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Abstract 

Background:  The markers detected by genome-wide association study (GWAS) make it possible to dissect genetic 
structure and diversity at many loci. This can enable a wheat breeder to reveal and used genomic loci controlling 
drought tolerance. This study was focused on determining the population structure of Iranian 208 wheat landraces 
and 90 cultivars via genotyping-by-sequencing (GBS) and also on detecting marker-trait associations (MTAs) by GWAS 
and genomic prediction (GS) of wheat agronomic traits for drought-tolerance breeding. GWASs were conducted 
using both the original phenotypes (pGWAS) and estimated breeding values (eGWAS). The bayesian ridge regression 
(BRR), genomic best linear unbiased prediction (gBLUP), and ridge regression-best linear unbiased prediction (rrBLUP) 
approaches were used to estimate breeding values and estimate prediction accuracies in genomic selection.

Results:  Population structure analysis using 2,174,975 SNPs revealed four genetically distinct sub-populations from 
wheat accessions. D-Genome harbored the lowest number of significant marker pairs and the highest linkage dis-
equilibrium (LD), reflecting different evolutionary histories of wheat genomes. From pGWAS, BRR, gBLUP, and rrBLUP, 
284, 363, 359 and 295 significant MTAs were found under normal and 195, 365, 362 and 302 under stress conditions, 
respectively. The gBLUP with the most similarity (80.98 and 71.28% in well-watered and rain-fed environments, cor-
respondingly) with the pGWAS method in the terms of discovered significant SNPs, suggesting the potential of gBLUP 
in uncovering SNPs. Results from gene ontology revealed that 29 and 30 SNPs in the imputed dataset were located in 
protein-coding regions for well-watered and rain-fed conditions, respectively. gBLUP model revealed genetic effects 
better than other models, suggesting a suitable tool for genome selection in wheat.

Conclusion:  We illustrate that Iranian landraces of bread wheat contain novel alleles that are adaptive to drought 
stress environments. gBLUP model can be helpful for fine mapping and cloning of the relevant QTLs and genes, and 
for carrying out trait introgression and marker-assisted selection in both normal and drought environments in wheat 
collections.

Keywords:  Drought stress, Estimated breeding values, GWAS, Genotyping-by-sequencing, Wheat accessions

Background
Wheat (Triticum aestivum L., AABBDD, 2n = 6x = 42), as 
an economically important crop, provides iron, calcium, 
zinc, vitamin B, starch, fiber, fats, and dietary proteins [1, 
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2]. Genetic research on this crop has led to its improved 
productivity.  For example, the last decade (2011-2020) 
witnessed ~ 1% yield increase per annum [3]. However, 
further improvement is imperative to feed the global 
population, which will reach over 9 B by 2050 [4]. As the 
most important detrimental factor, wheat production is 
restricted by water-limited conditions in most parts of 
the world. Improvement of crop tolerance to drought 
stress is one of the essential efforts that can guaran-
tee sustainable yield in wheat fields [2, 4]. Right now, 
research attempts are focusing on exploring the genetic 
foundation of drought tolerance traits by using associa-
tion analysis of agronomic characteristics and genomic 
regions [5].

The breeding of high-yielding and drought-toler-
ant wheat varieties continues to be a challenging task, 
because of large “environment×genotype” interactions 
and low heritability related to yield as a complicated 
agronomic property [6]. To overcome this problem, high-
throughput methods in phenomics, including digital 
imaging, and in genomics, including association map-
ping, have been used to uncover the genetic mechanisms 
underlying yield and its relative characteristics under 
drought. The findings obtained from these methodolo-
gies had been practical for further enhancement in wheat 
yield not only in water-restricted environmental condi-
tions but also in drought-stressed environments [3].

The advent of next-generation sequencing technologies 
has provided an opportunity to evaluate genetic varia-
tion and discover new markers through implementing 
the genotyping-by-sequencing (GBS) approach [7]. From 
this approach, molecular markers such as single nucleo-
tide polymorphism (SNP) have been successfully adopted 
to discover the complicated agronomical properties of 
wheat and also have been well-known as key elements in 
the genome-wide association study (GWAS) approach 
[8]. The purpose of this approach is to detect genomic 
regions that can either be QTL, gene, or marker related 
to important traits for gene introgression, gene discovery, 
or marker-assisted breeding [2]. The markers detected by 
GWAS make it possible to dissect genetic structure and 
diversity at many loci. This can enable a wheat breeder to 
reveal and used genomic loci controlling drought toler-
ance [5].

In addition to trait mean-based GWAS (pGWAS), 
there is a chance to estimate breeding values by some 
methods such as BRR (bayesian ridge regression), 
gBLUP (genomic best linear unbiased prediction), and 
rrBLUP (ridge regression-best linear unbiased pre-
diction) and use them in association mapping (i.e., 
eGWAS). There is a lack of certainty on the best algo-
rithm when utilizing a multiple-regression model in 

genomic selection and GWAS since the structure of 
the population and the architecture of the trait have a 
remarkable effect on identifying marker impacts [9]. As 
a result, it is imperative to compare the findings from 
the various algorithms when dissecting the genetic 
basis of a complicated trait in a crop population for the 
first time. This process ensures the efficient detection 
of QTLs responsible for controlling a quantitative trait, 
and better control of the error of type I, which is often 
higher in association mapping studies [10].

To date, about 800 marker-trait associations (MTA) 
and quantitative trait loci (QTL) have been discovered 
for wheat drought tolerance traits, including yield, root, 
physiological, and agronomic ones by using association 
mapping (~ 100 MTAs) and bi-parental mapping (~ 700 
QTLs). Only 70 loci, however, are known as the major 
genomic regions explaining more than 20% of pheno-
type diversity [11]. In the past, association mapping 
research in drought-stressed wheat has utilized a small 
number of molecular markers [12–16], which seems 
inadequate for efficiently exploring diversity in diverse 
wheat collections.

Genomic prediction (GP) is a powerful tool to boost 
the efficiency and speed of breeding schedules by 
reducing time cycles and increasing selection accu-
racy. This approach provides an opportunity by which 
a candidate gene can be chosen via genotyping before 
phenotype determination [17]. Genomic prediction 
utilizes all genetic markers within a model to train a 
prediction model, which is consisted of all genetic 
impacts. The model is applied to a validation set for 
estimating its accuracy [18]. Several studies have dem-
onstrated high or moderate GP accuracy for quanti-
tative characteristics in barley (Hordeum vulgare L.) 
[19], maize (Zea mays L.) [20], rice (Oryza sativa L.) 
[21], oat (Avena sativa L.) [22] and wheat (Triticum 
aestivum L.) [17].

This study was aimed at detecting drought tolerance 
candidate QTLs, genes, or markers linked with agro-
nomical traits by using GWAS in 208 wheat landraces 
and 90 cultivars grown under normal and drought 
conditions. In eGWAS, the goal is to identify SNPs 
related to the correction value of the traits, which are 
passed on to the next generation. The next purpose 
of this work was to select the best model for estimat-
ing prediction accuracies in genomic selection. To the 
best of our knowledge, our report is the first study on 
pGWAS and eGWAS of agronomical characteristics 
in Iranian wheat landraces under rain-fed and well-
watered conditions. The findings from this research will 
be an interesting source for marker-assisted breeding, 
genomic selection, introgression of favorable genes into 
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high-yielding cultivars, and improvement of yield-asso-
ciated characteristics under drought.

Results
Phenotypic data summary
In this study, 298 landraces and cultivars of bread wheat 
were grown under rain-fed and well-watered conditions 
and analyzed for various agronomic traits. According to 
the analysis of variance, genotypic, environmental, and 
genotype×environmental effects on agronomical traits 
were significant under rain-fed and well-watered envi-
ronments. Variances associated with genotypic effects 
were higher than those associated with environment 
and genotype×environment effects across all traits, 
indicating genotypic effects had a greater impact. There 
is a high heritability in plant height traits, but a low 
heritability in grain yield traits. However, the agronom-
ical traits of wheat grain showed acceptable heritability 
(Table S1). The box plots related to eight agronomical 
traits of wheat landraces and cultivars under favorable 
conditions (well-watered) and drought stress (rain-
fed) are shown in Fig.  1. The mean of all traits under 
stress decreased when compared to a normal situation 
in both cultivars and native populations implying the 
presence of considerable diversity in agronomical traits 
of wheat accessions, and this variation is greater in 

native populations. The mean of all traits, except plant 
height, in both conditions, was higher in cultivars than 
in landraces.

Correlation analysis between traits in the normal 
environment showed that yield had the highest sig-
nificant, positive correlation with the following traits, 
spike harvest index (r = 0.72**), spike weight (r = 0.71**), 
1000-kernel weight (r = 0.69**), and the number of grains 
(r = 0.61**). However, in the stress environment, grain 
yield had the highest significant, positive correlation 
with the following traits: spike harvest index (r = 0.76**), 
1000-kernel weight (r = 0.74**), the grains per spike 
(r = 0.66**), and spike weight (r = 0.54**) (Fig. S1).

Clustering analysis
Under normal conditions, the heatmap was plotted 
based on the mean of agronomic traits and breeding val-
ues by using three methods: BRR, gBLUP, and rrBLUP. 
From the results, wheat accessions were clustered into 
four groups. In clustering based on the mean of traits, 
Group No.1 included 82 high-yielding genotypes that 
were 41 cultivars and 41 landraces, Group No.2 con-
sisted of 89 genotypes with average to high yield (24 
cultivars and 65 landraces), Group No.3 contained 44 
genotypes with average to low yield (21 cultivars and 23 
landraces), and Group No.4 composed of 83 low yielding 

Fig. 1  Box-plot representation of the distribution for agronomic traits of Iranian landraces and cultivars in the well-watered and rain-fed 
environments. Abbreviations: a Plant height (cm); b Grain yield (g per plant); c Grain per spike; d Thousand kernel weight (g); e Spike weight (g); 
f Spike area (cm2); g Spike harvest index (%); h Spike fertility
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Fig. 2  Hierarchical clustering and heatmap of Iranian landraces and cultivars based on the wheat agronomic traits and breeding values in 
well-watered environments. Agronomic traits (a), BRR (b), gBLUP (c), and rrBLUP (d). Abbreviations: PH, Plant height; GY, Grain yield; GN, Grain 
number per spike; TKW, Thousand kernel weight; SW, Spike weight; SA, Spike area; SH, Spike harvest index (%); SF, Spike fertility
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genotypes that were mainly native populations (4 culti-
vars and 79 landraces) (Fig. 2a). From the BRR method, 
wheat genotypes were divided into four groups; the 
first, second, third, and fourth groups consisted of 61, 
42, 104, and 91 genotypes, respectively (Fig.  2b). From 
the gBLUP, the first group included 85 genotypes with 
a high breeding value of grain yield (72 cultivars and 
13 landraces), the second group consisted of 102 geno-
types with medium to high breeding value for yield and 
yield components (16 cultivars and 86 landraces), the 
third group contained 97 genotypes with medium to 
low breeding value for yield and components (2 cultivars 
and 97 landraces), the fourth group composed of geno-
types (17 landraces) with low breeding values for yield 
and yield components (Fig. 2c). From the BRR method, 
wheat genotypes were divided into four groups; the first, 
second, third, and fourth groups consisted of 69 (67 cul-
tivars and 2 landraces), 59 (9 cultivars and 50 landraces), 
88 (12 cultivars and 76 landraces), and 82 genotypes (2 
cultivars and 88 landraces), respectively (Fig.  2d). The 
results of gBLUP were most similar to the trait mean 
method in terms of genotype clustering.

Drought-stressed genotypes were also classified into 
four groups based on the trait mean and the breed-
ing value methods. In clustering based on the mean of 
traits, the cluster 1 included 31 genotypes with high 
yield, which were mainly cultivars (18 cultivars and 
13 landraces), the cluster 2 consisted of 123 geno-
types with average to high yield (24 cultivars and 99 
landraces), the cluster 3 contained 43 genotypes with 
average to low yield (19 cultivars and 24 landraces), 
and cluster 4 composed of 101 genotypes with low 
average yield, which were mainly native populations 
(29 cultivars and 72 landraces) (Fig.  3a). From the 
BRR, the first group included 61 cultivars with a high 
breeding value of grain yield, the second group con-
sisted of 67 genotypes (18 cultivars and 49 landraces) 
with medium to high breeding value for yield and 
yield components, the third group contained 53 geno-
types with medium to low breeding value for yield and 
components (8 cultivars and 45 landraces), the fourth 
group composed of 117 genotypes (3 cultivars and 114 
landraces) with low breeding values for yield and yield 
components (Fig. 3b). From the gBLUP method, wheat 
genotypes were divided into four groups; the first, sec-
ond, third, and fourth groups consisted of 65, 83, 48, 
and 102 genotypes, respectively (Fig.  3c). Clustering 
based on breeding values by using BRR, gBLUP, and 
rrBLUP had 42, 48, and 39% similarity in terms of gen-
otype clustering in different clusters, respectively. This 
indicates that the gBLUP categorized wheat accessions 
more accurately than the other two BRR and rrBLUP 
methods (Fig. 3b, c and d).

Linkage Disequilibrium (LD)
LD assessment indicated that this indicator varies 
between chromosomes and across each chromosome and 
it usually decreases with increasing distances between 
SNP locations. A total of 1,858,425 marker pairs with 
r2 = 0.211 were identified in cultivars, of which 700,991 
(37.72%) harbored significant linkages at P < 0.001. The 
strongest LD was recorded between marker pairs on chr 
4  A (r2 = 0.318). Genomes D and B possessed the low-
est (63,924) and highest (370,359) number of significant 
marker pairs, respectively. A similar assessment on wheat 
landraces found 1,867,575 marker pairs with r2 = 0.182, 
of which 847,725 (45.39%) harbored significant linkages 
at P < 0.01. Similar to cultivars, marker pairs on chr 4 A 
showed the strongest LD (r2 = 0.369). Genomes D and 
B possessed the lowest and highest number of marker 
pairs (92,702 and 427,017), respectively. In the D genome, 
the LD decay was slower than the LD decay in A and B 
genomes, indicating that the size of the linkage blocks 
is larger in the D genome. In addition, in cultivars, com-
pared to the native populations in genome D, the LD 
decay was slower, which probably indicates the selection 
of more genome-related traits in breeding work. Based 
on the observations, the most significant marker pairs in 
wheat landraces were found at distance < 10 cM (Table 1).

Population structure
To estimate the subpopulations, the ΔK value was plotted 
against the number of clusters (K). The largest ΔK value 
was found at K = 3, reflecting three population substruc-
tures, Sub.1, Sub.2, and Sub.3 (Fig.  4a). Sub.1 included 
113 genotypes with 6 cultivars and 107 landraces; Sub2 
contained 111 genotypes with 97 landraces and 14 cul-
tivars; Sub.3 consisted of 74 genotypes with 70 cultivars 
and 4 landraces (Fig.  4b). From PCA analysis, the esti-
mated PCs showed that PCs 1 and 2 explained 10.29 and 
6.28% of the genotypic variation, respectively (Fig.  4c). 
Cluster analysis using the kinship matrix also supported 
the STRU​CTU​RE results (Fig. 4d).

Genome‑wide association studies for agronomic traits 
and estimated breeding values
Under optimal irrigation and using imputed markers and 
-log10 P > 3, 283 significant SNPs were discovered for 
agronomic characteristics by MLM. Of these, 106, 137, 
and 40 markers were for genomes A, B, and D, respec-
tively. Therefore, genome B had the highest number of 
significant SNPs. The number of significant markers for 
PH, GY, GN, TKW, SW, SA, SH, and SF were 39, 57, 19, 
48, 11, 31, 43, and 35, respectively (Fig. S2a). The number 
of significant SNPs based on BRR, gBLUP, and rrBLUP 
were 362, 358, and 294, respectively. (Fig. S2b, c and d) 
The gBLUP method with the most similarity (81.27%) in 
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Fig. 3  Hierarchical clustering and heatmap of Iranian landraces and cultivars based on the wheat agronomic traits and breeding values in rain-fed 
environments. Agronomic traits (a), BRR (b), gBLUP (c), and rrBLUP (d). Abbreviations: PH, Plant height; GY, Grain yield; GN, Grain number per spike; 
TKW, Thousand kernel weight; SW, Spike weight; SA, Spike area; SH, Spike harvest index; SF, Spike fertility
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the terms of significant markers had the best justification 
when compared to other methods (Table 2). BRR, gBLUP, 
and rrBLUP led to identifying 125, 118, and 111 signifi-
cant SNPs for genome A; 201, 195, and 147 significant 
SNPs for genome B; as well as 36, 45, and 36 significant 
SNPs for genome D, respectively. (Fig. S2b, c and d). The 
Manhattan Plot results for all original traits are aver-
aged (Fig. 5a) and the correction values of BRR, gBLUP, 

and rrBLUP (Fig.  5b, c and d) are shown in Fig.  5. The 
Manhattan circular plot shows significant markers at P 
value < 0.001 (black) and < 0.00001 (red). The Manhattan 
rectangular and Q-Q plot are shown in Fig. S3. Markers 
obtained with the mean of agronomic traits were very 
similar to the results of the breeding value methods, 
especially gBLUP.

Fig. 4  Determination of subpopulations number in wheat genotypes based on ΔK values (a), A structure plot of the 298 wheat genotypes and 
landraces determined by K = 3 (b), Principle component analysis (PCA) for a total of 298 Iranian bread wheat accessions (c), Cluster analysis using 
Kinship matrix of imputed data for Iranian wheat accessions (d)
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In stress, less significant markers were identified than 
the normal situation, 194 significant SNPs were identified 
by the MLM method; Of these, 48, 129, and 17 markers 
belonged to genomes A, B, and D, respectively. Genome 
B had the highest percentage of significant SNPs in a 
stressful environment. The number of significant markers 
for PH, GY, GN, TKW, SW, SA, SH, and SF were 9, 30, 16, 
21, 15, 31, 31, and 41, respectively (Fig. S4a). The number 
of significant SNPs obtained by BRR, gBLUP, and rrBLUP 
methods was 364, 361, and 301, respectively (Fig. S4b, c 
and d). The gBLUP with the most similarity (71.64%) in 
the terms of significant markers had the best justifica-
tion when compared to other methods (Table 2). By BRR, 
gBLUP, and rrBLUP, a total of 134, 121, and 97 significant 
SNPs for genome A, 187, 198, and 167 SNPs for genome 
B, as well as 43, 42, and 37 SNPs for genome D were 
identified, respectively (Fig. S4b, c and d). The Manhat-
tan circular plot shows significant SNPs at P value < 0.001 
(black) and < 0.00001 (red) (Fig. 6). The Manhattan rec-
tangular and Q-Q plot are shown in Fig. S5.

Gene ontology
The markers with the highest significance (P < 0.0001) 
and pleiotropic impact were studied in more detail. In the 
normal environment, 29 markers containing overlapping 
genes were identified that are involved in important bio-
logical and molecular processes. 12 markers were identi-
fied based on the pGWAS method and 17 markers were 
identified based on the eGWAS method. The number 
of GO based on BRR, gBLUP, and rrBLUP were 18, 15, 
and 16, respectively. The gBLUP and BRR method was 
most similar to (66.67%) the pGWAS method. The most 
significant markers were located on chr 6B, 5B, and 5 A. 
Of these, 8 SNPs were detected by both pGWAS and 
eGWAS methods. Some of the uncovered MTAs were 

responsible for the following molecular and biological 
processes: lipid biosynthetic process, protein-binding, 
carbohydrate-binding, lipid transport, RNA-binding, 
protein ubiquitination, protein deubiquitination,  protein 
catabolic regulation, nucleoside metabolic process,  UMP 
salvage, CTP salvage, and ubiquitin-dependent protein 
catabolic process (Table 3).

In the stress environment, 30 markers containing 
overlapping genes were identified. The most significant 
SNPs were located on the genome B. 13 and 17 markers 
were identified based on pGWAS and eGWAS methods, 
respectively. Of these, 10 markers were uncovered by 
both pGWAS and eGWAS methods, which indicates the 
approval of the above methods in discovering significant 
markers. Some of the uncovered MTAs were responsi-
ble for the following molecular and biological processes: 
nucleosome assembly, response to water deprivation, 
protein-binding, peptidase,  monooxygenase, ATP-bind-
ing, acyltransferase, oxidoreductase , microtubule-bind-
ing, acyltransferase, ADP-binding, methyltransferase 
activity, metal ion-binding, protein dimerization, ser-
ine-type endopeptidase, ATPase, serine-type peptidase, 
hydrolase, ATP-dependent microtubule motor activity, 
and heme-binding (Table  4). The following pathways 
have been discovered using rice reference genomes: 
metabolic pathways (Fig. S6), oxidative phosphorylation 
(Fig. S7), biosynthesis of amino acids (Fig. S8), ascorbate 
and aldarate metabolism (Fig. S9), sulfur metabolism 
(Fig. S10), and fatty acid elongation (Fig. S11) ([23–25], 
www.​kegg.​jp/​kegg/​kegg1.​html).

Genomic prediction
The gBLUP, rrBLUP and BRR approaches using imputed 
SNPs led to the identification of the highest prediction 
accuracies for 5, 3, and 1 phenotypes in rain-fed, and 5, 

Table 2  Similarity of expected MTAs using assigned SNPs for pGWAS and eGWAS

Well-watered Rain-fed

pGWAS BRR gBLUP rrBLUP pGWAS BRR gBLUP rrBLUP

MTA 283 362 358 294 194 364 361 301

Same as pGWAS - 212 230 195 - 137 139 122

Different with pGWAS - 151 129 100 - 228 223 180

pGWAS is the same as 
eGWAS(BRR,gBLUP,rrBLUP)

239 - - - 146 - - -

Similarity(%) - 74.91 81.27 68.90 - 70.61 71.64 62.88

GO 12 18 15 16 13 22 20 16

Same as pGWAS - 8 8 7 - 10 9 8

Different with pGWAS - 10 7 9 - 12 11 8

pGWAS is the same as 
eGWAS(BRR,gBLUP,rrBLUP)

8 - - - 10 - - -

Similarity(%) - 66.67 66.67 58.33 - 76.92 69.23 61.53

http://www.kegg.jp/kegg/kegg1.html
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3, and zero phenotypes in well-irrigated environments, 
respectively (Fig.  7). Under rain-fed, the highest predic-
tion accuracy was determined via the gBLUP model for 
GY (0.381), PH (0.369), SA (0.347), SH (0.104), TKW 
(0.253), via the rrBLUP for GN (0.396), SW (0.359), via 

the BRR for SF (0.179). Under well-watered, the highest 
prediction accuracies were determined via the gBLUP 
for GY (0.521), SA (0.269), SH (0.384), SW (0.432), TKW 
(0.470), via the rrBLUP for GN (0.379), PH (0.499), and 
SF (0.265) (Fig. 7).

Fig. 5  Circular Manhattan plots to draw common regions associated with a = Agronomic traits, b = BRR, c = gBLUP, and d = rrBLUP for Iranian 
wheat landraces and cultivars in well-watered environments. Inner to outer circles represents average trait and breeding values including PH, 
GY, GN, TKW, SW, SA, SH and SF, respectively. The chromosomes are plotted at the outmost circle where thin-dotted blue and red lines indicate 
significant level at P value < 0.001 (− log10 (p) > 3) and < 0.00001 (− log10 (p) > 5), respectively. Black and red dots indicate genome-wide 
significantly associated SNPs at P value < 0.001 and < 0.00001 probability level, respectively. Scale between ChrUn and Chr1A indicates − log10 
(p) values. Colored boxes outside on the top right side indicate SNP density across the genome where green to red indicates less dense to dense. 
Abbreviations: PH, Plant height; GY, Grain yield; GN, Grain number per spike; TKW, Thousand kernel weight; SW, Spike weight; SA, Spike area; SH, 
Spike harvest index; SF, Spike fertility
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Discussion
Shedding light on the genetic mechanisms controlling 
quantitative traits such as grain yield in wheat represents 
an opportunity for the improvement of drought tolerance. 
To achieve this goal, this experiment aimed at exploring 
the structure of the population and at uncovering MTAs 

in Iranian wheat accessions. Significant, positive corre-
lations among the wheat characteristics confirmed the 
value of the data in the current GWAS analysis. This is 
evidenced by Laido et  al. [26] who highlighted the rela-
tionship between morphological characteristics having a 
high correlation to detect relevant QTLs.

Fig. 6  Circular Manhattan plots to draw common regions associated with a = Agronomic traits, b = BRR, c = gBLUP, and d = rrBLUP for Iranian 
wheat landraces and cultivars in rain-fed environments. Inner to outer circles represents average trait and breeding values including PH, GY, 
GN, TKW, SW, SA, SH and SF, respectively. The chromosomes are plotted at the outmost circle where thin dotted blue and red lines indicate 
significant level at P value < 0.001 (− log10 (p) > 3) and < 0.00001 (− log10 (p) > 5), respectively. Black and red dots indicate genome-wide 
significantly associated SNPs at P value < 0.001 and < 0.00001 probability level, respectively. Scale between ChrUn and Chr1A indicates − log10 
(p) values. Colored boxes outside on the top right side indicate SNP density across the genome where green to red indicates less dense to dense. 
Abbreviations: PH, Plant height; GY, Grain yield; GN, Grain number per spike; TKW, Thousand kernel weight; SW, Spike weight; SA, Spike area; SH, 
Spike harvest index; SF, Spike fertility
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High correlation occurring between agronomic traits 
can be justified by indirect or direct contributions of one 
trait to another [27]. Taking a look at the wheat genome, 
genomic regions responsible for such agronomic char-
acteristics can be equivalent. This is supported by the 
presence of multi-trait correlations where one gene has 
a pleiotropic impact on highly-associated characteristics 
[2]. For example, Mwadzingeni et al. [8] showed that one 
locus controls several wheat properties such as grains 
per spike, spike length, and plant height, which are 
highly linked often [28]. Such observations support the 
requirement to confirm if such locus is not also linked 
to another trait, because it shares similar sequences with 
the regions responsible for the latter trait. Some loci, 
however, affect only one crop property [8].

Breeding value-clustering by using BRR, gBLUP, and 
rrBLUP had 77, 68, and 83% similarity with the trait 
mean method in the terms of wheat accessions group-
ing, respectively. This indicates that rrBLUP can catego-
rize wheat accessions more accurately than the other 
methods. Moreover, rrBLUP with the most similarity 
with the trait mean method in the terms of discovered 
significant markers, suggesting its potential in uncover-
ing SNPs. As a result, rrBLUP model can detect genetic 
impacts in wheat populations better than other models. 

Overall, obtaining the best outcomes from the breeding 
value-based methods depend on the genetic architecture 
of trait, genetic variation, etc. [18].

Linkage disequilibrium of markers
Of the results, the SNPs covered the wheat genome well. 
The SNPs were higher in genome B. The higher fre-
quency of SNPs in genome B results from the evolution-
ary events [29]. Genomes D had the highest LD followed 
by genome A, followed by genome B. At the chromosome 
level, the strongest LD was recorded between marker 
pairs on chr 4 A. The fact that cultivars exhibited higher 
LD in contrast to landraces, particularly in the genome 
D, is presumably a consequence of selection throughout 
the time of breeding efforts [30]. The presence of closely 
linked marker pairs with non-significant LDs and marker 
pairs in LD over a long distance in this research has been 
shown previously in wheat and other crops [8, 31]. This 
reflects that LD is not static because LD can be affected 
by various elements including genetic admixture [8].

Population structure of Iranian wheat accessions
The population under consideration was divided into four 
distinct sub-populations. This is expected because the 
wheat accessions have diverse pedigrees. Of course, the 

Fig. 7  The effect of genomic selection (GS) method on genomic prediction (GP) accuracy for agronomic traits for Iranian landraces and cultivars 
in the well-watered environment. A-H) The prediction accuracy for gBLUP, rr-BLUP, and BRR-based genomic selection (GS) is demonstrated with 
blue, green and red colors, respectively. The boxplots show the first, second (median), and third quartile. The middle points indicate a mean of GP 
accuracies for the trait of interest. a Plant height; b Grain yield; c Grain per spike; d Thousand kernel weight; e Spike weight; f Spike area; g Spike 
harvest index; h Spike fertility
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presence of common parents or origins in the pedigree 
of accessions often leads to some relationships among 
them [2]. The findings derived from the population sub-
structure analysis are beneficial in following superior 
parents that can be used in the improvement of wheat 
tolerance to drought stress conditions [3]. Therefore, lat-
ter researchers can utilize this genetic pool to employ the 
genetically disparate accessions, which in turn exhibit 
wheat farmer-preferred properties.

SNPs and MTAs for wheat agronomic traits
From a brief look at the number of SNPs, lower significant 
SNPs were recorded under drought than normal condi-
tions, reflecting GWAS analysis for exploring drought 
tolerance is affected greatly by environment*genotype 
interactions [8].

This experiment led to discovering of a total of 29 and 
30 highly significant MTAs in normal and drought envi-
ronmental conditions, correspondingly. Albeit only those 
associations at P < 0.0001 were regarded as significant, 
the rest of these MTAs may be helpful for enhancing 
wheat tolerance to drought stress. These associations can 
be located in genomic regions affecting the agronomic 
characteristics. The MTAs for yield appeared significant 
at a higher P value, because this trait is highly compli-
cated in genetic nature with low heritability [32].

To date, many attempts have been focused on locating 
QTLs and genes affecting wheat traits in drought envi-
ronments for facilitating marker-assisted breeding [2, 3]. 
The MTAs detected in this study are added to the previ-
ous pool of candidate genes and markers. However, it is 
a challenging task to align our results with earlier works 
because of the use of disparate reference genomes than 
the IWGSC Ref.Seq, the lack of accurate genomic loca-
tions, or the utilization of various markers (GBS-derived 
SNP vs. SSR and DART) [2, 3, 5, 9]. Of course, detection 
of MTAs on the same chromosome as previous projects 
increases the assurance of these MTAs.

Four MTAs for grain yield were recorded on chr 3B, 
4 A, 5 A, and 3D in this study. Earlier research efforts have 
discovered MTAs/QTLs for grain yield on wheat chr 7B 
[31, 33, 34], 7 A [31, 34–36], 5B [15, 31, 34], 3D [34], 3 A 
[31, 34, 37, 38], 2B [34, 37–40], and 1B [34, 38, 39]. Thus, 
MTAs on chr 3B, 4  A, and 5  A have not been reported 
and they are new for wheat yield. Six MTAs for TKW 
were found on chr 5  A, 1B, 3B, 6B, 1D, and 2D. Earlier 
reports have detected MTAs/QTLs for TKW on chr 7D 
[35], 7B [31], 5B [41], 3B [35], 3  A [40, 41], 2D [39], 2B 
[31, 35, 39, 42], 2 A [35], 1 A [31, 39–41] and 1B [43]. For 
plant height, two MTAs were revealed on each of chr 5B, 
6B, and 2D. All 21 chromosomes carry genes that control 
plant height in wheat [42, 44, 45]. Up to now, 24 reduced 
height (Rht) genes (Rht1–Rht24) are catalogued in wheat 

[46, 47], where Rht8 on chromosome arm 2DS has been 
extensively explored [48, 49]. We could locate only two 
QTLs to chromosome 2DL, whereas the ones reported 
by Borner et  al. [50], on chromosome 2DS could not be 
detected. Other MTAs detected in our research effort 
were responsible for grains per spike, spike weight, spike 
fertility spike area, and spike harvest index. Some of the 
MTAs detected in this study were involved in the follow-
ing important biological and molecular processes: metal 
ion binding, monooxygenase, acyltransferase, oxidore-
ductase‎, acyltransferase, methyltransferase, peptidase, 
and dependent microtubule motor activity. The gBLUP 
with the most similarity (80.98 and 71.28% in well-
watered and rain-fed environments) with the trait mean 
method in the terms of discovered significant SNPs, sug-
gesting the potential of gBLUP in uncovering SNPs. The 
results show that the gBLUP method performs better than 
the rrBLUP and BRR methods in terms of predicting the 
accuracy of genomic breeding values. In gBLUP, genomic 
relationships are used to estimate an individual’s genetic 
merit. Genomic relationships are estimated based on 
DNA marker information for this purpose. To make bet-
ter predictions of merit, the matrix defines the covariance 
between individuals on the basis of observed similarity 
rather than expected similarity based on pedigree. Several 
studies have described the gBLUP method for estimat-
ing genomic breeding values [51–54]. Research shows 
that gBLUP and rrBLUP are similar models. One of the 
advantages of gBLUP over rrBLUP is the reduction of the 
dimensions of the mixed equations to the number of peo-
ple in the reference population, the calculation of accu-
racy and error predicting corrective values ​​as commonly 
used in pedigree methods and combining The informa-
tion of genotyped and non-genotyped individuals was 
mentioned simultaneously in the mixed equations [18].

Based on the GO results, the BRR and gBLUP meth-
ods were able to better identify the relationship between 
the studied traits, respectively, and were most similar to 
the pGWAS results. Generally speaking, genes/mark-
ers affecting a trait under drought also are responsible 
for that trait under normal conditions [8]. Ideally, the 
impacts of such genes/markers may not be influenced 
by any moderate changes in environmental conditions, 
thus they can be helpful in gene introgression or marker-
assisted selection when adaptation improvement [55]. 
Some genes/markers, on the other hand, may affect spe-
cific traits differentially under various conditions [55].

Our findings suggested that genomic prediction is 
a helpful tool for predictive characterization of wheat 
genotypes, permitting phenotyping to be limited to a 
fraction of the germplasm rather than the whole col-
lection [56–58]. Similarly, Kehel et  al. [59] stated that 
genomic selection can be used within wheat accessions 
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to predict key traits with an accuracy of more than 
0.7, more especially for the traits with high to moder-
ate heritability. Accounting for stratified populations 
is usually carried out by the first five principal compo-
nents as covariates in a prediction model [57, 60, 61]. As 
expected, a significant population structure was iden-
tified in the Iranian wheat landraces, with the first five 
eigenvalues accounting for 30.5% of genetic diversity. 
The population structure indicated a negative effect on 
performance in GWAS and GP models, which was also 
exhibited in other researches [61, 62]. Of our observa-
tions, the highest prediction accuracy was achieved 
via the gBLUP model. Shabannejad et  al. [18] evalu-
ated classic approaches for exploiting GP accuracy by 
BRR, gBLUP, rrBLUP models in normal and drought 
environments in wheat cultivars and landraces. They 
identified the highest GP accuracies via the gBLUP 
and BRR method. The authors observed that obtaining 
the highest GP accuracy depends on the genetic varia-
tion, genetic architecture of trait, level of LD, and the 
genomic selection approach. As a result, the gBLUP 
model can detect genetic impacts in wheat populations 
better than other genomic prediction models.

Conclusion
MTAs are the key elements to detecting genomic regions 
related to wheat agronomic traits under drought stress. 
The current experiment found 29 and 30 highly signifi-
cant MTAs under normal and drought conditions. The 
markers detected would be useful genomic sources for 
cloning and fine mapping of underlying genes, and for 
conducting gene introgression and marker-based selec-
tion in wheat under normal and drought conditions. 
A further research attempt is needed for validating the 
markers detected in the current project using a larger 
wheat population.

Methods
Plant material and experimental conditions
A field research effort was performed in two growing sea-
sons (2018-19 and 2019-20) under rain-fed (drought) and 
well-watered (normal) conditions at the research farm, 
University of Tehran, Iran. In this study, 90 cultivars and 
208 landraces (Table S2) of wheat were investigated in 
an alpha-lattice experiment with two replications. The 
wheat accessions were cultivated in the plots including 
four rows (1*1 m2) at 0.5 m intervals. In the well-watered 
crops, the threshold of irrigation was regarded based 
on 40  mm evaporation from a standard pan. The refer-
ence crop evapotranspiration [ET0 = Epan× Kpan; where 
Kpan is a pan coefficient (0.8) for each month and Epan is 
the evaporation depth from the pan surface (40  mm)] 
and crop coefficient [KC] were estimated to measure 

evapotranspiration (ETC = KC × ET0) [63]. The time of 
irrigation was determined from the ratio of the assigned 
water for 1400 m2 (the cultivation area of total genotypes 
in two replications) to water discharge (10.8 m3/h). The 
volume of water required for each hectare (m3/ha) was 
calculated via the depth of ET0 (mm) multiplied by ten. 
The rain-fed crops were exposed to rainfall, which was 
the only accessible water source. The monthly rainfall 
pattern for the growing seasons is represented in Table 
S3. At the maturity stage, 20 plants were harvested from 
the middle rows of plots to measure traits, including 
spike fertility (ratio of grain number to spike weight), 
thousand-kernel weight (g), grain yield (g per plant), 
grain number per spike, spike weight (g), spike harvest 
index (ratio of spike grain weight to spike weight, %), 
spike area (cm2), and plant height (cm).

GBS analysis
To sequence wheat accessions, this experiment followed 
the procedure as explained by Alipour et al. [29] to estab-
lish the GBS libraries. After trimming reads to 64 bp and 
categorizing them, single nucleotide polymorphisms 
were discovered by internal alignment. SNPs were called 
through the UNEAK GBS pipeline, where SNPs with low- 
allele frequency < 1% and low-quality scores < 15 were 
discarded to reduce false positives. The SNP imputation 
process was implemented by available allele frequencies in 
BEAGLE V.3.3.2 [64]. The LD was calculated by the TAS-
SEL V.5 [65]. The W7984 reference genome was adopted 
in the recent study because of fulfilling the highest accu-
racy of imputation among the wheat references [30].

Structure of wheat population
Population structure in the Iranian wheat accessions 
was revealed by STRU​CTU​RE V.2.3.4. In this software, 
the parameters were set at 30,000 burn-in periods, with 
30,000 MCMC iterations after burn-in [66]. To per-
mit the picking up of repetition with the highest value 
of Ln likelihood, 10 replications were run for K values 
of 1 to 10. By using TASSEL software, genotypic data of 
wheat accessions were imputed [67]. Moreover, princi-
pal component analysis (PCA) was conducted to verify 
the STRU​CTU​RE outcome. To determine the accession 
relationships, a neighbor-joining analysis was carried 
out by TASSEL V.5. Linkage disequilibrium (LD) was 
determined through R2 value, squared allele frequency 
correlation, from which the significant allele pairs were 
estimated by 1,000 permutations.

Trait mean‑based GWAS (pGWAS)
The mixed linear model (MLM) was followed to estimate 
the marker impacts on the wheat population. The gen-
eral linear model was conducted by population structure 
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matrix (Q) integrated as a covariate for correcting the 
effect of subpopulations. The mixed linear model was 
performed by both the family structure matrix (Kinship, 
K) and Q for controlling both errors of type I and II. The 
association mapping was implemented using MLM func-
tions of TASSEL V.5. To correct for multiple test, a false 
discovery rate was utilized to declare significant MTAs 
[66, 68]. For a better answer in the recent study, only the 
outcomes of the MLM procedure were given. There are 
several methods to determine the threshold in GWAS and 
all of them have some advantage and disadvantage. But, 
the most important thing is confirming the results using 
further analysis. Here the threshold -logP > 3 was consid-
ered to find higher number of significant SNPs and iden-
tify the important ones using GO and pathway analysis. 
While from the threshold of -logP > 5 was considered to 
identify very significant and important SNPs. To explore 
associations between genotype and phenotype, a Manhat-
tan plot was obtained using the CMplot package [69].

Breeding value‑based GWAS (eGWAS)
Three methods rrBLUP [70], BRR [71], and gBLUP [72] 
using the Intelligent Prediction and Association Tool (iPat) 
software were used to obtain the breeding values. A mixed 
linear model (MLM) was used to estimate the effects of 
markers using breeding values on wheat populations [9].

Annotation of putative candidate MTAs
The ensemble-gramene database was employed to extract 
the molecular and biological functions of SNPs in the gene 
ontology by using the IWGSC RefSeq V.2.0, which has 
been provided for the Chinese Spring [http://​www.​grame​
ne.​org/]. Furthermore, the significant SNPs were analyzed 
via KOBAS version 2.0 for gene ontology enrichment anal-
ysis in KEGG [https://​www.​genome.​jp/​kegg/].

Genomic prediction strategies
GP was calculated by various approaches: BRR [71, 73], 
gBLUP [72, 73], and rrBLUP [70, 73]. All of the analyses were 
performed by iPat [74]. For the population, 20% of genotypes 
were assigned randomly to a validation set and all of the 
residuals were utilized as a training set. This process was reit-
erated 100 times for all of the prediction approaches. The GP 
accuracy was calculated as Pearson’s correlation (r) between 
BLUPs and GEBVs over the validation and training sets [75].

Statistical analysis
The descriptive statistics and correlation analysis were 
implemented by R V.4.1 using the dplyr, ggpubr, psych, 
and ggplot2 packages. Heatmap analysis was carried 
out using heatmap.2 function in gplots R package to 
classify wheat accessions.
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