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The brain shows a topographical hierarchy along the lines of lower- and higher-order networks. The exact temporal dynamics
characterization of this lower-higher-order topography at rest and its impact on task states remains unclear, though. Using 2 functional
magnetic resonance imaging data sets, we investigate lower- and higher-order networks in terms of the signal compressibility,
operationalized by Lempel–Ziv complexity (LZC). As we assume that this degree of complexity is related to the slow–fast frequency
balance, we also compute the median frequency (MF), an estimation of frequency distribution. We demonstrate (i) topographical
differences at rest between higher- and lower-order networks, showing lower LZC and MF in the former; (ii) task-related and task-
specific changes in LZC and MF in both lower- and higher-order networks; (iii) hierarchical relationship between LZC and MF, as MF at
rest correlates with LZC rest–task change along the lines of lower- and higher-order networks; and (iv) causal and nonlinear relation
between LZC at rest and LZC during task, with MF at rest acting as mediator. Together, results show that the topographical hierarchy
of lower- and higher-order networks converges with their temporal hierarchy, with these neural dynamics at rest shaping their range
of complexity during task states in a nonlinear way.

Key words: core-periphery organization; lower-higher-order network topography; neural complexity; slow–fast frequency balance;
spatiotemporal neuroscience.

Introduction
The brain exhibits an elaborate intrinsic topography
along the lines of lower- and higher-order networks.
Lower-order networks (i.e. sensory networks) are dis-
tinguished from higher-order networks (i.e. default-
mode network [DMN], executive network, and others),
with both lower- and higher-order networks standing
at opposite ends of the spatial hierarchy (Cole et al.
2013, 2016; Margulies et al. 2016; Huntenburg et al.
2018). Recently, studies demonstrate that such a spatial
hierarchy converges with a corresponding temporal
hierarchy of intrinsic neural timescales (INTs) (Cole
et al. 2014, 2016; Margulies et al. 2016; Huntenburg
et al. 2018; Murphy et al. 2018; Gutierrez-Barragan et al.
2019; Wang et al. 2019; Ito et al. 2020; Raut et al. 2020;
Golesorkhi, Gomez-Pilar, Tumati, et al. 2021a). This leaves
open whether this hierarchy is featured by a particular
temporal dynamic, like the slow–fast frequency balance

in their power spectral density (PSD). The main goal
of our paper is to address this gap in our knowledge
by focusing on the intrinsic temporal dynamics of the
various lower- and higher-order regions/networks and
how that shapes their information processing during
rest and task states.

The temporal dynamic of a region’s neural activity is
related to information processing as manifest in the reg-
ularity/irregularity balance of the signal (Akdemir Akar
et al. 2015). This signal randomness or degree of signal
compressibility can well be measured by Lempel–Ziv
complexity (LZC) (Abásolo et al. 2006; Akdemir Akar et al.
2015; Bai et al. 2015; Ibáñez-Molina et al. 2015). LZC
measures the number of distinct patterns in a binary
sequence, namely the degree incompressibility of a signal
(Lempel and Ziv 1976; Aboy et al. 2006; Boly et al. 2015).
It reflects the number of bits required to reconstruct
a signal (Lempel and Ziv 1976) (see the validity of LZC
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in functional magnetic resonance imaging [fMRI]; Desh-
pande et al. 2006; Schabus et al. 2007; Boly et al. 2015;
Hudetz et al. 2016; Varley et al. 2020), as well as in
other imaging modalities including MEG, EEG, and spike
train analysis (Szczepański et al. 2003; Abasolo et al.
2007; Gómez et al. 2009; Fernández et al. 2011; Luo et al.
2013; Bachmann et al. 2018; Baria et al. 2018; Ibáñez–
Molina et al. 2018; Mateos et al. 2018). Low LZC values
indicate high degree of signal compressibility entailing
high signal regularity, i.e. low compressibility, as one
would, for instance, expect when slower frequencies are
predominant. Conversely, high LZC values reflect low
degrees of signal compression, indexing low signal reg-
ularity which may predominate in regions with faster
frequencies. This relationship, although expected, is far
from obvious, since high-frequency oscillations in a reg-
ular way, such as a sine wave, should give low LZC values.

In view of this hypothesized relationship and due to
the fact that temporal dynamics is manifest in the PSD,
we are interested on computing the median frequency
(MF) (Schwilden et al. 1985; Schwender et al. 1996;
McDonald et al. 1999; Bachiller et al. 2015; Verrusio et al.
2015; Huang et al. 2018). MF summarizes the spectral
distribution of a given signal, providing a measure of
the frequency balance which, in the case of fMRI, covers
the frequency range of 0.01–0.1 Hz. In essence, MF is
the frequency at which the power spectrum is divided
into 2 regions with equal area (Poza et al. 2007). In other
words, it estimates the “center of mass” of the spectral
distribution, with the advantage of being little affected
by random noise (Chiang et al. 2018). Therefore, lower
values in MF indicate a higher dominance of the slower
frequencies in the power spectrum, while higher MF
values are related to a higher dominance of the faster
frequencies (Schwilden et al. 1985; Schwender et al.
1996; McDonald et al. 1999; Bachiller et al. 2015; Verrusio
et al. 2015). Given that MF (or a related measure like
mean frequency) has been successfully employed in fMRI
(Huang et al. 2018), it is ideally suited to measure the
temporal dynamics of lower- and higher-order networks.

Together, LZC and MF allow insight into the intrare-
gional temporal dynamics and complexity of informa-
tion, i.e. signal compressibility of lower- and higher-order
networks (see Fig. 1 for general overview), which are
key in shaping the even more basic topography of core
(higher-order networks) and periphery (lower-order net-
works (Margulies et al. 2016, Golesorkhi, Gomez-Pilar,
Tumati, et al. 2021a; Golesorkhi, Gomez-Pilar, Zilio, et al.
2021b; Wolff et al. 2022). For that purpose, we rely on
the 7T fMRI data set of the Human Connectome Project
(HCP), while using the 3T fMRI HCP for replication (see
Supplementary Material).

Specific aims and hypotheses
The first specific aim is to investigate temporal dynamics
of lower- and higher-order networks in the resting state
by measuring signal compressibility (LZC) and frequency
balance (MF). We pursue the following hypothesis. As
most likely related to their continuous exposure to high

loads of chaotic external information input (Chaudhuri
et al. 2015; Gollo et al. 2015, 2017; Margulies et al. 2016;
Huntenburg et al. 2018), lower-order regions like sensory
networks and multimodal sensory regions may show
high LZC, reflecting higher signal compressibility, as well
as higher MF, indexing a shift towards faster frequencies.
On the contrary, higher-order regions/networks, i.e. DMN,
frontoparietal network (FPN), language network, and dor-
sal attention network, do not receive such direct informa-
tion input, but only indirectly through its “filtering” by the
lower-order networks (Gollo et al. 2015, 2017; Margulies
et al. 2016; Golesorkhi, Gomez-Pilar, Zilio, et al. 2021b).
For that reason, we expect lower LZC, and slow-frequency
dominated PSD, i.e. low MF, in the higher-order networks.

The second specific aim is to investigate changes in
LZC and MF during different task states including a
movie and a retinotopy task (as provided by 7T HCP).
Since task states produce disturbances in the neuronal
signal in the resting state (Luo et al. 2013; Boly et al.
2015; Baria et al. 2018; Pappas et al. 2019; Varley et al.
2020), we expect an increase in signal compressibility,
i.e. higher LZC, along with a shift of the spectral distri-
bution towards faster frequencies, i.e. higher MF during
the transition from rest to task. Moreover, given the
differential nature of the 2 tasks, we expect differences
between them, i.e. task-specific changes of LZC and MF
in lower- and higher-order networks (Luo et al. 2013;
Boly et al. 2015; Baria et al. 2018; Pappas et al. 2019;
Varley et al. 2020).

The third specific aim consists of linking the 2 aspects
of temporal dynamics: signal compressibility, i.e. LZC,
and frequency balance, i.e. MF. Given that we assume
both LZC and MF follow the spatial hierarchy of lower-
and higher-order networks in first 2 hypotheses, we now
expect that rest–task changes in signal compressibility
(LZC) are related to the spectral distribution of lower- and
higher-order networks, i.e. resting-state MF. To establish
the LZC–MF relationship, we calculate different corre-
lations, as well as a mediation model to delve in the
causal relation between them. Furthermore, we conduct
various simulation models applying different kinds (pink,
white, etc.) and levels of noise to demonstrate that the
LZC–MF relationship is specifically related to the brain’s
topography rather than noise.

Materials and methods
Experimental design
Data were selected from HCP’s 7T dataset (rather than
HCP 3T) to achieve a high signal-to-noise ratio (and to
have more fine-grained resolution), which is especially
relevant for properly capturing temporospatial dynam-
ics. Other reasons for choosing the 7T data were the
longer and more continuous scanning during task states.
We used HCP 3T resting-state data for validation pur-
poses; in contrast, we did not use the task data of the 3T
dataset because of their short block design, which makes
proper measurement of the dynamics with our measures
impossible.

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhac042#supplementary-data
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Fig. 1. Schema of the paper. Each box is one of the questions being investigated in this work. Each box is divided into 3 parts: a question (white), several
analyses (grey), and one or more inferences (black). The white box contains an overall view of how LZC is calculated.

From the data of 1,200 subjects released in HCP-1200
(Van Essen et al. 2013), 146 of them had completed the
full 7T imaging protocol of the HCP without any imag-
ing quality issues. A total of 14 fMRI runs (time repeti-
tion [TR] = 1 s), including 4 resting state (REST), 4 movie
watching (MOVIE), and 6 retinotopy (RET), of these par-
ticipants were used in this study. Full details on data
acquisition and preprocessing are provided in separate
articles (Glasser et al. 2013; Thanh Vu et al. 2017). In each
MOVIE run, subjects had to watch a movie of approxi-
mately 15 min consisting of several clips separated by 20-
s rest periods. Different clips were used in different runs
(details are available at HCP S1200 Release Reference).
For RET, stimuli were constructed by creating slowly

moving apertures and placing a dynamic colorful texture
within the apertures (check ref. Benson et al. 2018 for
details).

Preprocessed data were downloaded from the HCP
database at https://db.humanconnectome.org. The pre-
processing pipeline includes registration to MNI space,
alignment for motion, fieldmap correction, FIX denoising,
and MSMAll group registration. Full details of all the
steps are available in the study of Glasser et al. (2013)
and Salimi-Khorshidi et al. (2014).

Data processing and statistical analysis
All steps of the data processing were performed with in-
house scripts written in Python programming language

https://db.humanconnectome.org
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using numpy, scipy, cifti, joblib, matplotlib, and seaborn
libraries. The source code is freely available at www.
georgnorthoff.com/code/. For brain map visualization
purposes, wb_view (part of Connectome Workbench
software) was used.

All statistical analyses were performed in the statsmodel
library (Seabold and Perktold 2010) in Python and
R v.3.6, and all P-values were corrected for multiple
comparisons using the false discovery rate (FDR) method.
The Student’s t-test was used to measure the statistical
differences between lower- and higher-order networks.
Moreover, analysis of variance (ANOVA) was used
to investigate the difference between the networks
during each condition. All the statistical tests were
accompanied by their nonparametric counterparts in
the Supplementary Result section.

Template and network definition

The preprocessed data were high-pass filtered at 0.01
to both maintain the full frequency spectrum of the
data (Craig et al. 2018) and remove noise. After that,
signals were averaged over brain voxels defined in the
template provided by Ji et al. (2019) to get 1 fMRI signal
per region per subject per run. The template contains
717 regions categorized into 12 networks of visual1,
visual2, auditory, somatomotor, posterior multimodal,
ventral multimodal, orbito-affective, dorsal attention,
language, cingulo-opercular, frontoparietal, and default
mode. To investigate our lower-order versus higher-order
hypothesis, we also divided the regions into lower-order
and higher-order networks (HON). Lower-order networks
included the regions in the visual1, visual2, auditory,
somatomotor, posterior multimodal, ventral multimodal,
and orbito-affective networks. Regions inside dorsal
attention, language, cingulo-opercular, frontoparietal,
and DMNs were put under the higher-order networks
category.

Calculation of LZC

To calculate the LZC (Fig. 1 white box), each signal
was converted into a binary sequence. Previous studies
(Nagarajan 2002; Aboy et al. 2006) suggest that the
median of the signal’s amplitude is a good candidate
to use as a binarization threshold. After binarizing each
region’s signal and converting it to a string sequence, the
Lempel–Ziv algorithm (Lempel and Ziv 1976) was used
to compute LZC. As earlier studies have pointed out,
LZC is dependent on the length of the sequence, thus a
normalization factor (more info in Aboy et al. 2006) was
used to remove that effect. LZC processing is illustrated
in Fig. 1A.

Calculation of MF

MF was measured by first calculating the PSD of each
region’s signal. PSD was calculated using the Welch algo-
rithm (Welch 1967) with a Hanning window implemented
in the Scipy package of Python programming language.
The MF was calculated from the PSD as the frequency

which divides the area under the curve (AUC) of PSD into
2 halves (Fig. 4A).

Resting and task state topographical calculations

The values of both measurements (i.e. LZC and MF) were
first calculated for each of the 14 fMRI runs and then
averaged over the runs in all 3 conditions (REST, MOVIE,
and RET). After that, based on the requirements of each
analysis, the values were either averaged over the lower-
and higher-order division or the 12 aforementioned net-
works. The lower-order category was compared to the
higher-order using Student’s t-test over regions.

Rest–task similarity

The similarity between resting and task states was
addressed using spatial and regional correlations. The
spatial correlation was calculated as a single Pearson
correlation coefficient between resting and a task
condition (e.g. REST vs. MOVIE) over brain regions after
averaging over subjects (thus creating a single brain per
condition). The regional correlation was used to measure
the regional similarity between resting and task states.
This correlation was calculated for each region across
subjects between a pair of conditions (e.g. LZC during
REST and MF during REST).

Percentage of change from resting state

The difference between resting and task states was cal-
culated as a percentage of change per region per subject.
Each region’s REST and task (e.g. MOVIE) values were put
in the (REST−TASK)×100/REST formula to both measure
the change from resting to task state and normalize
against rest at the same time. Then, for each subject, the
percentage of change values was either averaged over
the 12 networks or along the lower- and higher-order
divisions. The difference between lower- and higher-order
networks and the difference among the networks were
statistically tested using the Student’s t-test and ANOVA
methods.

T1w/T2w map

The ratio of T1- to T2-weighted images is suggested to
provide a noninvasive neuroimaging proxy of anatomical
hierarchy in the primate cortex (Burt et al. 2018). So, we
used it to investigate whether the relationship between
LZC and MF is anatomically based. A cortical map con-
taining the T1w/T2w was provided with the HCP dataset.
The map was MSMAll registered and bias field-corrected.
We parcellated the map into the regions/networks of our
template by averaging the T1w/T2w values of voxels into
different regions.

Simulation of motion’s effect on LZC

The effect of motion and ways to mitigate it is well
established in fMRI literature (Glasser et al. 2013; Jo
et al. 2013; Power et al. 2014; Liu 2016; Thanh Vu et al.
2017). The approach used in the current paper, that is
averaging voxels to get one time series per region, further

www.georgnorthoff.com/code/
www.georgnorthoff.com/code/
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eliminates any local shifts on voxels that might cause
from head motion. To go one step further, we simulated
the effect of motion on LZC. For that purpose, 5,000
pink noise signals with the same duration of the fMRI
data (900 time points) were generated. Then, 1%, 2%,
5%, and 10% of time points were randomly chosen as
time points with motion. A random number between −4
and 4 was added to those time points to simulate the
effect of motion, that is a similar range of the typical
motion noise. For comparison purposes, LZC and MF
were calculated before and after the addition of “noise.”
Results can be found at Supplementary Results. Briefly,
we found that even with very high number of perturbed
time points (10%), the change in LZC was only about 0.05.
Furthermore, Spearman correlation coefficient between
LZC and MF was practically the same between no motion
and different amounts of motion. These results together
show that with effective care to motion artifacts, LZC can
be used safely with fMRI data.

LZC–MF simulation

The relationship between LZC and MF was explored using
simulated signals. 35,000 pseudo-aleatory signals within
7 different categories (5,000 each, see Supplementary Fig.
5 for a sample signal in each category) were simulated to
investigate whether the LZC–MF relationship is nonlinear
or not and whether the relationship is specific to the
brain. The 7 categories were (i) pink noise, (ii) white noise,
(iii) sine wave, and linear combinations of (iv) pink and
white noises, (v) pink noise and sine wave, (vi) white
noise and sine wave, and (vii) pink noise, white noise, and
sine wave.

The weights of the signals’ linear combinations were
chosen randomly. All random values were chosen from
a uniform distribution and were controlled to produce
signals in the same frequency range of our original data
(0.01–0.5 Hz). Pink noise was chosen to model the scale-
free behavior (He et al. 2010), white noise for pure ran-
domness, and sine wave for oscillation. The MF and LZC
were calculated for each signal and used to further inves-
tigate the relationship between the 2 measurements and
validate LZC calculations in fMRI data.

Calculation of LZC-ratio

To further validate the relationship between MF and LZC
we used amplitude adjusted Fourier transform (AAFT)
method. This method was used to generate surrogate
fMRI time series through phase shuffling of the origi-
nal fMRI signals under the constraint of preserving the
spectral power profile (Schreiber and Schmitz 2000). First,
for each region’s signal, a new time series was generated
using AAFT. Then, LZC of the surrogate signal was calcu-
lated (surrogate LZC). Finally, LZC-ratio was calculated as
the ratio of our original LZC values to their corresponding
surrogate LZC values: LZC/LZCsurrogate.

Change in LZC from REST and MF-REST mediation model

To investigate the relationship between MF during resting
state (MF-REST) and the change in LZC task from resting
state, a mediation analysis was performed using the
mediation library in R. Two separate models were created
for the 2 task conditions. Each model consisted of MF-
REST as the mediator, LZC during REST as the indepen-
dent variable (IV) and LZC during a task condition as the
dependent variable (DV). After running the model and
observing the indirect effects of IV on DV, the significance
of that effect was tested using bootstrapping procedures
(Hayes 2009; Tingley et al. 2014). Unstandardized indirect
effects were computed for each of 1,000 bootstrapped
samples, and the 95% confidence interval was computed
by determining the indirect effects at the 2.5th and 97.5th
percentiles.

Change in LZC from REST and MF-REST moderation model

To further investigate the relationship between the
change in LZC from REST and MF-REST, regions were
divided into 2 categories based on their MF-REST values.
The median of MF-REST was used as the threshold and
the regions with lower (higher) MF-REST than the median
were put into the low (high) MF-REST category. The
median was used to balance the 2 categories. A new
binary variable (Z) was created for each region’s MF-
REST category (0 = low MF-REST and 1 = high MF-REST). Z
was injected in a linear regression model as a moderator:
Y = β1X+β1Z+β1XZ+β4. In the linear regression equation,
Y is LZC during a task condition, X is LZC during resting
state, and Z is the binary value of MF during resting
state.

Results
The main aim of this article is to investigate the temporal
dynamics of the spatial hierarchy of lower- higher-order
networks (see Fig. 1 for an overview of our guiding
questions and their results). Using the 7T of HCP, fMRI
signals of 146 subjects during resting and 2 different task
states were parcellated into 717 brain regions defined in
the template provided by (Ji et al. 2019; Pappas et al.
2019). These regions were divided into 12 networks
of visual1, visual2, auditory, somatomotor, posterior
multimodal, ventral multimodal, orbito-affective, dorsal
attention, language, cingulo-opercular, frontoparietal,
and default. These networks, in turn, were divided into 2
categories of lower- and higher-order regions. Regions
in visual1, visual2, auditory, somatomotor, posterior
multimodal, ventral multimodal, and orbito-affective
networks were classified as lower-order networks while
the remaining networks were regarded as higher-order
networks (Cole et al. 2013, 2014, 2016; Margulies et al.
2016; Huntenburg et al. 2018; Murphy et al. 2018; Gutier-
rez-Barragan et al. 2019; Wang et al. 2019; Ito et al. 2020;
Raut et al. 2020).

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhac042#supplementary-data
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To operationalize and measure intraregional signal
compressibility, i.e. regularity/irregularity, we used LZC.
LZC is algorithmically defined as the number of dif-
ferent patterns in a binary sequence indexing the sig-
nal complexity (the white box of Fig. 1 shows how LZC
is calculated). LZC is formally defined as an index of
how much a signal can be compressed, and in other
words, it measures the diversity of the patterns that are
present in a signal, i.e. higher LZC is associated with lower
compressibility and higher irregularity (Aboy et al. 2006;
Schartner et al. 2017). The amplitude of regional signals
was individually binarized using its median as a robust
threshold (Nagarajan 2002; Aboy et al. 2006) and then fed
into the LZC algorithm yielding a single LZC value per
region of a subject during a specific condition (resting
or task state). LZC is complemented by a measure of
the frequency balance, namely MF, which measures the
balance of slow–fast frequencies of PSD, that is its shift
towards slower (low MF) or faster (high MF) frequencies.
All the subsequent statistical tests were also validated
with their nonparametric counterparts.

Preprocessed 7T fMRI data (TR = 1) were downloaded
from the HCP WU-Minn HCP 1200 subjects data release
and then high-pass filtered at 0.01 Hz (more detail about
the data release is provided in the Section 2). The data
include resting state (REST, 16 min), and 2 task states
of movie watching (MOVIE, 15 min) and retinotopy (RET,
5 min). Finally, we used the 3T fMRI data of the HCP for
replicating our findings.

The topography of LZC during the resting state
Our first question is to investigate the spatial distribution
of LZC in the resting state (see below for simulation on
the validity of LZC measurement in fMRI). After averaging
across subjects, the regional distribution of LZC values
(Fig. 2A) suggested a specific spatial pattern of LZC. To
investigate that, we used the 12 predefined networks
(Fig. 2B) and divided the LZC values into them (Fig. 2C).
This revealed different LZC patterns among the net-
works. Performing 1-way ANOVA over the 12 networks
across regions showed significant (P < 0.001) differences
among them (F(11, 705) = 52.31, η2 = 0.44).

Significant differences in LZC values among networks
paved the way to further investigate the topography of
LZC along the lines of lower- and higher-order cate-
gories (Fig. 2D). Again, the resting-state LZC was averaged
across subjects and then compared between lower- and
higher-order regions (Fig. 2E). Student’s t-test (with the
Cohen’s d for the effect size) showed a significant P <

0.001 difference between the 2 types of networks (t =
6.80, d = 0.51), with the lower-order having higher LZC
compared to the higher-order category. Together, these
results show clear topographical differences in the spa-
tial distribution of LZC (These results were also replicated
in our 3T replication dataset in Supplementary Fig. 1).
Given that lower- and higher-order networks are known
to process different kinds and degree of information
(Zhang et al. 2018), our result of LZC following these

topographical differences support the assumption that
LZC reflects this differences.

The topography of LZC during task states
Spatial distribution of LZC was investigated during the
2 tasks of movie-watching (MOVIE) and retinotopy (RET)
in 3 different ways: analysis of absolute values, spa-
tial correlations, and analysis of percentage changes, i.e.
rest–task difference. The 2 tasks have different complex-
ity and temporal structure; 1 containing rich stimuli of
movie clips viewed in long intervals and 1 containing very
simple retinotopic stimuli viewed in short intervals. The
different input structure of the 2 tasks suggests that they
should impact the information processing in lower- and
higher-order networks in different ways.

Similar to the resting state analysis, LZC values
were calculated for lower- and higher-order networks
(Fig. 3A) and their difference was statistically tested
across regions. First, a 2-way ANOVA with network order
(2 levels: lower vs. higher) and task condition (2 levels:
MOVIE vs. RET) as factors was conducted on the LZC
values over the regions. The model showed significant
(P < 0.001) effect of network order on LZC (F(1, 1430) =
27.75, η2 = 0.02). Further analysis using Student’s t-
test for each task condition confirmed that lower-order
networks have significantly higher LZC compared to
higher-order ones in both MOVIE (t = 4.36, d = 0.32, P <

0.01) and RET (t = 3.22, d = 0.24, P < 0.01).
Moreover, dividing the LZC values into the 12 networks

(Fig. 3B) and conducting similar 2-way ANOVA (factors:
networks with 12 levels and task with 2 levels) on them
also showed significant (P < 0.001) effect of network
on LZC values (F(11, 2115) = 152.53, η2 = 0.32). Next,
2 separate 1-way ANOVAs were designed to further test
the effect of network on LZC in each task. Both models
showed significant P < 0.001differences among the net-
works in LZC values (MOVIE: F(11, 705) = 57.38, η2 = 0.47;
RET: F(11, 705) = 50.34, η2 = 0.43).

The differences in LZC between lower- and higher-
order categories and also among the networks in the
tasks were analogous to the previous resting-state
results, suggesting that the topography of LZC during
task states was similar to the resting state. To test this
hypothesis, we, in a second analysis, calculated the
spatial correlation between the resting state (REST) and
each task condition (MOVIE and RET, Fig. 3C). For each
pair of conditions, LZC values were first averaged across
subjects yielding a pair of LZC maps, then the 2 maps
were correlated over regions, using Pearson correlation,
yielding a single correlation value. The result showed
significantly high correlation coefficients for both MOVIE
(α = 0.96, P < 0.001) and RET (α = 0.93, P < 0.001).
These data further support the assumption that the
resting-state LZC topography is preserved during the
2 tasks.

Despite the fact that resting-state LZC topography
was similar in resting and task states, we nevertheless

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhac042#supplementary-data
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Fig. 2. LZC during the resting state. Rainclouds represent regions. A) Spatial distribution of LZC during REST condition. LZC is calculated for a region after
binarizing its blood oxygenation level-dependent (BOLD) signal’s amplitude using the median as a threshold. B) Brain map of the 12 networks defined
in the study of Ji et al. (2019). Colors represent different networks. C) Distribution of LZC values in different networks. Colors are the same as in B.
Higher-order networks show lower LZC compared to lower-order ones. One-way ANOVA showed a significant (P < 0.001) difference among all networks
(F(11, 705) = 52.31, η2 = 0.44). D) Brain map representing lower- and higher-order categories. E) LZC during resting state along the lower- and higher-order
categories. The Student’s t-test shows lower-order regions have significantly higher LZC compared to higher-order ones (t = 6.80, d = 0.51, P < 0.001).
Stars represent the significance level (∗ ∗ ∗ ≡ α = 0.001).

observed increases and decreases in LZC during the 2
task states. Therefore, in a third step, we calculated the
percent of LZC change from resting state for each region.
For each task, the regional LZC values were subtracted
from and then divided by their corresponding resting

state values ((resting state − task state)/resting state),
thus normalizing the task state against the resting state,
i.e. rest–task difference. We applied the statistical models
we applied during the task states also to rest–task dif-
ferences, i.e. to their percentage change values. Two-way
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Fig. 3. LZC during the task states. Points in the rain plots represent regions. A) LZC during MOVIE and RET for lower- and higher-order networks. The
paired Student’s t-test between lower- and higher-order networks is significant with t = 4.36, d = 0.32 for MOVIE and t = 3.22, d = 0.24 for RET. B)
LZC during the 2-task conditions for the 12 networks. Three separate ANOVA models (1 over the whole data, 1 for only the MOVIE, and 1 for only the
RET data) showed significant differences among the networks. C) Spatial distribution of LZC during REST, MOVIE, and RET conditions alongside their
corrected spatial correlation coefficients. The correlation is calculated over the regions to show the spatial similarity between resting and task states. D)
Change in LZC from REST to both task conditions for lower- and higher-order networks. Similar to task state results, the change was also significantly
different between the 2 categories. E) Change in LZC from REST to MOVIE and RET is also significantly different among the 12 networks. Stars represent
the significance level (∗ ∗ ∗ ≡ α = 0.001, ∗∗ ≡ α = 0.01).

ANOVA with network order (lower vs. higher) and task
condition (MOVIE vs. RET) showed significant (P < 0.001)

effect of network order on the percentage of change
(F(1, 1430) = 173.06, η2 = 0.04), and further Student’s t-
test showed higher percentage of change in higher-order
networks compared to lower-order ones in both MOVIE
(t = 7.28, d = 0.54, P < 0.01) and RET (t = 12.04, d =
0.90, P < 0.01). On the network level, similar to task
analysis, significant effect of network in a 2-way ANOVA
model (network and condition) (F(11, 1410) = 34.39, η2 =
0.07, P < 0.001) was followed by significant differences
among the networks in 2 separate 1-way ANOVAs for
MOVIE (F(11, 705) = 26.55, η2 = 0.29, P < 0.001) and RET
(F(11, 705) = 20.54, η2 = 0.24, P < 001).

Although percentage of LZC change was statistically
different between lower- and higher-order categories
(Fig. 3D), and over the 12 networks (Fig. 3E), it presented
distinctive results for the 2 tasks. In the MOVIE, positive
values (decrease in LZC from REST to MOVIE) were
observed in visual, auditory, and language networks. In

contrast, LZC values were prominently increased from
REST to our second task, i.e. RET (negative percentage of
change), in all networks. Taken together, LZC topography
during rest along the lines of lower- and higher-order net-
works is largely preserved during and thus carried over
to the different task states. Additionally, one can never-
theless observe task-related changes in LZC once task is
subtracted from rest; these concerned LZC differences
between lower- and higher-order networks during the
tasks. Hence, task-related LZC changes seem to loosely
reflect the different input structures of our 2 tasks.

Temporal dynamics: MF in rest and task states
To link the LZC in resting and task states to the other
aspect of temporal dynamics, i.e. frequency balance, we
characterized the distribution of their PSD using the MF.
MF is defined as the frequency which divides the area
under the PSD into 2 halves. It was chosen to provide a
summary measure of the distribution of low versus high
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Fig. 4. MF during both resting and task states. Points in the rain clouds represent regions. Stars represent the significance level (∗ ∗ ∗ ≡ α = 0.001). A) A
power spectrum of a sample signal. MF is calculated as the frequency at which the AUC of power up to that frequency (red area) is equal to AUC beyond
that point (blue area). B) Similar to LZC, MF is significantly higher in lower-order networks compared to higher-order ones. C) MF is also significantly
different among the 12 networks during both resting and task states.

frequencies in the PSD in a given frequency range (Fig. 4A,
see also Methods for the details).

Calculating MF over different brain networks revealed
a topographical distribution analogous to the one of
LZC (Fig. 4B and C). Student’s t-test showed significantly
(P < 0.001) higher MF in lower-order networks compared
to higher-order ones in both resting (t = 6.96, d = 0.52)

and task states (MOVIE: t = 5.77, d = 0.43; RET: t =
6.07, d = 0.45). Furthermore, tested with 1-way ANOVA,
the topographical distribution was also significantly
(P < 0.001) different among the 12 networks (REST:
F(11, 705) = 28.37, η2 = 0.30; MOVIE: F(11, 705) =
28.26, η2 = 0.30; RET: F(11, 705) = 33.00, η2 = 0.33).
These results are also replicated in the 3T dataset
(Supplementary Fig. 2). Together, these results show
that the topographical differentiation of lower- and

higher-order networks also holds on frequency grounds,
namely based on the PSD as measured by MF.

Empirical data: the relationship between MF and
LZC
The similarity in the topographical distribution of MF
and LZC raises the question of their relationship. Specif-
ically, it allows us to address how intraregional temporal
balance is related to signal compressibility. This was
addressed in 4 steps. First, for each condition (REST,
MOVIE, or RET), we calculated the regional correlation
between MF and LZC. Regional correlation is calculated
per region across subjects as the Pearson correlation
between MF and LZC values (Fig. 5A). P-values were cor-
rected for multiple comparisons using the FDR method at
α = 0.05, while nonsignificant coefficients were ignored.

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhac042#supplementary-data
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This revealed a variety of correlation values for the LZC–
MF relationship across the wide range of 0.43–0.88 across
the different regions. Given such a wide range of cor-
relation values, we assumed that topographical differ-
ences strongly shape the MF–LZC relationship; this was
addressed in subsequent analyses.

In the second step, the LZC–MF relationship was
explored in more detail by looking at their values in
different brain regions. First, both LZC and MF values
were averaged over subjects and then each region’s LZC
value was plotted against its corresponding MF value
(Fig. 5B). This suggested a nonlinear regime between
MF and LZC over brain regions across all 3 conditions.
Specifically, we observed that regions with lower MF in
rest exhibit largely different LZC values in both rest and
task, whereas regions with higher MF in rest no longer
showed marked LZC differences in both rest and task.
Together, this amounts to a nonlinear relationship in the
topography of MF and LZC with high and low MF exerting
differential impacts on LZC (also replicated in 3T dataset
in Supplementary Fig. 3).

We tested whether this nonlinear relationship is
specifically related to the topographical distribution of
LZC and MF (topographical relationship) rather than
interindividual differences between subjects (Step 3).
To do so, LZC and MF values were averaged over all
regions leaving a pair of LZC and MF values per subject
(subject-based relationship). This revealed a relationship
different from the topographical one, suggesting a linear
trend for the subject-based relationship of LZC and MF:
the higher the MF in a specific individual (across all
its regions), the higher its LZC (across all its regions,
Fig. 5C). One caveat is that the range of value for
the calculation of interindividual LZC–MF relationship
is lower than the one in our regional topographic
LZC–MF; for that reason, we cannot fully exclude
potential nonlinear regime in interindividual MF–LZC
relationship.

As the fourth step, the LZC–MF relationship was
further explored by using the brain’s T1w/T2w values
(see Methods) to test whether it is structurally based.
T1w/T2w is suggested to provide a noninvasive proxy of
anatomical hierarchy in primate cortex (Burt et al. 2018).
For both LZC and MF, each region’s values were averaged
over subjects and then the regional distribution was
plotted as functions of T1w/T2w values (Supplementary
Fig. 4A for LZC and B for MF). This also failed to show
here the observed topographical relationship between
LZC and MF on functional grounds. That suggests
the nonlinear relationship of MF and LZC to hold
independent of their underlying anatomical relationship;
we thus assume that the nonlinear topographical LZC–
MF relationship is primarily driven by the topographical
distribution of intraregional frequency balance, i.e.
MF, rather than being based on structural anatomical
grounds (also replicated in 3T dataset in Supplementary
Fig. 3).

Simulation: the relationship between MF and
LZC using synthetic data
As a final confirmatory analysis to show the truly topo-
graphical nature of the nonlinear MF–LZC relationship,
we decided to perform a simulation analysis using syn-
thetic data. Seven different categories of pseudo-aleatory
signals, that is without any topographical distribution,
were simulated in the same frequency range (0.01–0.5)
as our data with the same sampling rate. We generated
different kinds of signals including pink noise, white
noise, sine wave, and their linear combinations (e.g. white
and pink noises or white noise and sine wave). Each
signal type or category contained 5,000 signals (total of
35,000, see Supplementary Fig. 5 for a sample signal in
each category) with different combinations of power set
randomly in the same ranges as the real signals.

Pink noise was utilized to simulate scale-freeness (He
et al. 2010), sine wave for oscillatory component, and
white noise for pure randomness. The parameters for
each signal and the weights for their linear combina-
tions used random values chosen from uniform dis-
tributions to bound the signals in the predefined fre-
quency range of our real data. Calculating LZC and MF
on these signals and plotting them against each other
(Fig. 5D) showed no specific relationship between the
2 measurements. These results, thus, suggest that the
nonlinear relationship between LZC and MF is related
specifically to the topographical distribution in different
brain regions. These results also provide evidence for
the possible dissociation between LZC and MF, as their
correlation is different depending on the signals assessed
even in the same range of values. Moreover, validating
our use of LZC in fMRI, our simulation shows that LZC is
not measuring noise in the BOLD signal of fMRI, but its
level of compressibility.

Empirical data: the relationship between LZC
task-related change from resting state and MF
during resting state—the dynamic range of LZC
Is the change of LZC from rest to task in specific regions
dependent upon the slow–fast frequency balance of the
PSD, i.e. MF, of that particular region? If rest MF mediates
LZC rest–task differences, one would strongly assume
that the PSD (MF) processes changes in signal compress-
ibility (LZC) during the transition from resting to task
state. This mediation hypothesis is based on the assump-
tion that previous studies showed a relationship between
the PSD distribution (as indexed by spectral entropy) and
the change in connectivity strength from rest to task
states (Gomez-Pilar et al. 2018). Could the distribution
of PSD also be influencing the change in compressibility
of the neural signal? We, therefore, investigated how the
degree of change in LZC from resting to task state is
related to the power spectrum during rest (MF-REST). The
“change” values of all regions were plotted against their
corresponding MF values during rest (MF-REST) for both
task conditions (Fig. 6A). Careful consideration of these

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhac042#supplementary-data
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Fig. 5. The relationship between MF and LZC. A) Regional Pearson correlation between MF and LZC or the 3 conditions of REST, MOVIE, and RET. P-values
are corrected using the FDR method at α = 0.05. The wide range of correlation values (0.43–0.88) suggests that topographical differences affect the
MF–LZC relationship. B) Regional scatter plots of MF–LZC relationship for the 3 conditions. Each point is a region averaged over subjects, and the colors
show the regions belonging to specific networks. All plots show LZC as a nonlinear function of MF. C) Scatter plots of MF–LZC relationship for different
subjects in the 3 conditions. Each point is a subject averaged over regions. The nonlinear relationship can no longer be observed. D) Simulation of the
MF–LZC relationship with 7 different types of signals. Each plot shows the distribution of LZC as a function of MF for 5,000 simulated signals. The
nonlinear relationship cannot be observed in the simulated signals, suggesting that it is unique to the brain signal.

plots alongside a mediation analysis of LZC with MF as
a mediator (see Fig. 6B) strongly suggests that there is a
relationship of MF-REST with the rest–task changes or
differences of LZC.

Following that, we decided to conduct a median-split
of the MF-REST values across brain regions. That served
the purpose of calculating the LZC rest–task “change”
values in dependence on low MF-REST and high MF-
REST, respectively. Plotting both categories with box plots
(Fig. 6C) revealed a large difference in the range of change
in LZC values (i.e. the range of change in LZC from resting
to task states) between low and high MF-REST categories.
To test whether this difference is significant or not, the
“change” values of each subject were divided into 2 cat-
egories of low and high MF-REST. Then, the significant

(P < 0.001) difference between the 2 was confirmed by
Student’s t-test over subjects (MOVIE: t = 33.73, d = 3.47;
RET: t = 46.00, d = 5.52).

Moreover, to further validate the previous results, we
calculated LZC-ratio (see below) using AAFT method.
AAFT generates surrogate time series through phase-
shuffling of the original signals under the constraint
of preserving the spectral power profile (Schreiber
and Schmitz 2000). LZC-ratio was calculated as LZC/

LZCsurrogate, in which LZC is the original LZC value for
each region, and LZCsurrogate is the LZC of the time
series generated using AAFT for the same region. We
repeated the previous analysis (Fig. 6) using LZC-ratio
instead of LZC (Supplementary Fig. 6), which revealed
similar results, thus further confirming the dynamic

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhac042#supplementary-data
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Fig. 6. The relationship between MF during REST and the change in LZC from REST to TASK. A) The scatter plot of MF-REST (x-axis) versus the change in
LZC (y-axis) from REST to MOVIE (left) and RET (right). The plots indicate a decrease in the range of the “change” as a function of MF-REST. B) Mediation
model to investigate the role of MF-REST in the change in LZC from resting to task state. LZC-REST is used as the independent variable and the model
investigates whether the effect of LZC-REST on LZC-MOVIE (left) or LZC-RET (right) as the dependent variable is mediated by MF-REST. The bootstrapped
model showed significant partial mediation through MF-REST. C) Box plots showing the range of the “change” values for low-MF and high-MF during
REST. MF-REST was median-split into low and high categories. Statistics were conducted using Student’s t-test over subjects. For each subject, a range
of LZC change was calculated in low and high MF categories. For both conditions (MOVIE and RET), the range of LZC change in low-MF is significantly
wider than high-MF. Stars represent the significance level (∗ ∗ ∗ ≡ α = 0.001). D) Nonlinear topographic relationship of slow–fast dynamics and neural
complexity.
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range of LZC. These data suggest that the range of
LZC rest–task change values in low MF-REST regions is
significantly higher than in high MF-REST regions. The
fact that this preserved during the subtraction of the
phase shuffled surrogate LZC from the real LZC suggests
a key role for phase-related mechanisms in mediating
the nonlinear topographic impact of slow–fast frequency
MF on complexity, i.e. LZC.

Together, these results suggest that the range in which
the region’s LZC can change from rest to task is asso-
ciated with the same region’s level of MF-REST (low or
high). Therefore, we speak of a dynamic range of LZC,
which we hypothesize to be related to the PSD of the
region as indexed by MF: low rest MF indexing stronger
power in slower frequencies yields a large dynamic range
of LZC, i.e. a wide range of rest–task differences among its
regions. While high rest MF indexing relatively stronger
faster frequency power is related to small a dynamic
range of LZC, i.e. narrow range of rest–task differences
among its regions.

To further test the dynamic range of LZC, we incorpo-
rated a moderation model to see if MF-REST being low or
high can moderate the relation between LZC during rest
and task states. A binary moderator variable (Z) for MF-
REST being low (Z = 0) or high (Z = 1) was defined. Then,
the effect of LZC-REST and Z was explored on LZC during
the 2 task conditions using linear regression (see Methods
for details). The model showed significant moderation of
the LZC rest–task relationship with MF-REST being low
or high. For MOVIE, the effect of the moderator was 0.08
(t = 9.63, P < 0.001). Likewise, for RET, the effect of the
moderator was 0.42 (t = 44.52, P < 0.001). In other words,
our moderation analysis suggests that the effect of LZC
during REST on LZC during MOVIE (or RET) is moderated
by the level of MF during REST.

Taken together, these results show strong evidence for
the relationship of MF and LZC to operate in a nonlinear
topographical way (see Fig. 6D). The level of MF in a
region’s resting state drives its propensity for the degree
of change in its degree of signal compressibility (LZC)
during the transition from resting to task state. Regions
with low rest MF (indicating strong power in the slow
frequency ranges) can yield a larger LZC rest–task change
than regions with high MF. Thereby, the slow frequency
ranges of resting-state MF seem to foster larger dynamic
ranges in the regions’ signal compressibility. Therefore,
the topographical distribution of slow and fast frequen-
cies (indexing the hierarchical lower- and higher-order
regions’ temporal dynamic) relates to the degree to which
they can change their signal compressibility (LZC) during
the transition from rest to task (Fig. 6D).

Replication with 3T data
Topographical resting-state LZC/MF of 3T data

3T resting-state data were analyzed using the same pro-
cedure as our 7T data (Supplementary Fig. 1 for LZC and
Supplementary Fig. 2 for MF). The difference between
lower- and higher-order networks was statistically tested

with Student’s t-test between the 2 across regions which
showed that both LZC and MF are significantly (P <

0.001) higher (LZC:t = 3.60, d = 0.27; MF: t = 5.30, d =
0.40) in lower-order networks compared to higher-order
ones. Furthermore, MF and LZC were also significantly
(P < 0.001) different among the 12 networks tested with
1-way ANOVA (LZC: F(11, 705) = 44.15, η2 = 0.40; MF:
F(11, 705) = 52.22, η2 = 0.44). These results validate our
original topographical findings.

The relation between LZC and MF in 3T data

As another confirmatory analysis, the relationship
between MF and LZC was investigated in resting-state
3T data. Like before, first the 2 measurements were
correlated with each other using Pearson methods
(Supplementary Fig. 3A). Moreover, LZC was plotted as
a function of MF both for each region (Supplementary
Fig. 3B left) and for each subject (Supplementary Fig. 3B
right). The nonlinear relationship over the brain regions
was again observed in the 3T data. Both regional (aver-
aged over subjects) LZC and MF were separately plotted
as functions of T1w/T2w values, which did not show any
specific nonlinear relationship (Supplementary Fig. 3C).
Taken together, these results replicate our findings on
the relationship of LZC with MF.

Discussion
We here investigate the intra-regional temporal dynamic
of lower- and higher-order networks in resting and task
state fMRI. Our main findings in both main (7T HCP)
and replication (3T HCP) data sets are as follows: (i)
significantly different resting-state LZC and MF in lower-
and higher-order networks with the latter showing lower
values in both LZC and MF; (ii) task-related and task-
specific LZC and MF changes during different tasks in
lower- and higher-order networks; (iii) nonlinear topo-
graphical relationship of LZC and MF with regions show-
ing lower rest MF values being related to lower resting-
state LZC and larger capacity for task–rest changes in
LZC in especially higher-order network regions; and (iv)
relation between LZC at rest and LZC during task, where
frequency balance (MF) is acting as mediator. Together,
these findings provide evidence that the spatial topo-
graphical hierarchy of lower- and higher-order networks
is related to a corresponding hierarchy in their temporal
dynamic.

Topographical differences in temporal dynamics
of lower- and higher-order networks
We show different degrees of LZC in different networks
during the resting state. Higher-order networks like the
DMN, FPN, language, and dorsal attention exhibit lower
values of LZC in the resting state. In contrast, lower-
order networks like sensory networks, orbito-affective,
and multimodal show high LZC values. Importantly, we
demonstrate analogous findings in frequency balance,
i.e. MF, that, like LZC, follow the hierarchy of lower- and
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higher-order networks during both rest and task states.
This suggests that the signal is more regular and more
chaotic, i.e. lower LZC, in higher-order networks than
in lower-order networks. That reverberates upon and is
in line with the larger topographical distinction of core
(higher-order networks) and periphery (lower-order net-
works) (Margulies et al. 2016, Golesorkhi, Gomez-Pilar,
Tumati, et al. 2021a; Golesorkhi, Gomez-Pilar, Zilio, et al.
2021b; Wolff et al. 2022).

Our findings complement previous results that show
analogous differences between lower- and higher-order
networks. Spatially, reflecting regions of the periphery,
lower-order networks are more locally connected while
higher-order networks, constituting the core, are more
globally connected throughout the whole brain. This led,
recently, to the so-called core–periphery organization
(Margulies et al. 2016; Huntenburg et al. 2018): Lower-
order unimodal networks like sensory networks are at
the periphery while higher-order transmodal networks
like DMN and FPN constitute the core as they are
connected throughout the whole brain. Recent data
suggest such core–periphery organization to be mirrored
also in the brain’s temporal organization as its INTs are
shorter in the lower-order networks, i.e. the periphery,
and longer in the higher-order networks, i.e. the core
(Kiebel et al. 2008; Chaudhuri et al. 2015; Gollo et al.
2015, 2017; Murray et al. 2015; Baldassano et al. 2017).

Our data extend these findings by showing that lower-
and higher-order networks exhibit different temporal
dynamics with low signal compressibility and high
signal compressibility dominating, respectively. The
differential role of lower- and higher-order regions in
information processing is further supported by our
results in task states. We observed network- and task-
specific changes during the 2 tasks relative to the resting
state. Together, extending previous findings (Boly et al.
2015), the observed task–rest differences in LZC and MF
further support the assumption of task- and network-
specific changes and, more generally, the key role of
temporal dynamic during the transition from rest to task
states.

Signal compressibility (LZC) is shaped by
frequency balance (MF)
Is signal compressibility (LZC) related to frequency bal-
ance (MF) along the lines of lower- and higher-order
networks? We saw a similar topographical pattern in LZC
and MF. This suggests a close relationship between LZC
and MF, meaning that the intraregional PSD (MF) may
mediate their signal compressibility (LZC). Probing this
assumption, we tested various correlations, simulations,
and mediation models.

Spatial correlation confirmed such a close relation-
ship; however, regional LZC–MF correlation revealed
quite a variety of different degrees in their correlation
within the different regions. Such a wide variety of
LZC–MF correlations across different regions suggests
a differential relationship of regions. This was confirmed

by subsequent analyses. We obtained a nonlinear topo-
graphical pattern in the LZC–MF relationship in both rest
and task states. Regions with low MF at rest showed lower
rest LZC and more differentiation in their respective LZC
rest–task changes than those regions exhibiting high rest
MF. We could further demonstrate that such nonlinear
relationship is related specifically to the topographical
distribution of low and high MF values rather than being
associated with interindividual differences, anatomical
differences in T1w/T2w of the different regions, or some
other kinds of LZC–MF relationship independent of their
topographical distribution (as tested for in simulation).

Further, we observe that the MF is related to the range
of possible LZC rest–task changes. Regions with low MF
values during rest show much larger changes in their
rest–task LZC values than those with high MF (see Sup-
plementary Results). Hence, MF in rest seems to modu-
late the capacity for change in LZC during the transition
from rest to task: regions with low MF and thus more
power in the slower frequency ranges have a higher likeli-
hood of exhibiting larger changes in their signal complex-
ity, i.e. increases or decreases, during the transition from
rest to task states. Hence, it is the temporal dynamics
of the different regions’ resting state rather than the
regions themselves (independent of their dynamics) that
is related to the topographical distribution of LZC during
rest and task.

How can frequency balance (MF) during rest modulate
and shape signal compressibility (LZC) during task? Low
values in MF reflect stronger power in the infraslow
frequency fluctuations which can be characterized by
extremely long-cycle durations. These long-cycle dura-
tions are assumed to be ideal for summing and pooling
different stimuli occurring at different points in time
such that their respective information is processed and
thus lumped together (He and Raichle 2009; Li et al.
2014; Northoff 2014, 2017; Himberger et al. 2018). Such
summing and pooling may thus enable higher degrees
of integration of temporally distinct stimuli (Himberger
et al. 2018; Golesorkhi, Gomez-Pilar, Zilio, et al. 2021b).
That, in turn, leads to less chaotic signal dynamics with
lower LZC values. One would consequently expect that
regions showing lower values in MF should also exhibit
lower LZC values, which is exactly what we observed in
our data.

This supposed modulation of the LZC–MF relationship
by the pooling and summing of stimuli through cycle
duration may also account for the observed differences
in the rest–task changes of the LZC in regions with low
and high rest MF. Given the inverse relationship between
power and frequency, i.e. the scale-freeness of the brain
oscillations (He et al. 2010), if a region shows low MF, the
power of its long-cycle duration is stronger than that of
a region with higher rest MF. That may allow the low rest
MF region to pool, sum, and ultimately integrate more
external stimuli during task states (Himberger et al. 2018)
than a region with high rest MF. This, in turn, changes
the range of that region’s signal complexity and thus its
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LZC to a large degree. This stands in contrast to a high
rest MF region that, due to its lower power of its shorter
cycle durations, cannot pool and sum as many external
stimuli and consequently cannot exhibit a large range of
LZC values from rest to task. That remains to be tested
in future modeling studies though.

Limitations
There are a few considerations that should be considered
in this study. First, task unspecificity should also be
replicated using different tasks in different modalities
and domains; however, concerning our metrics, we
included 2 tasks with completely different complexity
and temporal structure. The movie presents a continu-
ous task while the retinotopy is an event-related trial-
based discontinuous task. The inclusion of tasks with 2
different structures accounts for the recent suggestion
(Huk et al. 2018) of considering and including tasks with
different structures, i.e. continuous versus trial-based.
Second, this study contains no behavioral measurement;
but on the other hand, the tasks measured pure
perception and stimulus processing with no interference
of cognitive demands, thus no-report paradigms as
distinguished from report paradigms (Tagliazucchi et al.
2014). The reliance on no-report paradigms allowed to
isolate stimulus-related effects, i.e. movie and visual
stimuli during retinotopy, as they are supposed to be
related to, specifically, primary sensory networks like
visual and auditory networks. Hence, the no-report
paradigms are ideal to test the response of primary
networks independent of any task-related confounds
as in report paradigms. Third, the frequency of the
retinotopic stimuli might impact the MF. Investigating
this idea is beyond the scope of this work and is an
interesting topic for further research. Fourth, we did
not investigate functional connectivity here. The basic
dynamics of the relationship of inter-regional functional
connectivity to intraregional power spectra including
MF as well as to time-dependent measures like LZC
remains yet unclear, though. Given such methodological
uncertainty, we refrained from linking our measures of
MF and LZC to functional connectivity.

Conclusion
The brain exhibits spatial hierarchy along the lines of
lower- and higher-order networks. Here we investigate
whether the regions’ activities during rest and task states
in such spatial hierarchy are shaped by a correspond-
ing temporal hierarchy in their neural dynamics. We
observe lower LZC indexing high degree of complexity,
i.e. signal compressibility in higher-order network regions
while lower-order network regions are characterized by
lower degree of complexity, i.e. signal compressibility
with higher LZC, during both rest and task states. Observ-
ing an analogous topography in MF, we demonstrate that
resting-state MF levels are related to the degree of LZC
rest–task changes in a nonlinear topographical way in

especially higher-order networks. In conclusion, our find-
ings demonstrate that the spatial hierarchy of lower- and
higher-order network exhibits a more or less analogous
complexity, i.e. signal compressibility and temporal slow–
fast dynamics, with the latter shaping the former in a
nonlinear topographical way. Above and beyond task-
specific cognitive effects (as investigated in Cognitive
Neuroscience), our findings demonstrate a more fun-
damental temporal-dynamic task-unspecific shaping of
the higher-lower-order network topography during task-
related activity as postulated in “Spatiotemporal Neuro-
science” (Northoff et al. 2020a,b).

Supplementary material
Supplementary material is available at Cerebral Cortex
online.
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