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Abstract

Background: The markers detected by genome-wide association study (GWAS) make it possible to dissect genetic
structure and diversity at many loci. This can enable a wheat breeder to reveal and used genomic loci controlling
drought tolerance. This study was focused on determining the population structure of Iranian 208 wheat landraces
and 90 cultivars via genotyping-by-sequencing (GBS) and also on detecting marker-trait associations (MTAs) by GWAS
and genomic prediction (GS) of wheat agronomic traits for drought-tolerance breeding. GWASs were conducted
using both the original phenotypes (pGWAS) and estimated breeding values (eGWAS). The bayesian ridge regression
(BRR), genomic best linear unbiased prediction (gBLUP), and ridge regression-best linear unbiased prediction (rrBLUP)
approaches were used to estimate breeding values and estimate prediction accuracies in genomic selection.

Results: Population structure analysis using 2,174,975 SNPs revealed four genetically distinct sub-populations from
wheat accessions. D-Genome harbored the lowest number of significant marker pairs and the highest linkage dis-
equilibrium (LD), reflecting different evolutionary histories of wheat genomes. From pGWAS, BRR, gBLUP, and rrBLUP,
284,363,359 and 295 significant MTAs were found under normal and 195, 365, 362 and 302 under stress conditions,
respectively. The gBLUP with the most similarity (80.98 and 71.28% in well-watered and rain-fed environments, cor-
respondingly) with the pGWAS method in the terms of discovered significant SNPs, suggesting the potential of gBLUP
in uncovering SNPs. Results from gene ontology revealed that 29 and 30 SNPs in the imputed dataset were located in
protein-coding regions for well-watered and rain-fed conditions, respectively. gBLUP model revealed genetic effects
better than other models, suggesting a suitable tool for genome selection in wheat.

Conclusion: We illustrate that Iranian landraces of bread wheat contain novel alleles that are adaptive to drought
stress environments. gBLUP model can be helpful for fine mapping and cloning of the relevant QTLs and genes, and
for carrying out trait introgression and marker-assisted selection in both normal and drought environments in wheat
collections.
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2]. Genetic research on this crop has led to its improved
productivity. For example, the last decade (2011-2020)
witnessed ~ 1% yield increase per annum [3]. However,
further improvement is imperative to feed the global
population, which will reach over 9 B by 2050 [4]. As the
most important detrimental factor, wheat production is
restricted by water-limited conditions in most parts of
the world. Improvement of crop tolerance to drought
stress is one of the essential efforts that can guaran-
tee sustainable yield in wheat fields [2, 4]. Right now,
research attempts are focusing on exploring the genetic
foundation of drought tolerance traits by using associa-
tion analysis of agronomic characteristics and genomic
regions [5].

The breeding of high-yielding and drought-toler-
ant wheat varieties continues to be a challenging task,
because of large “environmentxgenotype” interactions
and low heritability related to yield as a complicated
agronomic property [6]. To overcome this problem, high-
throughput methods in phenomics, including digital
imaging, and in genomics, including association map-
ping, have been used to uncover the genetic mechanisms
underlying yield and its relative characteristics under
drought. The findings obtained from these methodolo-
gies had been practical for further enhancement in wheat
yield not only in water-restricted environmental condi-
tions but also in drought-stressed environments [3].

The advent of next-generation sequencing technologies
has provided an opportunity to evaluate genetic varia-
tion and discover new markers through implementing
the genotyping-by-sequencing (GBS) approach [7]. From
this approach, molecular markers such as single nucleo-
tide polymorphism (SNP) have been successfully adopted
to discover the complicated agronomical properties of
wheat and also have been well-known as key elements in
the genome-wide association study (GWAS) approach
[8]. The purpose of this approach is to detect genomic
regions that can either be QTL, gene, or marker related
to important traits for gene introgression, gene discovery,
or marker-assisted breeding [2]. The markers detected by
GWAS make it possible to dissect genetic structure and
diversity at many loci. This can enable a wheat breeder to
reveal and used genomic loci controlling drought toler-
ance [5].

In addition to trait mean-based GWAS (pGWAS),
there is a chance to estimate breeding values by some
methods such as BRR (bayesian ridge regression),
gBLUP (genomic best linear unbiased prediction), and
rrBLUP (ridge regression-best linear unbiased pre-
diction) and use them in association mapping (i.e.,
eGWAS). There is a lack of certainty on the best algo-
rithm when utilizing a multiple-regression model in

Page 2 of 25

genomic selection and GWAS since the structure of
the population and the architecture of the trait have a
remarkable effect on identifying marker impacts [9]. As
a result, it is imperative to compare the findings from
the various algorithms when dissecting the genetic
basis of a complicated trait in a crop population for the
first time. This process ensures the efficient detection
of QTLs responsible for controlling a quantitative trait,
and better control of the error of type I, which is often
higher in association mapping studies [10].

To date, about 800 marker-trait associations (MTA)
and quantitative trait loci (QTL) have been discovered
for wheat drought tolerance traits, including yield, root,
physiological, and agronomic ones by using association
mapping (~ 100 MTAs) and bi-parental mapping (~ 700
QTLs). Only 70 loci, however, are known as the major
genomic regions explaining more than 20% of pheno-
type diversity [11]. In the past, association mapping
research in drought-stressed wheat has utilized a small
number of molecular markers [12-16], which seems
inadequate for efficiently exploring diversity in diverse
wheat collections.

Genomic prediction (GP) is a powerful tool to boost
the efficiency and speed of breeding schedules by
reducing time cycles and increasing selection accu-
racy. This approach provides an opportunity by which
a candidate gene can be chosen via genotyping before
phenotype determination [17]. Genomic prediction
utilizes all genetic markers within a model to train a
prediction model, which is consisted of all genetic
impacts. The model is applied to a validation set for
estimating its accuracy [18]. Several studies have dem-
onstrated high or moderate GP accuracy for quanti-
tative characteristics in barley (Hordeum vulgare L.)
[19], maize (Zea mays L.) [20], rice (Oryza sativa L.)
[21], oat (Avena sativa L.) [22] and wheat (Triticum
aestivum L.) [17].

This study was aimed at detecting drought tolerance
candidate QTLs, genes, or markers linked with agro-
nomical traits by using GWAS in 208 wheat landraces
and 90 cultivars grown under normal and drought
conditions. In eGWAS, the goal is to identify SNPs
related to the correction value of the traits, which are
passed on to the next generation. The next purpose
of this work was to select the best model for estimat-
ing prediction accuracies in genomic selection. To the
best of our knowledge, our report is the first study on
pGWAS and eGWAS of agronomical characteristics
in Iranian wheat landraces under rain-fed and well-
watered conditions. The findings from this research will
be an interesting source for marker-assisted breeding,
genomic selection, introgression of favorable genes into
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high-yielding cultivars, and improvement of yield-asso-
ciated characteristics under drought.

Results

Phenotypic data summary

In this study, 298 landraces and cultivars of bread wheat
were grown under rain-fed and well-watered conditions
and analyzed for various agronomic traits. According to
the analysis of variance, genotypic, environmental, and
genotype xenvironmental effects on agronomical traits
were significant under rain-fed and well-watered envi-
ronments. Variances associated with genotypic effects
were higher than those associated with environment
and genotypexenvironment effects across all traits,
indicating genotypic effects had a greater impact. There
is a high heritability in plant height traits, but a low
heritability in grain yield traits. However, the agronom-
ical traits of wheat grain showed acceptable heritability
(Table S1). The box plots related to eight agronomical
traits of wheat landraces and cultivars under favorable
conditions (well-watered) and drought stress (rain-
fed) are shown in Fig. 1. The mean of all traits under
stress decreased when compared to a normal situation
in both cultivars and native populations implying the
presence of considerable diversity in agronomical traits
of wheat accessions, and this variation is greater in
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native populations. The mean of all traits, except plant
height, in both conditions, was higher in cultivars than
in landraces.

Correlation analysis between traits in the normal
environment showed that yield had the highest sig-
nificant, positive correlation with the following traits,
spike harvest index (r=0.72**), spike weight (r=0.71**),
1000-kernel weight (r=0.69**), and the number of grains
(r=0.61**). However, in the stress environment, grain
yield had the highest significant, positive correlation
with the following traits: spike harvest index (r=0.76**),
1000-kernel weight (r=0.74**), the grains per spike
(r=0.66**), and spike weight (r=0.54**) (Fig. S1).

Clustering analysis

Under normal conditions, the heatmap was plotted
based on the mean of agronomic traits and breeding val-
ues by using three methods: BRR, gBLUP, and rrBLUP.
From the results, wheat accessions were clustered into
four groups. In clustering based on the mean of traits,
Group No.1 included 82 high-yielding genotypes that
were 41 cultivars and 41 landraces, Group No.2 con-
sisted of 89 genotypes with average to high yield (24
cultivars and 65 landraces), Group No.3 contained 44
genotypes with average to low yield (21 cultivars and 23
landraces), and Group No.4 composed of 83 low yielding
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Fig. 1 Box-plot representation of the distribution for agronomic traits of Iranian landraces and cultivars in the well-watered and rain-fed
environments. Abbreviations: a Plant height (cm); b Grain yield (g per plant); ¢ Grain per spike; d Thousand kernel weight (g); e Spike weight (g);
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Fig. 2 Hierarchical clustering and heatmap of Iranian landraces and cultivars based on the wheat agronomic traits and breeding values in
well-watered environments. Agronomic traits (a), BRR (b), gBLUP (c), and rrBLUP (d). Abbreviations: PH, Plant height; GY, Grain yield; GN, Grain
number per spike; TKW, Thousand kernel weight; SW, Spike weight; SA, Spike area; SH, Spike harvest index (%); SF, Spike fertility
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genotypes that were mainly native populations (4 culti-
vars and 79 landraces) (Fig. 2a). From the BRR method,
wheat genotypes were divided into four groups; the
first, second, third, and fourth groups consisted of 61,
42, 104, and 91 genotypes, respectively (Fig. 2b). From
the gBLUP, the first group included 85 genotypes with
a high breeding value of grain yield (72 cultivars and
13 landraces), the second group consisted of 102 geno-
types with medium to high breeding value for yield and
yield components (16 cultivars and 86 landraces), the
third group contained 97 genotypes with medium to
low breeding value for yield and components (2 cultivars
and 97 landraces), the fourth group composed of geno-
types (17 landraces) with low breeding values for yield
and yield components (Fig. 2c). From the BRR method,
wheat genotypes were divided into four groups; the first,
second, third, and fourth groups consisted of 69 (67 cul-
tivars and 2 landraces), 59 (9 cultivars and 50 landraces),
88 (12 cultivars and 76 landraces), and 82 genotypes (2
cultivars and 88 landraces), respectively (Fig. 2d). The
results of gBLUP were most similar to the trait mean
method in terms of genotype clustering.

Drought-stressed genotypes were also classified into
four groups based on the trait mean and the breed-
ing value methods. In clustering based on the mean of
traits, the cluster 1 included 31 genotypes with high
yield, which were mainly cultivars (18 cultivars and
13 landraces), the cluster 2 consisted of 123 geno-
types with average to high yield (24 cultivars and 99
landraces), the cluster 3 contained 43 genotypes with
average to low yield (19 cultivars and 24 landraces),
and cluster 4 composed of 101 genotypes with low
average yield, which were mainly native populations
(29 cultivars and 72 landraces) (Fig. 3a). From the
BRR, the first group included 61 cultivars with a high
breeding value of grain yield, the second group con-
sisted of 67 genotypes (18 cultivars and 49 landraces)
with medium to high breeding value for yield and
yield components, the third group contained 53 geno-
types with medium to low breeding value for yield and
components (8 cultivars and 45 landraces), the fourth
group composed of 117 genotypes (3 cultivars and 114
landraces) with low breeding values for yield and yield
components (Fig. 3b). From the gBLUP method, wheat
genotypes were divided into four groups; the first, sec-
ond, third, and fourth groups consisted of 65, 83, 48,
and 102 genotypes, respectively (Fig. 3c). Clustering
based on breeding values by using BRR, gBLUP, and
rrBLUP had 42, 48, and 39% similarity in terms of gen-
otype clustering in different clusters, respectively. This
indicates that the gBLUP categorized wheat accessions
more accurately than the other two BRR and rrBLUP
methods (Fig. 3b, c and d).
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Linkage Disequilibrium (LD)

LD assessment indicated that this indicator varies
between chromosomes and across each chromosome and
it usually decreases with increasing distances between
SNP locations. A total of 1,858,425 marker pairs with
r?=0.211 were identified in cultivars, of which 700,991
(37.72%) harbored significant linkages at P<0.001. The
strongest LD was recorded between marker pairs on chr
4 A (r’=0.318). Genomes D and B possessed the low-
est (63,924) and highest (370,359) number of significant
marker pairs, respectively. A similar assessment on wheat
landraces found 1,867,575 marker pairs with r’=0.182,
of which 847,725 (45.39%) harbored significant linkages
at P<0.01. Similar to cultivars, marker pairs on chr 4 A
showed the strongest LD (r>=0.369). Genomes D and
B possessed the lowest and highest number of marker
pairs (92,702 and 427,017), respectively. In the D genome,
the LD decay was slower than the LD decay in A and B
genomes, indicating that the size of the linkage blocks
is larger in the D genome. In addition, in cultivars, com-
pared to the native populations in genome D, the LD
decay was slower, which probably indicates the selection
of more genome-related traits in breeding work. Based
on the observations, the most significant marker pairs in
wheat landraces were found at distance < 10 cM (Table 1).

Population structure

To estimate the subpopulations, the AK value was plotted
against the number of clusters (K). The largest AK value
was found at K=3, reflecting three population substruc-
tures, Sub.1, Sub.2, and Sub.3 (Fig. 4a). Sub.1 included
113 genotypes with 6 cultivars and 107 landraces; Sub2
contained 111 genotypes with 97 landraces and 14 cul-
tivars; Sub.3 consisted of 74 genotypes with 70 cultivars
and 4 landraces (Fig. 4b). From PCA analysis, the esti-
mated PCs showed that PCs 1 and 2 explained 10.29 and
6.28% of the genotypic variation, respectively (Fig. 4c).
Cluster analysis using the kinship matrix also supported
the STRUCTURE results (Fig. 4d).

Genome-wide association studies for agronomic traits

and estimated breeding values

Under optimal irrigation and using imputed markers and
-logl0 P>3, 283 significant SNPs were discovered for
agronomic characteristics by MLM. Of these, 106, 137,
and 40 markers were for genomes A, B, and D, respec-
tively. Therefore, genome B had the highest number of
significant SNPs. The number of significant markers for
PH, GY, GN, TKW, SW, SA, SH, and SF were 39, 57, 19,
48, 11, 31, 43, and 35, respectively (Fig. S2a). The number
of significant SNPs based on BRR, gBLUP, and rrBLUP
were 362, 358, and 294, respectively. (Fig. S2b, ¢ and d)
The gBLUP method with the most similarity (81.27%) in
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Fig. 3 Hierarchical clustering and heatmap of Iranian landraces and cultivars based on the wheat agronomic traits and breeding values in rain-fed
environments. Agronomic traits (a), BRR (b), gBLUP (c), and rrBLUP (d). Abbreviations: PH, Plant height; GY, Grain yield; GN, Grain number per spike;
TKW, Thousand kernel weight; SW, Spike weight; SA, Spike area; SH, Spike harvest index; SF, Spike fertility
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the terms of significant markers had the best justification
when compared to other methods (Table 2). BRR, gBLUP,
and rrBLUP led to identifying 125, 118, and 111 signifi-
cant SNPs for genome A; 201, 195, and 147 significant
SNPs for genome B; as well as 36, 45, and 36 significant
SNPs for genome D, respectively. (Fig. S2b, ¢ and d). The
Manhattan Plot results for all original traits are aver-
aged (Fig. 5a) and the correction values of BRR, gBLUP,

and rrBLUP (Fig. 5b, c and d) are shown in Fig. 5. The
Manbhattan circular plot shows significant markers at P
value <0.001 (black) and <0.00001 (red). The Manhattan
rectangular and Q-Q plot are shown in Fig. S3. Markers
obtained with the mean of agronomic traits were very
similar to the results of the breeding value methods,
especially gBLUP.
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Table 2 Similarity of expected MTAs using assigned SNPs for pGWAS and eGWAS

Well-watered Rain-fed

pGWAS BRR gBLUP rrBLUP pGWAS BRR gBLUP rrBLUP
MTA 283 362 358 294 194 364 361 301
Same as pGWAS - 212 230 195 - 137 139 122
Different with pGWAS - 151 129 100 - 228 223 180
PGWAS is the same as 239 - - 146
eGWAS(BRR,gBLUPIrBLUP)
Similarity(%) 7491 81.27 68.90 70.61 71.64 62.88
GO 12 18 15 16 13 22 20 16
Same as pGWAS - 8 8 7 10 9 8
Different with p GWAS - 10 7 9 12 11 8
pGWAS is the same as 8 10
eGWAS(BRR,gBLUPBLUP)
Similarity(%) 66.67 66.67 58.33 76.92 69.23 61.53

In stress, less significant markers were identified than
the normal situation, 194 significant SNPs were identified
by the MLM method; Of these, 48, 129, and 17 markers
belonged to genomes A, B, and D, respectively. Genome
B had the highest percentage of significant SNPs in a
stressful environment. The number of significant markers
for PH, GY, GN, TKW, SW, SA, SH, and SF were 9, 30, 16,
21, 15, 31, 31, and 41, respectively (Fig. S4a). The number
of significant SNPs obtained by BRR, gBLUP, and rrBLUP
methods was 364, 361, and 301, respectively (Fig. S4b, ¢
and d). The gBLUP with the most similarity (71.64%) in
the terms of significant markers had the best justifica-
tion when compared to other methods (Table 2). By BRR,
gBLUP, and rrBLUD, a total of 134, 121, and 97 significant
SNPs for genome A, 187, 198, and 167 SNPs for genome
B, as well as 43, 42, and 37 SNPs for genome D were
identified, respectively (Fig. S4b, c and d). The Manhat-
tan circular plot shows significant SNPs at P value <0.001
(black) and <0.00001 (red) (Fig. 6). The Manhattan rec-
tangular and Q-Q plot are shown in Fig. S5.

Gene ontology

The markers with the highest significance (P<0.0001)
and pleiotropic impact were studied in more detail. In the
normal environment, 29 markers containing overlapping
genes were identified that are involved in important bio-
logical and molecular processes. 12 markers were identi-
fied based on the pGWAS method and 17 markers were
identified based on the eGWAS method. The number
of GO based on BRR, gBLUP, and rrBLUP were 18, 15,
and 16, respectively. The gBLUP and BRR method was
most similar to (66.67%) the pGWAS method. The most
significant markers were located on chr 6B, 5B, and 5 A.
Of these, 8 SNPs were detected by both pGWAS and
eGWAS methods. Some of the uncovered MTAs were

responsible for the following molecular and biological
processes: lipid biosynthetic process, protein-binding,
carbohydrate-binding, lipid transport, RNA-binding,
protein ubiquitination, protein deubiquitination, protein
catabolic regulation, nucleoside metabolic process, UMP
salvage, CTP salvage, and ubiquitin-dependent protein
catabolic process (Table 3).

In the stress environment, 30 markers containing
overlapping genes were identified. The most significant
SNPs were located on the genome B. 13 and 17 markers
were identified based on pGWAS and eGWAS methods,
respectively. Of these, 10 markers were uncovered by
both pGWAS and eGWAS methods, which indicates the
approval of the above methods in discovering significant
markers. Some of the uncovered MTAs were responsi-
ble for the following molecular and biological processes:
nucleosome assembly, response to water deprivation,
protein-binding, peptidase, monooxygenase, ATP-bind-
ing, acyltransferase, oxidoreductase , microtubule-bind-
ing, acyltransferase, ADP-binding, methyltransferase
activity, metal ion-binding, protein dimerization, ser-
ine-type endopeptidase, ATPase, serine-type peptidase,
hydrolase, ATP-dependent microtubule motor activity,
and heme-binding (Table 4). The following pathways
have been discovered using rice reference genomes:
metabolic pathways (Fig. S6), oxidative phosphorylation
(Fig. S7), biosynthesis of amino acids (Fig. S8), ascorbate
and aldarate metabolism (Fig. S9), sulfur metabolism
(Fig. S10), and fatty acid elongation (Fig. S11) ([23-25],
www.kegg.jp/kegg/keggl.html).

Genomic prediction

The gBLUP, rrBLUP and BRR approaches using imputed
SNPs led to the identification of the highest prediction
accuracies for 5, 3, and 1 phenotypes in rain-fed, and 5,


http://www.kegg.jp/kegg/kegg1.html
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Spike harvest index; SF, Spike fertility

Fig. 5 Circular Manhattan plots to draw common regions associated with a=Agronomic traits, b =BRR, ¢=gBLUP, and d =rrBLUP for Iranian
wheat landraces and cultivars in well-watered environments. Inner to outer circles represents average trait and breeding values including PH,

GY, GN, TKW, SW, SA, SH and SF, respectively. The chromosomes are plotted at the outmost circle where thin-dotted blue and red lines indicate
significant level at P value <0.001 (—log10 (p) > 3) and <0.00001 (—1og10 (p) > 5), respectively. Black and red dots indicate genome-wide
significantly associated SNPs at P value <0.001 and <0.00001 probability level, respectively. Scale between ChrUn and Chr1A indicates —log10
(p) values. Colored boxes outside on the top right side indicate SNP density across the genome where green to red indicates less dense to dense.
Abbreviations: PH, Plant height; GY, Grain yield; GN, Grain number per spike; TKW, Thousand kernel weight; SW, Spike weight; SA, Spike area; SH,

3, and zero phenotypes in well-irrigated environments,
respectively (Fig. 7). Under rain-fed, the highest predic-
tion accuracy was determined via the gBLUP model for
GY (0.381), PH (0.369), SA (0.347), SH (0.104), TKW
(0.253), via the rrBLUP for GN (0.396), SW (0.359), via

the BRR for SF (0.179). Under well-watered, the highest
prediction accuracies were determined via the gBLUP
for GY (0.521), SA (0.269), SH (0.384), SW (0.432), TKW
(0.470), via the rrBLUP for GN (0.379), PH (0.499), and
SF (0.265) (Fig. 7).
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Spike harvest index; SF, Spike fertility

Fig. 6 Circular Manhattan plots to draw common regions associated with a= Agronomic traits, b =BRR, c=gBLUP, and d =rrBLUP for Iranian
wheat landraces and cultivars in rain-fed environments. Inner to outer circles represents average trait and breeding values including PH, GY,

GN, TKW, SW, SA, SH and SF, respectively. The chromosomes are plotted at the outmost circle where thin dotted blue and red lines indicate
significant level at P value <0.001 (—log10 (p) > 3) and <0.00001 (—log10 (p) > 5), respectively. Black and red dots indicate genome-wide
significantly associated SNPs at P value <0.001 and <0.00001 probability level, respectively. Scale between ChrUn and Chr1A indicates —log10
(p) values. Colored boxes outside on the top right side indicate SNP density across the genome where green to red indicates less dense to dense.
Abbreviations: PH, Plant height; GY, Grain yield; GN, Grain number per spike; TKW, Thousand kernel weight; SW, Spike weight; SA, Spike area; SH,

Discussion

Shedding light on the genetic mechanisms controlling
quantitative traits such as grain yield in wheat represents
an opportunity for the improvement of drought tolerance.
To achieve this goal, this experiment aimed at exploring
the structure of the population and at uncovering MTAs

in Iranian wheat accessions. Significant, positive corre-
lations among the wheat characteristics confirmed the
value of the data in the current GWAS analysis. This is
evidenced by Laido et al. [26] who highlighted the rela-
tionship between morphological characteristics having a
high correlation to detect relevant QTLs.
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Fig. 7 The effect of genomic selection (GS) method on genomic prediction (GP) accuracy for agronomic traits for Iranian landraces and cultivars
in the well-watered environment. A-H) The prediction accuracy for gBLUP, rr-BLUP, and BRR-based genomic selection (GS) is demonstrated with
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accuracies for the trait of interest. a Plant height; b Grain yield; ¢ Grain per spike; d Thousand kernel weight; e Spike weight; f Spike area; g Spike
harvest index; h Spike fertility

High correlation occurring between agronomic traits
can be justified by indirect or direct contributions of one
trait to another [27]. Taking a look at the wheat genome,
genomic regions responsible for such agronomic char-
acteristics can be equivalent. This is supported by the
presence of multi-trait correlations where one gene has
a pleiotropic impact on highly-associated characteristics
[2]. For example, Mwadzingeni et al. [8] showed that one
locus controls several wheat properties such as grains
per spike, spike length, and plant height, which are
highly linked often [28]. Such observations support the
requirement to confirm if such locus is not also linked
to another trait, because it shares similar sequences with
the regions responsible for the latter trait. Some loci,
however, affect only one crop property [8].

Breeding value-clustering by using BRR, gBLUP, and
rrBLUP had 77, 68, and 83% similarity with the trait
mean method in the terms of wheat accessions group-
ing, respectively. This indicates that rrBLUP can catego-
rize wheat accessions more accurately than the other
methods. Moreover, rrBLUP with the most similarity
with the trait mean method in the terms of discovered
significant markers, suggesting its potential in uncover-
ing SNPs. As a result, rrBLUP model can detect genetic
impacts in wheat populations better than other models.

Overall, obtaining the best outcomes from the breeding
value-based methods depend on the genetic architecture
of trait, genetic variation, etc. [18].

Linkage disequilibrium of markers

Of the results, the SNPs covered the wheat genome well.
The SNPs were higher in genome B. The higher fre-
quency of SNPs in genome B results from the evolution-
ary events [29]. Genomes D had the highest LD followed
by genome A, followed by genome B. At the chromosome
level, the strongest LD was recorded between marker
pairs on chr 4 A. The fact that cultivars exhibited higher
LD in contrast to landraces, particularly in the genome
D, is presumably a consequence of selection throughout
the time of breeding efforts [30]. The presence of closely
linked marker pairs with non-significant LDs and marker
pairs in LD over a long distance in this research has been
shown previously in wheat and other crops [8, 31]. This
reflects that LD is not static because LD can be affected
by various elements including genetic admixture [8].

Population structure of Iranian wheat accessions

The population under consideration was divided into four
distinct sub-populations. This is expected because the
wheat accessions have diverse pedigrees. Of course, the
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presence of common parents or origins in the pedigree
of accessions often leads to some relationships among
them [2]. The findings derived from the population sub-
structure analysis are beneficial in following superior
parents that can be used in the improvement of wheat
tolerance to drought stress conditions [3]. Therefore, lat-
ter researchers can utilize this genetic pool to employ the
genetically disparate accessions, which in turn exhibit
wheat farmer-preferred properties.

SNPs and MTAs for wheat agronomic traits

From a brief look at the number of SNPs, lower significant
SNPs were recorded under drought than normal condi-
tions, reflecting GWAS analysis for exploring drought
tolerance is affected greatly by environment*genotype
interactions [8].

This experiment led to discovering of a total of 29 and
30 highly significant MTAs in normal and drought envi-
ronmental conditions, correspondingly. Albeit only those
associations at P<0.0001 were regarded as significant,
the rest of these MTAs may be helpful for enhancing
wheat tolerance to drought stress. These associations can
be located in genomic regions affecting the agronomic
characteristics. The MTAs for yield appeared significant
at a higher P value, because this trait is highly compli-
cated in genetic nature with low heritability [32].

To date, many attempts have been focused on locating
QTLs and genes affecting wheat traits in drought envi-
ronments for facilitating marker-assisted breeding [2, 3].
The MTAs detected in this study are added to the previ-
ous pool of candidate genes and markers. However, it is
a challenging task to align our results with earlier works
because of the use of disparate reference genomes than
the IWGSC Ref.Seq, the lack of accurate genomic loca-
tions, or the utilization of various markers (GBS-derived
SNP vs. SSR and DART) [2, 3, 5, 9]. Of course, detection
of MTAs on the same chromosome as previous projects
increases the assurance of these MTAs.

Four MTAs for grain yield were recorded on chr 3B,
4 A, 5 A, and 3D in this study. Earlier research efforts have
discovered MTAs/QTLs for grain yield on wheat chr 7B
[31, 33, 34], 7 A [31, 34-36], 5B [15, 31, 34], 3D [34], 3 A
(31, 34, 37, 38], 2B [34, 37—40], and 1B [34, 38, 39]. Thus,
MTAs on chr 3B, 4 A, and 5 A have not been reported
and they are new for wheat yield. Six MTAs for TKW
were found on chr 5 A, 1B, 3B, 6B, 1D, and 2D. Earlier
reports have detected MTAs/QTLs for TKW on chr 7D
[35], 7B [31], 5B [41], 3B [35], 3 A [40, 41], 2D [39], 2B
[31, 35, 39, 42], 2 A [35], 1 A [31, 39-41] and 1B [43]. For
plant height, two MTAs were revealed on each of chr 5B,
6B, and 2D. All 21 chromosomes carry genes that control
plant height in wheat [42, 44, 45]. Up to now, 24 reduced
height (Rit) genes (Rht1-Rht24) are catalogued in wheat
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[46, 47], where Rht8 on chromosome arm 2DS has been
extensively explored [48, 49]. We could locate only two
QTLs to chromosome 2DL, whereas the ones reported
by Borner et al. [50], on chromosome 2DS could not be
detected. Other MTAs detected in our research effort
were responsible for grains per spike, spike weight, spike
fertility spike area, and spike harvest index. Some of the
MTAs detected in this study were involved in the follow-
ing important biological and molecular processes: metal
ion binding, monooxygenase, acyltransferase, oxidore-
ductasel acyltransferase, methyltransferase, peptidase,
and dependent microtubule motor activity. The gBLUP
with the most similarity (80.98 and 71.28% in well-
watered and rain-fed environments) with the trait mean
method in the terms of discovered significant SNPs, sug-
gesting the potential of gBLUP in uncovering SNPs. The
results show that the gBLUP method performs better than
the rrBLUP and BRR methods in terms of predicting the
accuracy of genomic breeding values. In gBLUP, genomic
relationships are used to estimate an individual’s genetic
merit. Genomic relationships are estimated based on
DNA marker information for this purpose. To make bet-
ter predictions of merit, the matrix defines the covariance
between individuals on the basis of observed similarity
rather than expected similarity based on pedigree. Several
studies have described the gBLUP method for estimat-
ing genomic breeding values [51-54]. Research shows
that gBLUP and rrBLUP are similar models. One of the
advantages of gBLUP over rrBLUP is the reduction of the
dimensions of the mixed equations to the number of peo-
ple in the reference population, the calculation of accu-
racy and error predicting corrective values as commonly
used in pedigree methods and combining The informa-
tion of genotyped and non-genotyped individuals was
mentioned simultaneously in the mixed equations [18].
Based on the GO results, the BRR and gBLUP meth-
ods were able to better identify the relationship between
the studied traits, respectively, and were most similar to
the pGWAS results. Generally speaking, genes/mark-
ers affecting a trait under drought also are responsible
for that trait under normal conditions [8]. Ideally, the
impacts of such genes/markers may not be influenced
by any moderate changes in environmental conditions,
thus they can be helpful in gene introgression or marker-
assisted selection when adaptation improvement [55].
Some genes/markers, on the other hand, may affect spe-
cific traits differentially under various conditions [55].
Our findings suggested that genomic prediction is
a helpful tool for predictive characterization of wheat
genotypes, permitting phenotyping to be limited to a
fraction of the germplasm rather than the whole col-
lection [56-58]. Similarly, Kehel et al. [59] stated that
genomic selection can be used within wheat accessions
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to predict key traits with an accuracy of more than
0.7, more especially for the traits with high to moder-
ate heritability. Accounting for stratified populations
is usually carried out by the first five principal compo-
nents as covariates in a prediction model [57, 60, 61]. As
expected, a significant population structure was iden-
tified in the Iranian wheat landraces, with the first five
eigenvalues accounting for 30.5% of genetic diversity.
The population structure indicated a negative effect on
performance in GWAS and GP models, which was also
exhibited in other researches [61, 62]. Of our observa-
tions, the highest prediction accuracy was achieved
via the gBLUP model. Shabannejad et al. [18] evalu-
ated classic approaches for exploiting GP accuracy by
BRR, gBLUP, rrBLUP models in normal and drought
environments in wheat cultivars and landraces. They
identified the highest GP accuracies via the gBLUP
and BRR method. The authors observed that obtaining
the highest GP accuracy depends on the genetic varia-
tion, genetic architecture of trait, level of LD, and the
genomic selection approach. As a result, the gBLUP
model can detect genetic impacts in wheat populations
better than other genomic prediction models.

Conclusion

MTAs are the key elements to detecting genomic regions
related to wheat agronomic traits under drought stress.
The current experiment found 29 and 30 highly signifi-
cant MTAs under normal and drought conditions. The
markers detected would be useful genomic sources for
cloning and fine mapping of underlying genes, and for
conducting gene introgression and marker-based selec-
tion in wheat under normal and drought conditions.
A further research attempt is needed for validating the
markers detected in the current project using a larger
wheat population.

Methods

Plant material and experimental conditions

A field research effort was performed in two growing sea-
sons (2018-19 and 2019-20) under rain-fed (drought) and
well-watered (normal) conditions at the research farm,
University of Tehran, Iran. In this study, 90 cultivars and
208 landraces (Table S2) of wheat were investigated in
an alpha-lattice experiment with two replications. The
wheat accessions were cultivated in the plots including
four rows (1*1 m?) at 0.5 m intervals. In the well-watered
crops, the threshold of irrigation was regarded based
on 40 mm evaporation from a standard pan. The refer-
ence crop evapotranspiration [ET,=E,,x K,,; where
K,n 1s a pan coefficient (0.8) for each month and E,,,,, is
the evaporation depth from the pan surface (40 mm)]
and crop coefficient [K:] were estimated to measure
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evapotranspiration (ET. = K x ET,) [63]. The time of
irrigation was determined from the ratio of the assigned
water for 1400 m? (the cultivation area of total genotypes
in two replications) to water discharge (10.8 m>®/h). The
volume of water required for each hectare (m3/ha) was
calculated via the depth of ET, (mm) multiplied by ten.
The rain-fed crops were exposed to rainfall, which was
the only accessible water source. The monthly rainfall
pattern for the growing seasons is represented in Table
S3. At the maturity stage, 20 plants were harvested from
the middle rows of plots to measure traits, including
spike fertility (ratio of grain number to spike weight),
thousand-kernel weight (g), grain yield (g per plant),
grain number per spike, spike weight (g), spike harvest
index (ratio of spike grain weight to spike weight, %),
spike area (cm?), and plant height (cm).

GBS analysis

To sequence wheat accessions, this experiment followed
the procedure as explained by Alipour et al. [29] to estab-
lish the GBS libraries. After trimming reads to 64 bp and
categorizing them, single nucleotide polymorphisms
were discovered by internal alignment. SNPs were called
through the UNEAK GBS pipeline, where SNPs with low-
allele frequency<1% and low-quality scores<15 were
discarded to reduce false positives. The SNP imputation
process was implemented by available allele frequencies in
BEAGLE V.3.3.2 [64]. The LD was calculated by the TAS-
SEL V.5 [65]. The W7984 reference genome was adopted
in the recent study because of fulfilling the highest accu-
racy of imputation among the wheat references [30].

Structure of wheat population

Population structure in the Iranian wheat accessions
was revealed by STRUCTURE V.2.3.4. In this software,
the parameters were set at 30,000 burn-in periods, with
30,000 MCMC iterations after burn-in [66]. To per-
mit the picking up of repetition with the highest value
of Ln likelihood, 10 replications were run for K values
of 1 to 10. By using TASSEL software, genotypic data of
wheat accessions were imputed [67]. Moreover, princi-
pal component analysis (PCA) was conducted to verify
the STRUCTURE outcome. To determine the accession
relationships, a neighbor-joining analysis was carried
out by TASSEL V.5. Linkage disequilibrium (LD) was
determined through R? value, squared allele frequency
correlation, from which the significant allele pairs were
estimated by 1,000 permutations.

Trait mean-based GWAS (pGWAS)

The mixed linear model (MLM) was followed to estimate
the marker impacts on the wheat population. The gen-
eral linear model was conducted by population structure
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matrix (Q) integrated as a covariate for correcting the
effect of subpopulations. The mixed linear model was
performed by both the family structure matrix (Kinship,
K) and Q for controlling both errors of type I and II. The
association mapping was implemented using MLM func-
tions of TASSEL V.5. To correct for multiple test, a false
discovery rate was utilized to declare significant MTAs
[66, 68]. For a better answer in the recent study, only the
outcomes of the MLM procedure were given. There are
several methods to determine the threshold in GWAS and
all of them have some advantage and disadvantage. But,
the most important thing is confirming the results using
further analysis. Here the threshold -logP >3 was consid-
ered to find higher number of significant SNPs and iden-
tify the important ones using GO and pathway analysis.
While from the threshold of -logP >5 was considered to
identify very significant and important SNPs. To explore
associations between genotype and phenotype, a Manhat-
tan plot was obtained using the CMplot package [69].

Breeding value-based GWAS (eGWAS)

Three methods rrBLUP [70], BRR [71], and gBLUP [72]
using the Intelligent Prediction and Association Tool (iPat)
software were used to obtain the breeding values. A mixed
linear model (MLM) was used to estimate the effects of
markers using breeding values on wheat populations [9].

Annotation of putative candidate MTAs

The ensemble-gramene database was employed to extract
the molecular and biological functions of SNPs in the gene
ontology by using the IWGSC RefSeq V.2.0, which has
been provided for the Chinese Spring [http://www.grame
ne.org/]. Furthermore, the significant SNPs were analyzed
via KOBAS version 2.0 for gene ontology enrichment anal-
ysis in KEGG [https://www.genome.jp/kegg/].

Genomic prediction strategies

GP was calculated by various approaches: BRR [71, 73],
gBLUP [72, 73], and rrBLUP [70, 73]. All of the analyses were
performed by iPat [74]. For the population, 20% of genotypes
were assigned randomly to a validation set and all of the
residuals were utilized as a training set. This process was reit-
erated 100 times for all of the prediction approaches. The GP
accuracy was calculated as Pearson’s correlation (r) between
BLUPs and GEBVs over the validation and training sets [75].

Statistical analysis

The descriptive statistics and correlation analysis were
implemented by R V.4.1 using the dplyr, ggpubr, psych,
and ggplot2 packages. Heatmap analysis was carried
out using heatmap.2 function in gplots R package to
classify wheat accessions.

Page 22 of 25

Supplementary Information

The online version contains supplementary material available at https://doi.
0rg/10.1186/512864-022-08968-w.

Additional file 1: Supplementary Table 1. Mean, coefficient of variation
(CV), broad senseheritability (H), and combined analysis of variance based
onstudied traits in 298 Iranian wheat landraces and cultivars. Supplemen-
tary Table 2. Overview on the landraces and cultivars of Iranian wheat
studied. Supplementary Table 3. Pattern of total monthly precipitation
andirrigation for the 2018-19 and 2019-20 cropping seasons. Supple-
mentary Fig. 1. Correlation coefficients between the studied agronomic
traits for Iranian wheat landraces and cultivars. (A, Well watered; B, Rainfed).
Abbreviations: PH, Plant height; GY, Grain yield; GN, Grain number per
spike; TKW, Thousand kernel weight; SW, Spike weight; SA, Spike area; SH,
Spike harvest index; SF, Spike fertility. Supplementary Fig. 2. GWAS results
for agronomic traits andbreeding Values of Iranianlandraces and cultivars

in well-watered environments. Agronomic traits (A), BRR (B), gBLUP (O),

and rrBLUP (D). Abbreviations: PH, Plant height; GY, Grain yield; GN, Grain
number per spike; TKW, Thousand kernel weight; SW, Spike weight; SA,
Spike area; SH, Spike harvestindex; SF, Spike fertility. Supplementary Fig. 3.
Manhattan and QQ-plots of highly associatedhaplotypes for and MLM in
Iranian wheat landraces and cultivars in well-wateredenvironments. X axis
represents chromosomes: 1) 1A, 2) 1B, 3) 1D, 4) 2A, 5) 2B, 6) 2D, 7) 3A, 8) 3B,
9) 3D, 10) 4A, 11) 4B, 12) 4D, 13) 5A, 14) 5B, 15) 5D, 16) 6A, 17) 6B, 18) 6D, 19)
7A, 20) 7B, 21) 7D. Supplementary Fig. 4. GWAS results foragronomic traits
and breeding Values of Iranian landraces and cultivars inrain-fed environ-
ments. Agronomictraits (A), BRR (B), gBLUP (C), and rrBLUP (D). Abbrevia-
tions: PH, Plant height; GY, Grain yield; GN, Grain number per spike; TKW,
Thousand kernel weight; SW, Spike weight; SA, Spike area; SH, Spike harvest
index; SF, Spike fertility. Supplementary Fig. 5. Manhattan and QQ-plots of
highly associatedhaplotypes for and MLM in Iranian wheat landraces and
cultivars in rain-fed environments. X axis represents chromosomes: 1) 1A, 2)
1B,3) 1D,4) 2A,5) 2B, 6) 2D, 7) 3A, 8) 3B,9) 3D, 10) 4A, 11) 4B, 12) 4D, 13) 5A,
14) 5B, 15) 5D, 16) 6A, 17) 6B, 18) 6D, 19) 7A, 20) 7B, 21) 7D. Supplementary
Fig 6. The KEGG pathway of metabolic pathways. Supplementary Fig 7.
The KEGG pathway of oxidativephosphorylation. Supplementary Fig 8.
The KEGG pathway of biosynthesis of amino acids. Supplementary Fig 9.
The KEGG pathway of ascorbate and aldarate metabolism. Supplemen-
tary Fig 10. The KEGG pathway of sulfur metabolism. Supplementary Fig
11. The KEGG pathway of fatty acid elongation.
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