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Abstract 

Background:  To improve the efficiency of clinical trials, leveraging external data on control and/or treatment effects, 
which is almost always available, appears to be a promising approach.

Methods:  We used data from the experimental arm of the Covidicus trial evaluating high-dose dexamethasone in 
severely ill and mechanically ventilated COVID-19 patients, using published data from the Recovery trial as external 
data, to estimate the 28-day mortality rate. Primary approaches to deal with external data were applied.

Results:  Estimates ranged from 0.241 ignoring the external data up to 0.294 using hierarchical Bayesian models. 
Some evidence of differences in mortality rates between the Covidicus and Recovery trials were observed, with an 
matched adjusted odds ratio of death in the Covidicus arm of 0.41 compared to the Recovery arm.

Conclusions:  These indirect comparisons appear sensitive to the method used. None of those approaches appear 
robust enough to overcome randomized clinical trial data.

Trial registration:  Covidicus Trial: NCT04344730, First Posted: 14/04/2020; Recovery trial: NCT04381936
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Background
Clinical trials attempting to improve design and analy-
sis to provide more rapid and valid answers, are com-
mon. This is particularly true in the setting of rare or 
paediatric diseases, or in the setting of a new disease, 
such as COVID-19. Indeed, in the COVID-19 pandemic, 
many studies have been initiated worldwide to assess the 
potential effects of various treatments, including antivi-
ral, anti-inflammatory and immunomodulatory thera-
pies. To provide a rapid answer, the use of single-arm 
clinical trials is becoming increasingly important. In this 
setting, the “borrowing” of external data, which is com-
monly available, though underused, appears promising.

However, the ability to leverage existing data differs 
depending on the type of available data, either limited 

to the control arm - with the aim of fully replacing the 
absence of control arm in uncontrolled phase II trials - 
or with the aim of increasing the amount of information 
in the current dataset. The first method provides histori-
cal control data to fully replace an unobserved control 
in a single-arm trial [1]. This allows clinical research 
to be conducted more rapidly with fewer patients and 
reduced costs compared to a randomized clinical trial, 
and is particularly useful in settings where the disease or 
disease subset is rare. This method further addresses an 
important patient concern, avoiding patients from being 
exposed to a placebo arm or a standard of care therapy 
from which little benefit is expected, reducing barriers to 
recruitment in the trial. Importantly, it should be deter-
mined that this method will not compromise scientific 
evidentiary standards. Recently, such a use of a control 
arm based on external data has been extended to con-
current real-world data (RWD) and is newly referred 
to as the “synthetic control arm”, requiring adequate 
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statistical methods to evaluate the comparative efficacy 
of an intervention [2].

The aim is to increase information by borrowing exter-
nal data on control and/or treatment effects, which is 
almost always available. Indeed, many sources of data 
regarding a particular treatment and population of inter-
est are often available from published data, previous tri-
als or RWD, including cohorts, registries, or electronic 
medical charts. The US Food and Drug Administration 
(FDA) and European Medicines Agency (EMA) have rec-
ognized these issues and taken several initiatives to allow 
for these novel approaches to external control data. Many 
approaches have been proposed for leveraging these 
external data, to handle the difference (“drift”) between 
historical and current data. They differ in terms of the 
type of available data, whether the data are individual 
patient data (IPD) or aggregated data, and on the primary 
or secondary outcomes, with the use of only external 
control data being the most common.

The process of borrowing external data uses various 
Bayesian approaches that primarily differ in the assump-
tions regarding the relevance and exchangeability of the 
external data with the current trial [3–5]. They typically 
use power priors, down-weighting controls using fixed 
weights [3, 6], or more complex meta-analytic priors 
such as normalized power prior [7], commensurate pri-
ors [4], robust meta analytic-predictive priors (MAP) 
[8, 9], and supervised methods that manually adjust the 
informativeness of the prior based on measures of con-
flict between the prior information and the new trial 
data, assessed at the time of the analysis. Such a variety 
of proposed approaches was illustrated in a review that 
identified 58 Bayesian and 44 frequentist methods for 
incorporating historical data into a contemporary trial 
based on 52 articles [10].

In addition to those Bayesian methods, there is room 
for frequentist approaches that take advantage of the 
functional differences between external and current pop-
ulations. Indeed, frequentist propensity score approaches 
are widely used to utilize RWD in combination with con-
current experimental data in clinical trials, to eliminate 
or reduce the potential bias in estimated effects obtained 
from nonrandomized comparative studies. Notably, 
matched-adjusted indirect comparisons (MAIC) use a 
propensity–score approach to adjust for baseline differ-
ences in those populations, when only aggregated data 
are available from the historical data [11].

However, little attention has been devoted to the prac-
tical use and implementation of methods incorporating 
external information, and how to pick one among them, 
notably according to their underlying assumptions. We 
illustrated the use of different statistical methods that 
aim at incorporating external information, based on a 

real-life trial addressing the effect of dexamethasone in 
severe COVID-19 patients. Data from one randomized 
clinical trial (Covidicus) conducted from April, 10, 2020, 
to January, 2021 (NCT04344730) was used as the cur-
rent trial data. We focused on the subset of mechanically 
ventilated patients, given the marked reported benefit in 
this subset over usual care, from the previously published 
Recovery trial (NCT04381936) [12]. We borrowed results 
from the Recovery trial [12] to estimate the 28-day mor-
tality rate of the dexamethasone arm from the Covidicus 
trial [13] as the parameter of interest. We thus only con-
sidered the two treatment arms of these trials, mimicking 
two single-arm trials. This was in line with the growing 
use of uncontrolled phase II trials in clinical settings. 
This was further motivated by the fact that the results 
of the Covidicus trial were not published at the time we 
designed this study, to ensure maintenance of blindness. 
Moreover, focusing on the death rate allows us to provide 
an easy and direct understanding of the models, rather 
than assessing relative measures of efficacy.

Methods
Covidicus Trial
The trial was scheduled, in March 2020, to assess the 
impact of high-dose dexamethasone on overall mortal-
ity in patients admitted to intensive care units (ICUs) for 
severe COVID-19 infection. The primary endpoint was 
60-day mortality, and 28-day mortality was one of the 
secondary endpoints.

Patient enrolment occurred from April, 10, 2020 to 
January, 25, 2021, with a total of 550 enrolled patients. As 
an illustrative example of using external data for uncon-
trolled designs, we only considered the experimental arm 
of the Covidicus trial, i.e., the high-dose dexamethasone, 
allocated to 106 mechanically ventilated patients.,

We thus proposed to incorporate the Recovery results 
of the dexamethasone arm [12], considering both aimed 
to estimate the benefit of dexamethasone in MV patients 
with COVID-19. A comparison of the main trial charac-
teristics is summarized in Table  1, to assess the poten-
tial sources of heterogeneity across trial populations as 
reported by Pocock [1]. Compared to the Recovery trial 
patients, Covidicus patients were older, and more likely 
to be men with comorbidities.

Estimation of the 28‑day death rate of the dexamethasone 
arm of the current trial
First, we borrowed Recovery data (referred to as “histori-
cal data” hereafter) to estimate the 28-day death rate of 
the dexamethasone arm in the Covidicus trial (the “cur-
rent” trial hereafter).
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Bayesian Standard Model
Let θ , define the parameter of interest, namely the 28-day 
mortality rate, and let π(θ) , be the prior distribution for 
θ . The prior represents all information and prior beliefs 
regarding the parameter of interest before the trial onset. 
Based on the Bayes theorem, it can be combined with the 
likelihood function L(D|θ) into the posterior distribu-
tion of θ , π(θ |D) ∝ L(D|θ)π(θ) where D = {y, n} is the 
current trial data, with y, the number of deaths and n the 
sample size.

Using Bayesian models with priors represents a natural 
approach for incorporating historical data for estimates 
using single arm evidence [14].

To borrow external data, Dh = {yh, nh} , we first assume 
clinical homogeneity of the past and current populations, 
i.e., no main variability among trials in the participants’ 
characteristics, as well as in the intervention character-
istics that may result in any heterogeneity in treatment 
effect. This could rely on a lack of information regarding 
the predictive factors of treatment effect, or on the failure 
of detecting any predictive factors of treatment effect in 
the population of interest. In these settings, the idea is to 
use π(θ |Dh) as the prior for θ , that is, some distribution 
including the external data in some sense.

First, most Bayesian methods use existing data in the 
source population to create an informative prior distribu-
tion for the future clinical trial. The simplest way is to use 
the posterior distribution of the historical data Dh , as the 
prior for the current data:

where π(θ) is the prior for the historical data.
Our information on θ is then actualized, resulting in 

the following:

(1)π(θ |Dh) ∝ L(Dh|θ)π(θ)

where L(Dh|θ) and L(D|θ) are the likelihood functions of 
the external and the current data, respectively. In doing 
so, equal weights are given to past and current data, due 
to the underlying assumption of strictly homogeneous 
populations. This is likely to be true when several trials 
addressing the same question have been conducted in the 
same population by different teams due to a new epidem-
ics such as the COVID-19. This could also rely on rare 
populations with no available or demonstrated knowl-
edge on which factors may affect the likelihood of patient 
response to treatment.

Otherwise, prior parameters could be based upon 
eliciting observable quantities of the past data such as 
the mode and percentiles, as widely reported in the lit-
erature [15]. Indeed, solving for the parameters of a Beta 
distribution under quantile constrains, is numerically 
possible, where the only difficulty comes from the Beta 
function involved as a normalizing constant of the Beta 
distribution [16].

To understand the relative weights of external and 
current data, one can formulate Bayes learning in terms 
of linear shrinkage. Given θ ∈ [0, 1] , a common prior 
π(θ) is the Beta(a,  b) family, with a > 0, b > 0 act-
ing as pseudo-counts that influence both the posterior 
mean and the posterior variance, in exactly the same 
way as conventional data. Indeed, due to its conjugacy 
with the binomial likelihood, posterior density is eas-
ily obtained by updating its parameters, as follows, 
Beta(a+ yh + y, b+ nh + n− yh − y) . Thus, the pos-
terior mean E(θ |D,Dh) = (1− �)E(θ |Dh)+ �θ̂ is a 
weighted average of the prior mean E(θ |Dh) and the ML 
estimate θ̂ of θ , where � = m

m+n ∈ [0, 1] is the shrinkage 
intensity, and m = a+ b+ nh . Thus, when the sample 
size of the external data nh is widely above that of the 
current data n, it is likely that most of the information 
regarding the parameter will rely on those past data.

To erase the weight of external information com-
pared to current data, for instance due to differences in 
sample sizes or in data sources (RWD vs trial data), the 
shrinkage intensity can be decreased. This can be done 
by modifying the prior parameters. Indeed, the param-
eter of the Beta prior (a and b) act as pseudo-counts that 
influence both the posterior mean and the posterior vari-
ance, exactly in the same way as conventional data. The 
effective sample size (ESS), m = a+ b , behaves like an 
implicit sample size connected with prior information. 
Thus, one can down-weight the external data by modify-
ing the prior parameters. For instance, one may use the 
mean yh of the external data to define the prior mean of 
the parameter, then defining some amount of information 

(2)π(θ |D,Dh) ∝ L(D|θ)L(Dh|θ)π(θ)
Table 1  Comparison of the Covidicus and Recovery trials based 
on the Pocock criteria of population homogeneity

Criteria Covidicus Recovery

Treatment High DXM Low DXM

Eligibility Age>18 No age limit

Treatment evaluation Death at day 28 and 60 Death at day 28

Characteristics

Age (years, mean ± 
standard deviation)

66 ± 11 59 ± 13

Male sex 80% 73%

Comorbities 80% 49%

Organisation France UK

Selection April, 20- January, 21 March-June, 20
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m that one wish to affect to these data. This will define 
the prior parameters, a = yh ×m , and b = m− a , for the 
current data, from which the posterior density will be 
derived Beta(yh ×m+ y,m− a+ n− y).

Nevertheless, converting prior knowledge into a prior 
is almost never an exact process. Whatever the prior, one 
should assess its effect on the posterior, and by contrast-
ing the posterior from one resulting from a non-inform-
ative prior.

All these Bayesian analyses are equivalent to pool-
ing data, assuming no main heterogeneity between the 
external and current data. When populations are not 
so identical, that is, when faced with any doubt about 
comparability, or suspicion of heterogeneity, several 
approaches could be used, that differ in their principle: 
by discounting, erasing or shifting the prior data (Fig. 1).

Power Prior Models
If there is any doubt about comparability or any sus-
picions of heterogeneity between the two populations, 
the first method is to discount, wherein down-weight-
ing the external data occurs. Still assuming a similar 
parameter θ across the datasets, power priors [3] con-
sist in raising the likelihood of the historical data to an 
exponent a0 representing the commensurable degree 

between the historical and new trial data. The previous 
prior (in Eqs. 1 and 2) is switched to the following:

where a0 ∈ [0, 1] controls the weight given to the his-
torical data in the posterior distribution. This posterior is 
indeed used as the prior for the new study.

Thus, the power prior calculates a posterior distribu-
tion from a prior and the weighted likelihood of the pre-
vious data. One can interpret the posterior as including 
a0 × n0 patients from the external study in addition to 
those from the current study.

The major criticism of the power prior has been the dif-
ficulty in choosing the weight parameter, a0 . To choose 
the value of a0 , the easiest solution could be to use a 
hierarchical power prior by specifying a proper prior dis-
tribution for a0 . Random a0 ∼ π(a0|γ0) allows more flex-
ibility in weighting the historical data:

where γ0 is some specified hyperparameter vector, and 
π(θ , a0|Dh) is the joint prior distribution of θ and a0.

(3)π(θ |Dh, a0) = L(Dh|θ)
a0π(θ)

(4)

�(�|Dh) = ∫
1

0

�(�, a0|Dh)da0 ∝ ∫
1

0

L(Dh|�)
a0�(a0|�0)�(�)da0

Fig. 1  Modelling the data to handle prior and current data heterogeneity. Upper panel (a) refers to the power prior models, middle panel (b) refers 
to the hierarchical Bayesian models, and lower panel (c) refers to the potential bias approach of Pocock
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However, taking a0 fixed and doing several sensitivity 
analyses for different values of a0 has been reported com-
putationally feasible and easier to interpret than taking 
a0 random [17]. To avoid prior misspecification, several 
guidance approaches have been proposed such as the 
Empirical Bayes estimate of the prior weight parameter 
based on the data by marginal likelihood [18].

Bayesian hierarchical models
Borrowing from similar, previously conducted trials 
accounting for variations in study design, baseline charac-
teristics, and standard-of-care improvement, using hierar-
chical Bayesian methods has also been proposed [19, 20].

Contrary to the previous approach, the parameter of 
interest of the current and historical data, namely θ and 
θh are considered randomly drawn from a common dis-
tribution, whose mean and variance are inferred from the 
data. In other words, this approach is based on a mixed 
effect model where θ and θh follow a similar Beta(aB, bB) 
distribution where aB and bB are assigned uninformative 
priors.

Bias approach
Another type of hierarchical model that assumes histori-
cal response rate θh is a nonsystematically biased version 
of the current response rate θ . Rather than assuming that 
they are exchangeable such as in previous random effects 
model, Pocock [1] assumes that the parameter from the 
external data is biased: θh = θ + δh.

Three options can be considered to define the bias, 
δh . The bias could be (i) fixed, (ii) centered on zero, 
δh ∼ N (0, σ 2

δh
) , or (iii) not δh ∼ N (µ, σ 2

δh
) , where σ 2

δh
 is 

the interstudy variance set fixed or estimated from the 
data.

Comparison of models
The effective sample size (ESS), that has been proposed 
to quantify the amount of prior information as a measure 
of prior influence, [21], acts as an important comparator 
across models, the effective number of either fictive or 
historical patients borrowed, as it pertains to the treat-
ment effect between the current data and the concurrent 
data [22]. For a Beta(a, b) prior, it is defined as m = a+ b.

Comparison of the 28‑day mortality rate 
in the dexamethasone arm between historical and current 
trials
We first assumed that any dose used by the trial authors, 
were relevant, that is, there was an underlying assump-
tion that the lowest dose will have a similar (even if not 
exact) effect as the highest dose (and vice versa). That 
is often a fair assumption used in meta-analyses, where 

all the intervention arms are combined into a single 
’treatment’ arm versus the comparator. Nevertheless, 
on the other hand, there can be a heterogeneity in true 
benefit or harm from the different doses. Thus, we then 
aimed to compare the effect of the two dosages; this 
was indeed the aim of the Covidicus trial. We only con-
sidered how to provide some answer to that question, 
based on the data from two (hypothetic) single-arm 
trials. Moreover, given the obvious differences across 
historical and current trials, notably in the treatment 
doses, we aimed to compare the 28-day mortality rate 
between the low (in the Recovery trial) and high (in the 
Covidicus trial) dexamethasone arms, handling these 
potential confounders. This will allow us to exemplify 
frequentist-based approaches.

Direct unadjusted comparison of mortality rates
When individual patient data are available or can be 
reconstructed such as from response/death rates, fre-
quentist methods can synthesize data from different 
populations using either a joint model or a weighted test 
statistic.

Direct adjusted comparison of mortality rates
To handle observed differences in confounders across 
groups, propensity score (PS) approaches have been 
proposed, which mostly used to infer treatment effect 
comparisons from observational studies. They require 
individual patient data on potential confounders and 
treatment modifiers, not only on outcomes, for both 
treatment groups to be compared.

Matched–adjusted indirect comparisons
When only aggregated historical controls are available, 
matching-adjusted indirect comparisons (MAIC) pro-
pose weighting the IPD to bring them more in line with 
the historical controls similar to surveys [11, 23]. This 
method is widely used when no head-to-head compari-
son is available, but individual patient data are only avail-
able for one comparison/drug. It is a propensity score 
(PS) weighting approach, where patients in trials with 
IPD are weighted such that their weighted mean base-
line characteristics match those reported for the trials 
without IPD but with only published aggregate data. The 
PS model is estimated using the generalized method of 
moments to handle the data structure. After matching, 
outcomes can be compared across balanced trial popu-
lations, using weighted statistical tests that incorporate 
the weights developed in the matching process. This can 
be done using a simple weighted average of the outcome 
in the Covidicus trial, or using a weighted linear regres-
sion without covariates. The advantage of the latter 
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approach is that so-called “sandwich” estimators for the 
variance can be used, which will yield correct confidence 
intervals, accounting for the fact that the weights them-
selves are estimated.

The R library MAIC (https://​github.​com/​heorl​td/​maic) 
was used.

Results
In the Covidicus trial, 106 patients who were mechanically 
ventilated at baseline were enrolled and allocated to the 
high dexamethasone arm, including 25 (23.58%, 95% con-
fidence interval, 95%CI, 15.88 to 32.82) who died within 
the first 28 days of randomization. Of the 324 patients who 
were randomly allocated to the dexamethasone arm in the 
Recovery trial, 95 (29.32%, 95%CI, 24.42 to 34.60) died.

Estimating the 28‑day mortality rate in response 
to Dexamethasone treatment
We first exemplified the use of Bayesian methods. We 
considered noninformative Beta(1,1) prior informa-
tion as the reference for the Covidicus 28-day mortality 
rate. Ignoring the external data, given an effective sam-
ple size m = 2 and the shrinkage intensity � = 0.018 , 

the posterior mean of the 28-day mortality rate was 
E(θ |data) = 0.2407 (Table 2).

To incorporate external information from the Recov-
ery trial, the choice of the Bayesian model depends on 
the assumptions related to the heterogeneity between 
populations.

Ignoring heterogeneity
We first pooled all observed data from the two trials, 
assuming homogeneous populations. One may indeed 
suppose that there were large uncertainties on prognostic 
and predictive features in severe, mechanically ventilated, 
COVID-19 patients, at the time of onset of the COVID-
19 outbreak.

As naturally provided by the Bayesian inference, the 
posterior distribution π(θ |y, yh, a) could be used as a 
prior for the current data. Thus, the prior information 
was first based on the observed y0 = 95 deaths among 
the n0 = 324 patients. Combining past and current data 
with a non-informative prior beta(1,1) resulted in a pos-
terior mean of 28-day mortality of 0.28 (95% credibility 
interval, 95%CrI, 0.239 to 0.323).

Table 2  Posterior Bayesian estimates of the 28-day mortality rate in the Covidicus trial using the simplest Bayes models according to 
the approach. CrI: Credibility Interval

Approach Prior forθ Parameter Mean 95%CrI interval

Ignoring external data
    Simple Bayes Beta(1,1) θ 0.2407 0.1653 0.3253

Incorporating external data
    Combining data Beta(96,230) θ 0.2801 0.2388 0.3233

    Modifying the prior

    - Based on quantiles Beta(77,185) θ 0.2771 0.2327 0.3239

    - Based on shrinkage intensity,m = 10 Beta(2.9,7.1) θ 0.2408 0.0711 0.5927

    - Based on shrinkage intensity,m = 100 Beta(29.3,70.7) θ 0.2637 0.2086 0.3856

    Fixed Power Priors, EB estimate θ 0.2725 0.2208 0.3240

    Random Power Priors Beta(1,1) θ 0.2479 0.1770 0.3176

a0 ∼Beta(1,1) 0.1955 0.0001 0.6212

θ 0.2390 0.1675 0.3192

a0 ∼Beta(1/2,1/2) 0.1072 0.0001 0.4887

θ 0.2473 0.1697 0.3160

a0 ∼Exp(100) 0.1930 0.0001 0.6232

    Hierarchical Bayesian Models

Beta(1,1) θ 0.2944 0.2480 0.3457

Beta(1/2,1/2) θ 0.2934 0.2450 0.3440

    Pocock’s bias Approach N(0, 0.03) δh -0.00035 -0.0629 0.0549

θ 0.2770 0.2355 0.3194

N(0.07, 0.03) δh -0.0697 0.00706 0.1249

θ 0.2770 0.2365 0.3194

N(−0.07, 0.03) δh -0.0703 -0.13296 -0.0151

θ 0.2770 0.2365 0.3194

https://github.com/heorltd/maic
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Otherwise, rather than incorporating roughly the exter-
nal sample data, one may define the Beta prior from the 
estimates of the death rate from the Recovery external 
data. We selected the shape parameters of the Beta den-
sity that matched knowledge of two quantiles of the dis-
tribution, based on the bounds of the exact binomial 95% 
confidence interval (0.24, 0.35) of the ML estimate of the 
28-day mortality rate from the reported trial data. This 
resulted in using as the prior for the Covidicus trial the 
Beta(77,185) prior, with prior mean of 0.29, similar to the 
ML estimated from the Recovery trial. Figure 2 shows the 
prior, likelihood and posterior densities of the 28-day mor-
tality. The effective sample size became m = 262 , while the 
sample size was n = 106 , resulting in a shrinkage inten-
sity at � = 0.71 . The posterior mean of θ became 0.2771, 
while when pooling all data from the two trials, regardless 
of their source, reached 0.2801, which is closest to the ML 
estimate of 0.29 from the Recovery trial (Table 2).

However, by ignoring any heterogeneity across sam-
ples, it is likely that the weight attributed to the prior 
overpasses that of the current sample, due to imbalance 
in sample sizes. One simplest way to down-weight the 
past data (and erase the impact of its large sample size 
compared to that of the current sample), consists in mod-
ifying the prior parameters so that the shrinkage intensity 
is decreased. Thus, we reran the posterior estimates of 
the death rate, using the prior Recovery mean, but vary-
ing the effective sample size m from 2 to 262, that is, the 
shrinkage intensity from 1.8% up to 71.2%. As expected, 
the posterior mean increased with the shrinkage inten-
sity, that is to the relative weight of the external data 
(Fig. 3).

However, referencing the Pocock criteria [1], there 
appears to be some heterogeneity between the trials that 
should be considered (Table  1). We acknowledged that 
some further findings have outlined the prognostic and 

Fig. 2  Bayesian analysis of the Covidicus trial data incorporating Recovery trial data assuming homogeneity of data
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predictive value of age and comorbidities, so that hetero-
geneity across trials had to be taken into account.

Handling heterogeneity through down‑weighted power 
priors
External data were first discounted, and down-weighted, 
relatively to the current data, using power priors.

One of the most difficult and elusive issues in the use 
of the power prior is the choice of power prior param-
eter a0 . First, it was considered fixed, ranging from 0 to 
1, while the prior was set as Beta(1,1). Results are shown 
in Fig.  4. As expected, estimates ranged from 0.2407 
(95%CrI, 0.1652 to 0.3351), that is the posterior estimate 
reached ignoring the Recovery trial data up to 0.2801 
(95%CrI, 0.239 to 0.323), which was obtained when 
roughly incorporating the external data but ignoring any 
heterogeneity between data sets.

We last applied the Empirical Bayes estimate proposed 
by [18]; a value of a0 = 0.52 was found. In this case it is 
equivalent to 170 additional patients (rather than 324). 
This resulted in a posterior mean of death rate at 0.2725 
(95% CrI, 0.2208 to 0.3240).

Second, we considered a random power prior 
parameter, drawn from either the Beta or exponential 
families. The posterior estimate of θ lies in the previ-
ous range of estimates, with a poor influence of prior 
parameter density (Table 2).

Handling heterogeneity through hierarchical models
Another and the most common way of handling hetero-
geneity (as performed in meta-analysis) is to use a hier-
archical model, where the prior parameters a and b were 
both drawn from a Beta(1,1) distribution. This resulted 
in a posterior mean of θ of 0.2944 (95% CrI, 0.2480 to 
0.3457). Using the Jeffrey prior for θ did not markedly 
modify these results. Of note these posterior means were 
in line with the ML estimate of the Recovery trial of 0.29, 
suggesting an increased relative weight of those data in 
the estimation process.

Handling heterogeneity through Pocock’s bias approach
Table  2 reports the posterior estimates of 28-day mor-
tality when handling the alternate approach of Pocock, 
where differences were modelled by a normal parameter, 
with average bias either centered or not. Whichever the 
density of the bias, posterior mean estimates of 28-day 
mortality were all 0.2770, that is, close to those reached 
by fitting the prior to the historical data, though the 
width of credibility intervals were somewhat decreased.

As shown in Fig. 5 (and Table 2), the posterior estimate 
of 28-day mortality heavily depended on the assumption 
of the underlying heterogeneity between trials. However, 
the ability to quantify and compare the clinical differ-
ences of trials is crucial to determining applicability and 
use in clinical practice of results provided by sharing 

Fig. 3  Estimation of 28-day mortality rate using empirical Bayes models according to the shrinkage intensity, � and the effective sample size, m 
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Fig. 4  Estimation of 28-day mortality rate using power prior models according to the power model parameter, a0 . The blue lines indicate the 
position of the standard Bayes estimate from only the Covidicus trial data (when a0 = 0 ) and that of ignoring heterogeneity in trial data (when 
a0 = 1)

Fig. 5  Estimation of 28-day mortality rate according to the handling of external data. MLE: maximum likelihood estimate. BHM: Bayesian 
hierarchical model. Pocock refers to the Pocock’s bias approach



Page 10 of 14Chevret et al. BMC Medical Research Methodology          (2022) 22:321 

information across heterogeneous populations. Notably, 
apart from the statistical considerations, we considered 
the clinical implications of the decision to combine all 
doses in the analysis. Thus, given the potential heteroge-
neity in true benefit or harm from the two dexametha-
sone doses, we then aimed to compare the effect of the 
high- versus low-doses, based on the the data from the 
two (hypothetic) single arms. Nevertheless, as shown 
above in Table 1, there were obvious differences in treat-
ment arms and patient populations, that could be han-
dled. We thus wondered whether the 28-day mortality 
rate could differ across these datasets due to different 
dosages, that is, whether the treatment dosage could have 
influenced the outcome, considering the observed heter-
ogeneity in trial populations.

Comparing the 28‑day mortality rate in response to low 
dose versus high dose of dexamethasone
Based on published results from the Recovery trial 
on July 17, 2020, and individual data from the Covidi-
cus trial, we first estimated a propensity score includ-
ing age, sex, and comorbidity, as they appeared to be 
the main potential confounders in this setting. Weight 
distribution is shown in Fig.  6. There were few par-
ticipants allocated near-zero weights, which would 

have indicated that the trials were quite different and 
may increase the uncertainty of the results. The mean 
weight was 0.7362, which increased to 1.00 after res-
caling. After weighting, as expected, the character-
istics of the weighted high dose group (Covidicus) 
reached those of the low doses group (Recovery), with 
a mean age of 58.8, 72% males, and 49% of patients with 
comorbidities (Table 3). The final step was to calculate 
the weighted outcome. The odds ratio for 28-day mor-
tality was then estimated, with estimates ranging from 
0.744 based on the original data down to 0.413 on the 
weighted data. In Table 4, the estimated weighted and 
unweighted estimates for the OR of 28-day mortality 
in the Covidicus trial to that in the Recovery trial, are 
shown. The weighted Covidicus results has shifted dis-
tant to Recovery; however, the 95% confidence interval 
increased. Thus, while the point estimate indicates that 
the difference between low- and high-dexamethasone 
arms might be higher when accounting for differences 
in age, sex, and comorbidities, the weighting procedure 
introduced some uncertainty, so conclusions drawn 
from the results should be carefully considered. Obvi-
ously, all of this relies on the underlying assumptions of 
no unobserved cross-trial differences, which may result 
in residual confounding, and of similar follow-up.

Fig. 6  Distribution of weights
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Discussion
The use of historical data to empower inference in clini-
cal trials where a control arm is either absent or contains 
insufficient data due to ethical issues, is of prime interest. 
To exemplify the main proposed statistical approaches to 
deal with external controls, we used a real-life illustration 
on the question of the benefit of corticosteroids in the 
COVID-19 patients, that was indeed a major challenge 
for clinicians at the first times of the COVID-19 out-
break. At that time, little data was available to describe 
the disease pathogenesis and treatment efficacy. Notably, 
the use of systemic corticosteroids was controversial [24], 
reported even to be possibly harmful in patients with 
COVID19-lung injury or shock [25].

We first aimed to borrow existing information to pro-
vide an estimate of the 28-day mortality rate, as the param-
eter of interest. Different approaches were considered that 
differ in their assumptions regarding the “closeness” of the 
parameter between the two sources of data. The simplest 
way was to directly use Bayes models, pooling all data, and 
ignoring data heterogeneity. It consists in eliciting some 
prior for the model parameter, then directly combined 
with the current data likelihood. Elicitation of the Beta 
prior parameters has been widely studied in the literature, 
and is growingly used in clinical trial design and analy-
sis, as reported by Azzolina et  al. in 2021 [26]. This may 
appear unrealistic in our setting given the observed differ-
ences between trials (Table 1). However, one may assume 
that such differences in patient features did not result in 
heterogeneity in treatment effect, as there were no consen-
sus data at the time reporting predictive factors of treat-
ment response in severe COVID-19 patients. Otherwise, 
the underlying assumption that the lowest dose will have 
a similar (even if not exact) effect as the highest dose (and 
vice versa) is often a fair assumption when pooling data, 

notably in the setting of systematic reviews. Moreover, 
such deviations in clinical heterogeneity of populations 
have been reported acceptable and might even increase 
the external validity of the pooled results [27].

Nevertheless, to allow the source data to be down-
weighted to account for those differences between pop-
ulations, notably in sample sizes, we first modified the 
Beta prior parameters, to decrease the shrinkage inten-
sity. Other approaches could have been used. The prior 
could have been a weighted mixture of an informative 
prior and a vague component [6, 8, 28]. Otherwise, a 
prior predictive distribution derived from a meta-anal-
ysis of historical trials could be used [8].

We then considered that the external data provided 
some biased mortality rates, either shifted [1] or rescaled 
using power models with an estimated power parameter. 
This inflates the variance of the historical prior (reducing 
the effective sample size of the historical data). However, 
the amount of discounting is subjective, with no easy 
operational interpretation. A meaningful range of the 
power parameter could be defined using some criterion, 
such the penalized likelihood-type criterion proposed by 
[29], though often leading to counter-intuitive results as 
reported by [30]. Thus, we preferred to use the empirical 
Bayes-type approach [18], that resulted in a down-weight-
ing of about 50% of the historical sample size, erasing its 
potential influence. The results were slightly modified, 
with the mortality rate lying between estimates from the 
power models and those from the Bayesian model when 
ignoring heterogeneity in samples. This is line with pre-
vious results that heavily discounted the historical data 
unless it was very informative prior to the power prior. 
Otherwise, we considered both historical and current 
parameters to be exchangeable, with hierarchical (meta-
analysis) models, where only variance reflects the het-
erogeneity across populations. Analysis revealed that 
posterior estimates heavily depended on the assumption 
regarding the closeness of the datasets. In such analyses, 
this also suggests the potential issue of data fishing, that 
is to choosing the estimate that is the closest to your own 
opinion. By contrast, we propose some guidance for defining 
the approach according to the assumptions regarding the 
closeness of past and current populations and data (Fig. 7). 
The use of power priors is an attractive and simple method 
to down-weight the influence of the historical data, thus 

Table 3  Comparison of treatment groups in each trial, before and after weighting. SoC: Standard of Care; DXM: dexamethasone

Group SoC High DXM High DXM weighted Low DXM

Age, mean ± SD 65.2 ± 11.0 66.1 ± 10.7 58.8 ± 10.7 58.8 ± 11.3

Male sex, % 72.5% 80.4% 72.0% 72.0%

Comorbidities, % 74.3% 70.1% 49.0% 49.0%

Table 4  Estimated odds ratios (OR) with 95% confidence 
interval (95%CI) of 28-day mortality in the high-dose vs. low-dose 
dexamethasone treatment groups

Methods OR (95%CI)

Unadjusted logistic regression 0.744 (0.448 to 1.237)

Weighted logistic regression 0.415 (0.204 to 0.839)

Bootstrap median OR 0.413 (0.215 to 0.697)
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taking into account some level of heterogeneity in popula-
tions and interventions. Moreover, the weight parameter 
is very interpretable for compatibility of studies and sam-
ple sizes when compared to the between study heteroge-
neity parameter in a hierarchical model. The difficulty in 
choosing the power parameter could be erased by using 
some criterion for decision-making such that proposed 
by [18]. This resulted in a posterior mean estimate of 
death rate of 0.2686 from our illustrative example, a likely 
compromise between separate estimates on each dataset. 
It is indeed based on the less constrained assumptions 
regarding heterogeneity in effects across trials, while 
down-weighting the influence of past data.

As a secondary objective, to compare mortality between 
historical and current trial data, we used MAIC which 
allows us to combine aggregated and individual patient 
data. Importantly, the targeted population was shifted 
to that of the Recovery trial, that is, based on younger 
patients with fewer comorbidities than in the Covidi-
cus trial. This may explain the large difference observed 
in treatment effects compared to the naive group, with 
odds ratios ranging from 0.77 to 0.41, respectively. How-
ever, only differences in sex, age, and comorbidities were 
considered. Thus, one should take these results with cau-
tion, given indirect comparisons can be biased by both 
observed and unobserved cross-trial differences, which 
may result in residual confounding. Moreover, the abil-
ity to adjust for multiple baseline factors depends on hav-
ing a sufficient number of patients and/or events in trials 
with IPD. Moreover, unlike traditional PS weighting, the 
availability of aggregate data for some trials in a MAIC 
prevents the use of existing methods for determining the 
fit and calibration of the PS model.

The risk in borrowing information from previous 
studies comes from borrowing from trials dissimilar to 
the concurrent trial in terms of prognostic factors and 
response to treatment, which may result in mislead-
ing the inference and thereby penalized estimates of the 
treatment effect [14]. Evaluating the similarity of the 
external control population to the clinical trial popula-
tion is a multifaceted exercise. Violation of those assump-
tions can have drastic consequences for power and type I 
error if the historical information is biased.

Other methods could have been used. Commensurate 
priors [4] incorporate historical data but are adaptively 
robust to prior information that reveals itself to be incon-
sistent with the accumulated experimental data. Neuen-
schwander et  al. [31] broaden the commensurate prior 
notion of historical data borrowing to the use of any trial-
external complementary data (“co-data”), including both 
control and treatment data, and from trials that are either 
completed or ongoing. Otherwise, methods that estimate 
parameters for the between-trial heterogeneity gener-
ally offer the best trade-off of power, precision and type 
I error, with the meta-analytic-predictive prior being the 
most promising method [32].

Last, we exemplified available approaches to esti-
mate the effect of dexamethasone in severely ill 
COVID-19 patients, ignoring the control arm of both 
trials. This was mostly justified by the desire to leave 
the estimates of treatment effect blinded at the time 
the analyses were planned; this further allowed us to 
obtain insights into easily understandable beta-bino-
mial models. Of note, using comparative trial data is 
preferable whenever possible. All the approaches pre-
sented above could be easily applied to model some 

Fig. 7  Summary of decision tools for handling external data
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absolute or relative treatment effect rather than of the 
outcome.

Conclusions
The potential role of observational studies in contrib-
uting to the body of evidence demonstrating drug and 
biologic product efficacy is important. A healthy degree 
of scepticism on the use of synthetic controls is thus 
expected from the scientific community [2]. The goal is 
to develop a path for ensuring that RWE solutions are 
an integral part of drug development and the regulatory 
life cycle at the FDA. Notably, it should be kept in mind 
that all methods are complex, and sensitive to parameter 
settings. These choices primarily depend on the available 
data and underlying assumptions. Accessing IPD appears 
mandatory to better handle potential bias by indication. 
None of those approaches appear robust enough to over-
come RCT data.
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