24 h before cytokine analysis. Phosphate buffer saline
(PBS), Commercial Lentinan (C.L.E.), Lentinus edodes (L.E), Pholiota microspora (P.M), Pleurotus ostreatus (P.O), Pleurotus citrinopileatus (P.C), Pleurotus eryngii (P.E), Hypsizygus
tessellatus (H.T) and Agaricus blazeii (A.B).
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measured for cytokines. Results are displayed in Fig. 8. Panel A shows the
release of IL-6 after treatment; P.M, P.A, P.E, H.T and A.B all significantly
induce the secretion of IL-6 compared to PBS control. Panel B shows the se-
cretion of IL-8. All the extracts induced the secretion of IL-8 fromA549 cells
with respect to PBS control except for P.E. When A549 cells were treated
with the extracts, TNF-α secretion was increased with L.E, P.O, P.E, H.T
and A.B with respect to PBS control (Panel C).

A549 cells were then treated with IL-1β to induce a cytokine injury.
Subsequently the cells were treated with the β-glucans extracts and the
cytokine analysis was repeated, as displayed in Fig. 8. Panel D shows that
C.LE., P.M and P.A slightly reduced IL-6 secretion (though not signifi-
cantly), after insult except for L.E which increases secretion with respect
to injury alone. Panel E shows that after insult L.E, C.L.E, P.O, P.E and A.
B reduce the section of IL-8, which is an opposite response to when cells
are treated in the absence of injury (Fig. 8; Panel B). The extracts P.E, H.T
and A.B significantly reduced TNF-α secretion after IL-1β insult (Panel
F) which is again an opposite response to when the cells are treated alone
with extracts (Panel C).
5

3.3.2. BEAS-2B
To understand if the β-glucan extracts would have a similar effect in

another lung epithelial cell line, BEAS-2B cells were treated with the β-
glucans extracts. The supernatant was then measured for cytokine secre-
tion. Results are displayed in Fig. 9. All extracts induced the secretion of
IL-6 (Panel A), and IL-8 (Panel B) with respect to PBS control. Panel C
shows the secretion of TNF-α after treatment, C.L.E increased secretion
but the other extracts had no effect.

Like the A549 cells, BEAS-2B cells were then treated with IL-1β to in-
duce a cytokine injury; cells were then treated with the β-glucans extracts
and the cytokine analysis was repeated, as displayed in Fig. 9. There was
no effect on IL-6 secretion (Panel D). Panel E shows that after insult C.L.E,
P.A, P.E, H.T and A.B reduced the section of IL-8 which is an opposite re-
sponse to when cells are treated in the absence of injury (Fig. 9; Panel B).
The extracts P.E, H.T and A.B significantly reduced TNF-α secretion after
IL-1β insult (Fig. 9; Panel F) however these levels were the same in the ab-
sence of injury (Fig. 9; Panel C) suggesting expression levels aremaintained
in the presence of injury.
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4. Discussion

ARDS-associated lung injury develops a state which is marked by an in-
crease in serum levels of inflammatory chemokines and cytokines; this is a
7
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Fig. 7. The effects of the β-glucan extracts on THP-1 macrophages (PMA differentiated) after LPS (Panels A, C) or Cytomix (Panels B, D) injury relative to PBS-treated cells
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major contributor to disease severity and ultimately death (G. Chen et al.,
2020; X. Chen et al., 2020; Huang et al., 2020; Mehta et al., 2020; Qin
et al., 2020). There is currently a vast literature relating to the immunomod-
ulatory effects of β-glucan (Rao et al., 2020), and there is a huge level of en-
thusiasm regarding their therapeutic potential. Thus with this in mind,
there are three aims to this work. Firstly, to understand if β-glucans ex-
tracted in the same way from different species of mushroom contained
the same levels of β-glucan content and if these extracts had the same effect
on a key player in cellular immunity and response –macrophages. The sec-
ond aimwas to determine if the samples could elicit a response or prime im-
mune cells, andwhether there would be a difference in priming effects. Our
final aim was to determine whether there may be the potential for the ex-
tracts to be used in hyperinflammatory conditions such as ARDS. To under-
stand this, two types of in-vitro models were used – injured macrophages
and lung injury models. This approach will potentially facilitate a greater
understanding into the biological variance of these compounds and
realising their therapeutic potential.

It is recognised in the literature that β-glucans from different sources
can exert different biological effects, and that different extraction methods
may help to optimize performance. Our experiments were performed using
the same extraction method on all seven mushroom species. As such, we
can compare the immunomodulatory effects of the β-glucan extracts by
the same extraction procedure. Further studies may examine the effects of
altering extraction parameters on β-glucan activity. Furthermore, future
structural analyses would allow us to deepen the structure-function
8

relationship. Further studies may examine the effects of altering extraction
parameters on β-glucan activity. Furthermore, future structural analyses
would allow us to deepen the structure-function relationship. The diverse
mechanisms of action of β-glucans is unknown. There are differences in
the effects of β-glucans that can be observed between similar preparations
from the same species or source. The cellular pathways that are activated
after recognition are also not fully understood. β-Glucans appear to be
recognised as pathogen associated molecular patterns (PAMPs) and modu-
late immune function via this pathway (Brown and Gordon, 2005; Borchers
et al., 1999). However, the exact mechanism by which β-glucans suppress
inflammatory cytokines and induce anti-inflammatory cytokines are com-
plex, and incompletely understood. With this in mind, previous work by
this group, Murphy et al., 2019 investigated the differential effects of two
β-glucan extracts in an in-vitro lung injury model and in an in-vivo model
of pulmonary sepsis (Masterson et al., 2020). Once, determined fungal β-
glucans had immune-modulatory effects in lung injury pre-clinical models,
the next advancement is to highlight other potential fungal derived β-
glucans with immune-modulatory activity. Once identified, future studies
will investigate the structure-activity relationship to gain an understanding
of how thesemolecules elicit their effects and the pathways associatedwith
these effects.

The Key findings of this work include - There is a variance in the levels
of β-glucan between mushroom species extracted in the same way. This
study found that Lentinus edodes and Hypsizygus tessellatus had the highest
levels of β-glucan content when measured using the Megazyme assay.
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Fig. 8. The effect of the β-glucan extracts on cytokine expression in A549 cells measured using ELISA. Panel A; IL-6, Panel B; IL-8, Panel C; TNF-α. The effect of the β-glucan
extracts on cytokine expression in BEAS-2B cells after IL-1β insult, measured using ELISA. Panel D; IL-6, Panel E; IL-8, Panel F; TNF-α. p< 0.05 versus PBS or IL-1β. Uninjured
cells were treated with extracts (1 mg/mL) for 24 h before cytokine analysis. Cells were treated with IL-1β at 1 ng/mL for 24 h after which they were washed with PBS and
treatedwith extracts (1mg/mL) for 24 h before cytokine analysis. Phosphate buffer saline (PBS), Commercial Lentinan (C.L.E.), Lentinus edodes (L.E), Pholiota microspora (P.M),
Pleurotus ostreatus (P.O), Pleurotus citrinopileatus (P.C), Pleurotus eryngii (P.E), Hypsizygus tessellatus (H.T) and Agaricus blazei (A.B).
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Most extracts had the ability to induce both pro and anti-inflammatory cy-
tokines individually at a concentration of 1 mg/mL in THP-1macrophages.
In the presence of a paracrine insult of a cocktail of cytokines; IL-8 was re-
duced in THP-1macrophages. Also observed was a reduction in phagocyto-
sis in THP-1 macrophages and CD14+ macrophages in the presence and
absence of injury. After LPS insult, CCL8 relative gene expression was re-
duced, and IL-10 gene expression was increased in THP-1 macrophages.
In lung epithelial cells, the extracts had the ability to reduce two cytokines
(IL-8 and TNF-α) which are heavily correlated to pathogenesis of inflamma-
tion in the presence of IL-1β.

4.1. β-Glucans quantification in mushroom species

Hot water extracts were prepared from seven species of mushroom, and
β-glucan content was determined. Results show that although extracts were
isolated by the same method, each species yielded different levels of α- and
9

β-glucans. Although there is some evidence to suggest that α-glucans can
have immune-modulating properties (Masuda et al., 2017; Okamoto
et al., 2007). There is substantially more evidence to suggest that the β-
glucan molecule is the immune-stimulating compound found in mush-
rooms. These results highlight the variability between β-glucan contents
in the different mushroom species. Two other studies using the same anal-
ysis procedure found variance among mushroom species (McCleary and
Draga, 2016; Sari et al., 2017). Other studies have found that α- and starch
glucans are usually of low abundance in cultivated mushrooms (Bak et al.,
2014; Sari et al., 2017; Synytsya et al., 2008).
4.2. Effects of β-glucans on macrophages

Macrophages have the potential to intensify inflammation or exhibit
regulatory repair activity during injury (Wynn and Barron, 2010).
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Fig. 9. The effect of the β-glucan extracts on cytokine expression in BEAS-2B cells measured using ELISA. Panel A; IL-6, Panel B; IL-8, Panel C; TNF-α. The effect of the β-
glucan extracts on cytokine expression in BEAS-2B cells after IL-1β insult, measured using ELISA. Panel D; IL-6, Panel E; IL-8, Panel F; TNF-α. p < 0.05 versus PBS or IL-
1β. Uninjured cells were treated with extracts (1 mg/mL) for 24 h before cytokine analysis. Cells were treated with IL-1β at 1 ng/mL for 24 h after which they were
washed with PBS and treated with extracts (1 mg/mL) for 24 h before cytokine analysis. Phosphate buffer saline (PBS), Commercial Lentinan (C.L.E.), Lentinus edodes (L.E),
Pholiota microspora (P.M), Pleurotus ostreatus (P.O), Pleurotus citrinopileatus (P.C), Pleurotus eryngii (P.E), Hypsizygus tessellatus (H.T) and Agaricus blazei (A.B).
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As well as variance in content there is also evidential variance in re-
sponse, which is most evident in Fig. 2 Panel A, measurement of IL-6. P.M
and P.O have similar levels of β-glucan content (Fig. 1), yet P.M induced
THP-1 macrophages to produce nearly double the amount of IL-6 in com-
parison to P.O, according to the ELISA assay. This could be correlated to
the higher levels of α-glucan, in the P.O sample or to structural variances
between β-glucans from different species. However, the high amount of
α-glucan present in A.B sample does not hinder its activity in stimulating
IL-6 secretion.

Variance can also be seen in phagocytic activity (Fig. 3, Panel A), where
some samples (P.M, P.C and H.T) reduced phagocytosis in THP-1 macro-
phages. A.B reduced phagocytic activity in the donor PBMCs. Other extracts
had no effect on phagocytic index. The THP-1 macrophages were differen-
tiated using PMA, and the PBMCs were differentiated using MCSGF. Thus,
as they should have a high phagocytic potential in this assay, it is interest-
ing that some of the samples appeared to reduce this. This ability is
potentially useful especially in conditions where macrophages are hyper-
sensitive, and phagocytosis is uncontrolled.

Previous research has also shown that varied sources and structures lead
to a varied biological response (Bohn and BeMiller, 1995; Bose et al., 2014;
10
Demleitner et al., 1992; Driscoll et al., 2009; Goodridge et al., 2009;
Volman et al., 2008; Wang et al., 2017b). As such, our results are in agree-
ment with the literature in that β-glucan from different mushroom sources
can induce varied responses. Further investigation into these correlations
may identify optimized β-glucan sources for treatment of different patho-
logical conditions.

Dectin-1 is a type II membrane receptor, which is documented as one of
the principal receptors for β-glucans (Baert et al., 2015). TLR 2, 4 and 6 co-
bind to dectin-1 after β-glucan recognition (Guo et al., 2015), modulating
and contributing to cell responses including the release of pro and anti-
inflammatory cytokines and phagocytic activity (Kanjan et al., 2017). The
results of the present study showed a low- to absent expression for the
gene dectin-1 receptor (CLEC7a). This could be for two reasons; a limitation
of this study was that the samples were taken at 24 h when the gene could
be (temporarily) switched off. Secondly, dectin-1 does not recognise all β-
glucans equally; studies have shown that dectin-1 reacts differently based
on structural determinants such as side-branching and size of the molecule
(Adams et al., 2008). No gene expression could also be correlated to inhibi-
tion of CLEC7a, which could be correlated to a negative feedback effect.
This result warrants a further timeline study to understand thismechanism.
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Nonetheless these results demonstrate that the β-glucan samples
are recognised by macrophages of a cell line lineage and from fresh
PBMCs. This recognition can induce the secretion of both pro- and
anti-inflammatory cytokines, reduce phagocytic activity, and alter
gene expression levels reducing pro-inflammatory chemokines and in-
creasing the secretion of the anti-inflammatory marker IL-10. Extracts
increased secretion of both inflammatory cytokines (IL-6, IL-8, TNF-
α) and anti-inflammatory cytokines (IL- 10 and IL-22). M1 macrophage
polarization is associated with the secretion of pro-inflammatory cyto-
kines: IL-1β, IL-6, and TNF-α (Bouhlel et al., 2007). M2 macrophage
polarization is associated with the secretion of anti-inflammatory cyto-
kines IL-10 (Arora et al., 2018; Wang et al., 2014). As the β-glucan ex-
tracts induce the secretion of both, it is possible that they stimulate the
cells into a mixed population of M1/M2 macrophages. The commercial
sample C.L.E had a different effect on the cells. L.E and C.L.E are iso-
lated from the same mushroom species, again showing the great vari-
ances between β-glucan samples which can be dependent on
cultivation, seasonal variation as well as extraction procedure. Taken
together these results show the potential of β-glucans from mushrooms
to behave as biological response modifiers.

To understand the immunomodulatory effects of β-glucan in an inflam-
matoryM1 phenotype-inducing environment two types of insult were used.
Firstly, LPS which stimulates macrophages toward an M1 phenotype
(Zheng et al., 2013) and secondly a cocktail of cytokines (cytomix) was
used to stimulate an inflammatory environment (Farley et al., 2009).
After insult β-glucan samples were added to determine if the effects of the
insult could be tempered.

After treatment with cytomix, some of the β-glucan extracts increased
the secretion of IL-6. However, after insult, some of the extracts (P.O and
P.C) induced less secretion of IL-6, compared with β-glucan alone, thus sug-
gesting that the immune response is reduced in the presence of an injuring
agent (cytomix) (Fig. 5 Panel a). One interesting finding in this study is the
reduction of phagocytosis of PBMCs after LPS insult. All β-glucan extracts re-
duced the phagocytic index in the presence of LPS to just under half of the
activity of positive controls. This result demonstrates the potential of β-
glucans to modulate macrophage activity as these cells are from healthy vol-
unteers. There is donor variation in these samples which is to be expected;
future studies would investigate this effect in larger groups of healthy volun-
teers. The β-glucans also reduced phagocytosis after cytomix insult.

Impressively, the β-glucan samples reduced IL-8 gene expression levels
after LPS injury and increased the gene expression levels of IL-10. This dem-
onstrates an intracellular shift from an inflammatory phenotype to an anti-
inflammatory phenotype in the presence of LPS. Although IL-8 was not
reduced in the presence of cytomix, IL-10 was increased, again demonstrat-
ing a shift to a more anti-inflammatory response.

During SARS-CoV-2 macrophages communicate with target cells
through chemokines and phagocytic signaling (Qi et al., 2020). Macro-
phages respond to initial infection as a result of the inflammatory cytokines
secreted by type II alveolar cells which include IL-1β, IL-6 and TNF-α
(Denney and Ho, 2018). When aiming to reduce the response of macro-
phages in inflammatory conditions, it is also important to target the alveo-
lar cells at the centre of the injury.

4.3. Effect of β-glucans in an in-vitro lung injury model

Cytokines and chemokines have an important role in immunity as
well as in immune pathology as a dysregulated response has the poten-
tial to cause extensive tissue and organ damage, especially in the lungs
(Pedersen and Ho, 2020). As SARS-Cov-2 infection is associated with
the production of inflammatory cytokines we investigated the effects
β-glucans would have in an inflammatory environment by measuring
cytokine production after IL-1β insult on two types of alveolar cell
lines; A549 and BEAS-2b. When A549 (Fig. 8) and BEAS-2B cells
(Fig. 9) were treated with the β-glucan extracts, all inflammatory cyto-
kines were elevated. However, in the presence of inflammatory insults,
some of the inflammatory cytokines were reduced significantly. Figs. 8
11
and 9 Panel E and F, shows that the extracts had the ability to reduce IL-
8 and TNF-α in both A549 cells and BEAS-2B. In reducing the cytokine
expression and inflammation of lung tissue the inflammatory process
can be avoided and blood gas transfer potentially unaffected or mini-
mally affected. After injury, when the invading pathogen is eliminated,
large numbers of inflammatory monocytes and macrophages can be re-
cruited to the distal alveolar space because of chemokine gradients,
this can also exceed the total number of resident macrophages
(Davies et al., 2013; Galli et al., 2011).

As epithelial cells are the main source of anti-viral responses in the
first 24–48 h window after infection, this is an important result. Impor-
tant signals are transmitted to innate immune cells which are translated
to adaptive immune responses (Geller and Yan, 2020). By firstly prim-
ing these cells with bioactives such as β-glucans to respond to infection,
innate cells are recruited, and a memory is created for prevention of a
secondary infection. More importantly, if the cells are primed, the
hyper inflammatory reaction might not occur as cells are modulated
by the β-glucans.

As the infection is more lung-centred than multi-organ-centred
(McGonagle et al., 2020).

In-vitro lung epithelial cells represent a goodmodel to determine poten-
tial targets. This study has shown that β-glucan extracts from mushrooms
can reduce inflammatory responses in models of in-vitro lung injury.

5. Conclusions

There is a growing awareness of therapies directed to modulate the
immune response in many pathological contexts. Medicinal mush-
rooms, which contain the complex β-glucans sugars have been used
to treat an array of conditions for centuries including inflammatory
conditions. Previously, we have demonstrated that β-glucans from
the same mushroom isolated by different methods have differential
immune-modulation abilities in an in-vitro model as well as in an in-
vivo preclinical model. Following on from this, the current work has
demonstrated the potential of β-glucans as immunomodulators with
dual functions, firstly as immune priming agents that may bolster the
capacity of the body to maintain homeostasis in the face of infectious
and other challenges, and secondly to temper the immune response fol-
lowing infection, thus helping to avoid the serious sequelae associated
with immune hyper-inflammatory response in immune and epithelial
cells in inflammatory lung conditions such as ARDS. Future work will
investigate relationship between the structure of β-glucans and mech-
anistic effects at cell and molecular levels. The main findings of this re-
search also strongly align with emergence of green innovation for
OneHealth applications (Rowan and Galanakis, 2020).
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