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Abstract 

Expansions of short tandem repeats (STRs) cause many rare diseases. Expansion detec-
tion is challenging with short-read DNA sequencing data since supporting reads are 
often mapped incorrectly. Detection is particularly difficult for “novel” STRs, which 
include new motifs at known loci or STRs absent from the reference genome. We 
developed STRling to efficiently count k-mers to recover informative reads and call 
expansions at known and novel STR loci. STRling is sensitive to known STR disease loci, 
has a low false discovery rate, and resolves novel STR expansions to base-pair position 
accuracy. It is fast, scalable, open-source, and available at: github.​com/​quinl​an-​lab/​STRli​
ng.

Background
Short tandem repeats (STRs), are 1–6 bp repetitive DNA sequences that com-
prise ~3% of the human genome and are highly polymorphic, with mutation rates 
10–100,000 times higher than other loci [1]. At least 48 STR expansions cause Men-
delian human diseases, such as Huntington’s disease and spinocerebellar ataxia (SCA) 
[2]. Disease mechanisms include polyglutamine aggregation, RNA toxicity, altered 
methylation, and repeat-associated non-ATG translation [3]. STR variation has also 
been associated with autism, intelligence, depression, and schizophrenia risk [4–8]. 
Supporting a mechanistic link, STR variation has been associated with expression 
levels of nearby genes [9]. Modern DNA sequencing has enabled new software to 
characterize STR variants at known loci. However, several recently discovered patho-
genic STR loci or alleles, including STR expansions implicated in cerebellar ataxia, 
neuropathy, and vestibular areflexia syndrome (CANVAS); Baratela-Scott syndrome; 
and several forms of familial adult myoclonic epilepsy (FAME) and SCA (Additional 
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file 1: Table S1) [10–14], are “novel” in that they include new repeat units at annotated 
STR loci, or new STR loci where the sequence is completely absent from the reference 
genome. For example, in CANVAS, the non-pathogenic AAAAG STR found in the 
reference is replaced by an AAGGG repeat, which, when expanded, causes disease. In 
Baratela-Scott syndrome, the pathogenic expansion occurs within a 238-bp non-STR 
insertion relative to the reference genome. Finding a novel STR may indicate that the 
reference was generated from an individual with an alternate haplotype, or that an 
error occurred in the assembly of the reference genome.

Typically, researchers aim to discover a disease-causing variant in a single patient, 
or occasionally a small cohort of individuals with similar symptoms. When presenting 
with symptoms typically associated with a disease caused by STR variants, patients 
may have been screened for relevant common STR disease expansions. Genotyp-
ing STR expansions using established laboratory techniques such as conventional or 
repeat-primed polymerase chain reaction (PCR), Southern blot, capillary, or pulse-
field gel electrophoresis is expensive and time-consuming, requiring locus-specific 
assay development. Some phenotypes may be caused by one of several SNV and STR 
variants, such that even disease panels may still miss causal STR expansions [15]. 
Increasingly, researchers are moving to genome sequencing, which is often more eco-
nomical and may yield a faster diagnosis [16]. While long-read sequencing strategies 
like PacBio and Oxford Nanopore are increasing in popularity, they are still prohib-
itively expensive for large-scale genomic studies. Additionally, we need methods to 
analyze the many short-read genomes of patients with unsolved rare diseases.

Several existing methods are capable of genotyping STR alleles shorter than the 
length of typical Illumina reads, including LobSTR, HipSTR, and RepeatSeq [17–19]. 
However, the pathogenic allele size for most known STR disease loci exceeds the 
limits of these methods [3]. More recently, several methods have been developed to 
detect STR alleles greater than the read length: ExpansionHunter, STRetch, exSTRa, 
GangSTR, and TREDPARSE [20–25]. While these methods are effective in detecting 
pathogenic STR expansions at known loci, they all require knowledge of annotated 
STR loci. Consequently, they are limited to detecting expansions solely of known 
STRs, missing novel loci.

Another recently developed method, ExpansionHunter Denovo [26], can also detect 
expansions in novel STRs. ExpansionHunter Denovo claims to predict the position of 
novel STR expansions to approximately 500–1000 bp accuracy [27]. Rather than esti-
mating allele sizes, it provides STR counts as a proxy for allele size for long alleles only. 
ExpansionHunter Denovo can perform either case-control or outlier analysis rather than 
individual-level results, with the user providing controls.

Moving beyond variant discovery to variant prioritization, filtering for variants that 
are rare in the population has been shown to be a powerful strategy to prioritize path-
ogenic SNVs and short indel variants in patients [28]. This has led to the use of large 
population databases such as gnomAD to enhance the analysis of patient genomes 
[29]. For known pathogenic STR loci it is frequently observed that pathogenic alleles 
are typically much larger than those found in unaffected individuals [3]. Bringing 
together these two approaches, outlier analysis enables the discovery and prioritiza-
tion of loci across the genome with a larger allele in the affected individual compared 
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with the rest of the population. This approach has been shown to be successful for 
prioritizing known pathogenic loci using the STRetch algorithm [22].

Here, we introduce STRling, software capable of detecting both novel and reference 
STR expansions, including pathogenic STR expansions. It calls alleles both within the 
read length and greater than the read length. It is capable of accurately detecting the 
genomic position of expansions. It can also quickly discover and jointly call STRs in 
thousands of individuals, then prioritize alleles that are large outliers in a given indi-
vidual. STRling is open source and freely available under the MIT license at https://​
github.​com/​quinl​an-​lab/​STRli​ng [30].

Results
STRling uses k‑mers to detect novel and reference STRs

When aligning short-read DNA sequences, reads arising from STR expansions are 
frequently mismapped or unmapped. Reads containing substantial STR content will 
tend to map to the position in the reference genome with the longest matching repeat; 
we define such loci as STR “sinks.” These long perfect repeat tracts act as sinks to 
which STR-containing reads disproportionately map. However, because STRs occur 
throughout the genome, the longest locus is unlikely to be the one from which that 
read truly originated. Because of their large edit distance compared to the reference 
sequence, reads containing novel STR expansions are likely to be left unmapped. This 
problem is exacerbated for novel STRs; because these loci do not exist in the refer-
ence genome, there is no matching sequence to which to align the read. For this rea-
son, STRling uses k-mer counting to find all the reads with substantial STR content. 
Once these candidate reads are collected, it then uses their well-mapped “mates” to 
assign them to their correct locus.

STRling uses an aligned BAM or CRAM file as input and scans candidate reads 
(those that differ from the reference genome, are aligned to known STR regions, or are 
unmapped) for k-mer content. STRling does not scan reads that align perfectly (i.e., 
without mismatches, indels, or clipping) to a non-STR region of the reference genome, 
as these reads are unlikely to contain high STR content. In each candidate read, STRling 
counts the number of non-overlapping k-mers from two to six bp. Non-overlapping 
k-mers are better suited to the task of finding tandem (back-to-back) repeats than the 
overlapping k-mers commonly used in assembly algorithms. This is done by scanning 
along the read k bp at a time, then counting the number of times each unique k-mer 
was observed (Fig. 1A). To retain sensitivity in the case of interruptions to the repeat, 
for example, one or a few bases inserted that would change the phase, STRling creates 
all possible rotations of each k-mer sequence and stores the minimum rotation. It then 
calculates the proportion of the read accounted for by each k-mer. STRling chooses the 
representative k-mer for that read as the one that accounts for the greatest proportion 
of the read (Fig. 1A). If multiple k-mers cover equal proportions, it chooses the small-
est k-mer. If the representative k-mer exceeds a minimum threshold (see the “Methods” 
section), STRling considers the read to have sufficient STR content to be informative for 
detecting STR expansions. STRling does the same for soft-clipped portions of reads to 
find reads that align to the edges of an STR expansion.

https://github.com/quinlan-lab/STRling
https://github.com/quinlan-lab/STRling
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Predicting STR expansion loci

For reads with sufficient k-mer STR content, STRling assumes the mapping position 
to be unreliable and therefore attempts to place the read in its true locus. If the read 
has a well-mapped non-STR mate then STRling uses the mate’s mapping location in 
conjunction with the sample’s median DNA fragment size to relocate the STR read 
and terms these “anchored pairs” (Fig. 1B). If both reads in the pair have high k-mer 
STR content, or one is high k-mer and the other is poorly mapped, then the pair is 
considered unmapped and is recorded as an “unplaced pair” (Fig. 1C).

STRling scans the genome for regions with a cluster of informative anchored and 
soft-clipped STR reads to identify putative STR expansion sites. Anchored STR reads 
are used to approximate the “bounds” of the STR expansion, while soft-clipped STR 

Fig. 1  STRling uses several types of read evidence to infer STR location and size. A STRling performs k-mer 
counting in reads that are soft-clipped, unaligned, or aligned to a large STR in the reference genome. For 
each k-mer of length 2–6 bp, STRling selects the one that covers the largest proportion of the read. If two 
are equal, the smallest is chosen. B Where a pair of reads has one read that maps well to the reference 
genome, and a mate with high STR content, the mapping position of the well-mapped read is used to 
reposition the STR read. These “anchored pairs” aid in refining the location and improve the quantification of 
sequence support for the putative STR. C Different classes of reads are used to support STR alleles of varying 
length. Small alleles, shorter than the read length, can be detected by spanning reads, and typically have 
many spanning pairs. Medium expansions, of a length between the read length and the fragment size, are 
indicated by anchored pairs and few spanning pairs. Soft-clipped reads can be used to infer the precise 
insertion point. Large expansions, those longer than the fragment size, are evidenced by a larger number of 
anchored pairs, as well as contributing unplaced pairs
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reads are used to more accurately define the precise insertion point. When perform-
ing joint-calling, this procedure is done across informative reads from all samples to 
produce a joint estimate of the bounds, requiring that at least one sample contribute 
five reads (by default) for the given bounds to be reported.

Once bounds have been discovered, STRling performs a second, partial pass of the 
BAM/CRAM to extract additional informative reads for each candidate locus: individual 
reads that span the bounds (“spanning reads”) and pairs of reads that span the bounds, 
“spanning pairs” (Fig. 1C).

Estimating allele length

For each individual, STRling uses a combination of spanning reads, anchored pairs, and 
unplaced pairs to estimate the allele sizes at each locus. From simulations, we have veri-
fied that, as expected, the number of anchored pairs is proportional to allele size up to 
the median fragment length of the sample, while the number of unplaced pairs is pro-
portional to the allele size beyond the median fragment length (“Methods,” Additional 
file  1: Fig. S1). These relationships have been previously described [22]. We therefore 
used linear models to estimate allele size from these two classes of reads. We used span-
ning reads to estimate the size of alleles shorter than the read length, if present. If two 
large expansions (greater than the insert size) with the same repeat unit were present 
with the same repeat unit there will be a number of pairs for which both reads are com-
pletely repetitive. In these cases, we may not be able to identify the source position of the 
read pair. Some reads would not be assigned; consequently, we would underestimate the 
size of the allele. However, since many anchored pairs would be present at the edges of 
the event, we would still correctly identify the position of each expansion.

Joint‑calling and outlier detection

STRling can joint-call large cohorts, allowing the comparison of STR loci across individ-
uals (Fig. 2). Its computational efficiency allows the joint-calling of thousands of samples 
in parallel. First, STRling collects informative reads for each sample as described above. 
Then, STRling performs a “joint merge” stage, where candidate STR loci are discovered 
using reads from all samples. By collecting read evidence across samples, this allows 
more accurate inference of the STR’s boundary in the reference genome. Only those loci 
with at least five (by default) supporting reads in at least one sample are reported. Allele 
size estimation is then performed on each sample individually, for each of the loci dis-
covered in the cohort.

For STR diseases with known pathogenic loci and allele sizes, estimating the allele 
length may be sufficient to detect a likely pathogenic variant. For patients without an 
expansion in a known disease STR, strategies are needed to prioritize potential new 
pathogenic variants. Large STR alleles that cause disease are likely to be rare in the gen-
eral population, and also in patient populations with a mixture of phenotypes. Therefore 
STRling looks for alleles that are outliers; that is, they are large in a given subject com-
pared with the alleles observed in a set of other genomes. STRling performs outlier anal-
ysis across the full cohort and a z-score and corresponding p-value are generated (see 
the “Methods” section). These p-values are then corrected for multiple testing within 
each individual. A small p-value indicates that an individual harbors an STR expansion 
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that is rare in the cohort and can be used to prioritize and filter potentially pathogenic 
STR expansions.

STRling detects novel and reference STR disease loci

We ran STRling in both individual and joint-calling modes on 134 subjects with whole 
genome PCR-free, Illumina DNA sequencing. This cohort contains individuals with 
expansions in 14 known STR disease loci, including 83 affected individuals and 11 car-
riers (Table  1). For Fragile X Syndrome, there were an additional 17 individuals with 
premutations, and 22 unaffected family members with alleles in the normal size range. 
While the majority of the disease STR loci are present in build GRCh38 of the human 

Fig. 2  STRling joint calling workflow. Index: STRling creates an index of the reference genome, recording the 
genomic coordinates where large STRs are observed. These regions act as STR “sinks”, collecting repetitive 
reads. Any reads mapping to these regions, in addition to unmapped reads, are candidates to have arisen 
from a large STR expansion. Extract: STRling counts k-mers to find high STR-content reads, then checks 
the mate to move the read to its correct position. Merge: read evidence is combined across individuals to 
increase the accuracy and uniformity of candidate STR expansion loci. Call: STRling estimates the allele sizes 
using the k-mer count across all reads assigned to a given locus in a linear model. Outlier: STRling checks the 
distribution across all individuals at a given locus, and tests for outliers
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reference genome, the CANVAS pathogenic STRs are new repeat units replacing an 
annotated STR locus, while the DBQD2 STR locus is part of a completely novel insertion 
[11, 12].

When searching for potential pathogenic variants, reasonable filters include the 
removal of homopolymer expansions (see later discussion of the quality of the variants), 
limiting the results to autosomes and sex chromosomes, and excluding both low com-
plexity regions (LCRs) and segmental duplications. Using these filters, the 134 subjects 
tested had a median of 9 (1-252) significant STR expansions each.

Considering those 94 subjects who are affected or carriers for a full mutation, STRling 
was able to detect the pathogenic STR locus for 82 of 94 (87.23%) subjects using “indi-
vidual” calling (Table 1). With “joint” calling, known pathogenic loci in 93 of 94 (98.94%) 
of subjects were detected, while 70 (74.47%) were predicted to be within the pathogenic 
range based on STRling’s predicted allele size. STRling outlier testing identified 83% 
of pathogenic expansions with an adjusted p-value of less than 0.05. The SCA6 expan-
sion was missed by both individual and joint-calling, yet this is expected, given that the 
pathogenic allele in this subject is only 26 bp larger than the reference [22]. SCA6 vari-
ants should be able to be found by methods that look for indels within the read. STRling 
appears to be most sensitive to insertions greater than ~90bp and may struggle to detect 
smaller pathogenic variants given a single genome. However, STRling was able to cor-
rectly identify all pathogenic HD expansions in this cohort (the smallest being 132bp) 
once joint calling and outlier testing was applied (Additional file 1: Fig. S2A). STRling 
failed to predict a pathogenic allele size in the CANVAS, DM2, FTDALS1, and FXS loci. 
Notably, the pathogenic repeat units for FTDALS1 (GGG​GCC​) and FXS (CGG) have 

Table 1  Sensitivity of STRling run on PCR-free Illumina WGS of 94 subjects with alleles of 
pathogenic size at an STR disease locus. Outlier testing was performed against 260 individuals from 
the 1000 genomes project

Novel STR disease loci (not in reference genome) are indicated in bold/underline. Repeat units are reported on the forward 
strand

AD Autosomal dominant, AR Autosomal recessive, XD X-linked dominant, XR X-linked recessive

Disease Inheritance Repeat unit CG% Locus found 
individual 
calling

STRling est. 
> pathogenic 
threshold

Significant 
outlier

N subjects

CANVAS AR AAGGG​ 60 4 (80%) 0 5 (100%) 5

DBQD2 AR CCG​ 100 1 (100%) 1 (100%) 1 (100%) 1

DM1 AD CAG​ 66.7 18 (100%) 18 (100%) 18 (100%) 18

DM2 AD CCTG​ 75 1 (100%) 0 1 (100%) 1

DRPLA AD CAG​ 66.7 2 (100%) 2 (100%) 2 (100%) 2

FRDA AR AAG​ 33.3 26 (100%) 26 (100%) 26 (100%) 26

FTDALS1 AD GGG​GCC​ 100 1 (100%) 0 1 (100%) 1

FXS XD CGG​ 100 11 (68.8%) 0 3 (18.8%) 16

HD AD CAG​ 66.7 11 (84.6%) 13 (100%) 13 (100%) 13

SBMA XR CAG​ 66.7 1 (33.3%) 3 (100%) 3 (100%) 3

SCA1 AD CTG​ 66.7 3 (75%) 4 (100%) 4 (100%) 4

SCA3 AD CTG​ 66.7 2 (100%) 2 (100%) 0 2

SCA6 AD CAG​ 66.7 0 0 0 1

SCA8 AD CTG​ 66.7 1 (100%) 1 (100%) 1 (100%) 1

Total 82 (87.2%) 70 (74.5%) 78 (83.0%) 94
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100% GC content, and previous methods have described a tendency to underestimate 
allele size in high-GC content STR loci [20, 22]. With the exclusion of the FXS locus, 
STRling outlier testing detected over 96% of pathogenic loci. None of the alleles in sub-
jects with verified normal or premutations was predicted to be pathogenic, indicating a 
low chance of false positives. While STRling does not directly report zygosity, we made 
an educated guess by inferring that loci with no spanning reads and no or few spanning 
pairs are likely to be homozygous or hemizygous for a large expansion. When apply-
ing this approach to the true positive probands, 55/69 STRling calls had the expected 
zygosity for the disease mode of inheritance (heterozygous for dominant conditions, 
homozygous for recessive, hemizygous for X-linked in males). We additionally ran 
ExpansionHunter Denovo in outlier mode with each single affected individual against 
the same 260 controls from 1000 Genomes used for STRling. Compared with STRling, 
ExpansionHunter Denovo (EHdn) had similar sensitivity, except at the FXS locus, where 
EHdn showed higher sensitivity (Additional file 1: Table S2).

For most known pathogenic loci, STRling was able to identify the genomic position 
of the expansion to base pair accuracy at most loci (Fig. 3). To quantify how accurately 
STRling identified the bounds of each locus, we compared the STRling call to the ref-
erence positions found in the literature (see the “Methods” section). For individual 
calling, STRling had a mean position error of 25.3 bp (median: 2, range: 0–241). joint-
calling increases locus accuracy by drawing evidence from reads across samples, and 
greatly reduces the mean position error to 6.14 bp (median: 1, range: 0–155), provid-
ing locus resolution that is critical to variant interpretation. The greatest joint-calling 

Fig. 3  STRling shows superior position accuracy at known pathogenic loci. STRling and ExpansionHunter 
Denovo (EHdn) were run on PCR-free Illumina WGS of 134 subjects with known STR disease status, 94 
of which had alleles of pathogenic size (those plotted here). STRling was run on an individual genome 
“Individual calling” or on all 134 genomes together “Joint calling.” EHdn was run with all affected genomes 
together in outlier mode “EHdn affected vs. affected”, or each of the true positives was run in outlier mode 
with a set of 260 unaffected individuals from 1000 genomes “EHdn affected vs. controls.” A locus was 
considered found if an STR expansion with the pathogenic repeat unit was reported within 500bp of the true 
locus. Max position error is the position difference between the known and predicted locus (max of upstream 
and downstream). Zero indicates the predicted position is within or at the bounds of the known locus. 
STRling was able to detect the true locus position to base pair accuracy for most loci, with greater accuracy 
using joint-calling, with greater accuracy than ExpansionHunter Denovo under all conditions tested
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position error was observed at the DM2 locus, which is a complex locus with the form 
(TG)n(TCTG)n(CCTG)n, with CCTG expansions associated with disease. We had only 
one individual in our cohort with DM2, and no soft-clipped read evidence was observed 
for the CCTG expansion. Therefore, joint calling was not able to improve the position 
estimate.

As a comparison to STRling, ExpansionHunter Denovo was run in outlier mode 
with all affected genomes as a single cohort. The resulting mean position error of 713 
(median: 764, range: 328–795, Fig. 3) was more than 30 times larger STRling’s. STRling 
demonstrated lower position error for all tested STR loci, likely because, in contrast to 
ExpansionHunter Denovo, STRling uses the precision of soft-clipped read evidence to 
improve locus resolution (Figs.  1 and 2). Both STRling and ExpansionHunter Denovo 
failed to detect the SCA6 expansion, likely due to its small size (pathogenic expansions 
are >26bp larger than the reference allele).

For 103 of the subjects with known STR disease, we also had orthogonal allele size 
estimates from repeat-primed PCR. It should be noted that while PCR-based methods 
are frequently used in STR disease diagnostics, the accuracy of PCR allele size estimates 
can suffer from stutter and allelic dropout [31, 32]. When comparing STRling allele size 
estimates to those from PCR, STRling tends to systematically underestimate allele sizes, 
especially for larger alleles (Fig. 4). STRling additionally tends to underestimate alleles 
that are close to the read length of ~150bp. Such underestimates are a consequence of 
these alleles being in a “gray area” with respect to typical paired-end sequencing pro-
tocols: they are too large to be frequently captured by a single read that is typically less 
than or equal to 150bp, and they are too small to yield a strong anchored pair signal. 
STRling notably underestimated allele size for the FXS locus, which is a CGG repeat 
expansion (Additional file  1: Fig. S2A). This locus has been previously identified as 

Fig. 4  Allele size estimates from STRling compared with PCR estimates (log-log scale). STR allele size 
estimates from 103 individuals also assayed with PCR. “Expanded” includes all pathogenic allele sizes, in both 
affected individuals and carriers. “Normal” indicates non-pathogenic alleles. The black line indicates x = y, 
equality between STRling and PCR allele size estimates
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problematic for Illumina sequencing and allele size estimation, likely due to its 100% GC 
content [20]. While STRling tends to underestimate large STR expansions, it performs 
sufficiently well around the pathogenic threshold of most STR disease loci to differenti-
ate pathogenic and non-pathogenic alleles (Table 1).

We joint-called these subjects and performed outlier analysis using an additional set 
of 260 subjects from the 1000 Genomes Project, a cohort without known STR disease. 
Each of the true-positive genomes was tested against the set of 260 controls to find outli-
ers. The known pathogenic STR locus was identified as a significant outlier in 83.0% (78 
of 94) subjects (Table 1).

In addition, we used this cohort set out to estimate the false discovery rate (FDR) for 
STRling, assuming that the 260 subjects from the 1000 Genomes Project do not harbor 
any large pathogenic expansions. We performed joint-calling and outlier testing on the 
260 subjects, then filtered the results to known pathogenic STR loci, resulting in 2600 
calls in 10 STR loci (Table 2). There were no expansions detected in the other 22 known 
pathogenic STR loci that we assessed. Of these 2600 calls, 204 were significant, resulting 
in an estimated FDR of 0.078, yielding a highly-specific average of less than one signifi-
cant pathogenic expansion per subject. Of the 204 significant calls, only two alleles were 
estimated to be larger than the pathogenic threshold and most also had evidence of a 
short, likely non-pathogenic allele (reads and read pairs spanning the locus), suggesting 
heterozygosity. Note that because many of these diseases are recessive and/or late onset, 
we would expect some subjects in this cohort to harbor pathogenic STR expansions; 

Table 2  Significant outliers called by STRling in 260 individuals from the 1000 Genomes Project. We 
performed joint-calling and outlier testing, then filtered the results to 32 well-characterized known 
pathogenic STR loci (see the “Methods” section). There were 204 significant STRling calls across ten 
loci (the others had no significant calls), resulting in an estimated FDR of 0.078. Of these, most also 
had evidence of a short, likely non-pathogenic allele (reads and read pairs spanning the locus), 
suggesting heterozygosity

Novel STR disease loci (not in the reference genome) are indicated in bold/underline

AD Autosomal dominant, AR Autosomal recessive, XD X-linked dominant, XR X-linked recessive
a No spanning reads, spanning pairs only

Disease Significant 
outlier

Evidence 
of a short 
allele

Proportion 
significant 
outlier

STRling est. 
> pathogenic 
threshold

Inheritance Notes

CANVAS 12 12 0.0462 0 AR 0.7% carrier fre-
quency [10]

DBQD2 5 5a 0.0192 0 AR

DM2 7 7 0.0269 0 AD Age onset: ~30–40

FRA12A 57 57 0.219 0 AD

FRAXE 7 7 0.0269 0 XR

FRDA 61 61 0.235 1 AR Age onset: 5–25

FTDALS1 33 32 (1a) 0.127 0 AD Age onset: 27–85

FXS 0 N/A 0 0 XD Multiple syndromes 
with varying 
pathogenic size 
thresholds and age 
of onset: FXS 2, 
FXTAS 60–65, POI?

SCA10 8 8 0.0308 0 AD Age onset: 12–48

SCA8 14 14 0.0538 1 AD Age onset: 1–73
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therefore the true FDR is likely to be smaller. We found, 4.6% of individuals were signifi-
cant outliers at the CANVAS locus, which is higher than the previously estimated 0.7% 
carrier frequency [10]. In this case, the outlier test may be complicated by the fact that 
only 18% of individuals harbor the haplotype in which the CANVAS expansion arises.

Long‑reads enable estimates of STRling’s false discovery rate

In an effort to estimate the number of true and false positive STRling calls outside of 
known pathogenic STR loci across the genome, we compared STRling calls made based 
on Illumina sequencing data to STR variants found in long-read HiFi PacBio genome 
assemblies from the same three individuals sequenced by the Genome in a Bottle con-
sortium: the Ashkenazim trio HG002 (son), HG003 (father), and HG004 (mother) [33]. 
The original sequencing depth was ~300×, so we subsampled the Ashkenazim trio 
Illumina sequencing to a more typical ~30× depth to be comparable to other samples. 
We performed STRling joint-calling of these three individuals in conjunction with 260 
controls and tested for outliers. We limited our analysis to STRling calls with a mini-
mum estimated insertion of 20 bp on the canonical chromosomes (chr 1-22, X, Y), and 
excluded STRling calls that overlapped an annotated segmental duplication, telomere, 
centromere, or low complexity region (LCR).

We called variants from PacBio HiFi assemblies of the same individuals, filtering to 
insertions greater than 10 bp. For each STRling call, we selected the closest PacBio call 
within 500 bp. A STRling call was considered a true positive if the most frequent k-mer 
in the PacBio insertion matched the STRling repeat unit, or if the STRling repeat unit 
made up at least 50% of the PacBio insertion. All other STRling calls were considered 
false positives if they were overlapped by at least one PacBio contig.

Across all three individuals, we observed 1030 true positives and a raw false discovery 
rate (FDR) of 0.47 across all loci given the above filters (Additional file 1: Table S3). False 
positives were enriched among homopolymers, with 1 bp repeat units making up 94.6% 
of all false positives. When excluding homopolymers (i.e., 2–6 bp repeat units), the FDR 
is reduced to 0.17. Furthermore, for significant outlier STR loci of all repeat units with 
adjusted p-values less than 0.05, the FDR was 0.48, and 0.16 for significant 2–6 bp loci. 
Once restricted to 2–6 bp loci, limiting to outliers did not substantially reduce the aggre-
gate FDR. However, given the small numbers (10–12 false positives per individual), we 
expect that increasing the sample size may reveal a lower number of false positives in the 
outliers. Estimated FDR did not vary substantially across allele sizes (Additional file 1: 
Fig. S2B).

As de novo STR expansions in a proband are prioritized in studies of rare human dis-
ease, we further examined the Ashkenazim trio for non-homopolymer de novo variants. 
For each of the 56 significant outlier expansions predicted by STRling in the child that had 
been confirmed by PacBio and had calls in both parents, we tested for Mendelian concord-
ance or violation in the parents and then checked for supporting evidence in the long-read 
contigs. For 21 (38%) of these loci, there were one or more missing PacBio contigs in one 
of the parents that prevented us from validating the de novo call. For the remaining 35 loci, 
66% (21/32) of the expanded loci that were concordant between the child and both parents 
were supported by the long-read assemblies. In contrast, none of the 14 apparent de novo 
variants called by STRling were corroborated by PacBio; long-read evidence suggested that 
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they were inherited. The main cause of invalidation of STRling de novo calls was the pres-
ence of an expansion in one or both of the parents that were found by PacBio but missed 
by STRling. This indicates that while overall STRling calls were more often concordant 
between parent and child, STRling de novo calls were highly enriched for errors. While the 
FDR for apparent de novo changes was high, only 69 significant non-homopolymer expan-
sions were called in the child, demonstrating a low genome-wide false positive rate. There-
fore, when searching for a pathogenic variant in the context of rare disease, STRling reports 
a relatively small number of candidate variants.

Scaling up: locus discovery and algorithm resource requirements

We ran a STRling joint calling on 1000 high-coverage WGS from the 1000 Genomes pro-
ject. For 2–6 bp repeat unit loci with variants at least 50 bp larger than the reference, we 
observed expansions in 1549 known and 650 novel STR loci. To explore the impact of sam-
ple size on joint calling, we randomly ordered then sampled genomes, recording the num-
ber of distinct STR loci that were variable. As sample size increased, so did the number 
of variable STR loci discovered, with far more reference than novel loci at all sample sizes 
(Additional file 1: Fig. S4A). There is some indication in the plot of an approaching pla-
teau, however, that has not yet been reached in the sample size presented. We addition-
ally explored the effect of cohort size on outlier testing. We performed the full joint-calling 
workflow on 20, 100, 200, 500, and 1000 genomes. Increasing cohort size did increase the 
number of significant outliers reported per individual. After filtering to 2-6 bp repeat units 
in outside highly repetitive regions (LCRs, segmental duplications, centromeres, and tel-
omeres) this amounted to an average of 10.2 significant outliers in a cohort of 20 compared 
with 33.6 in a cohort of 1000 (Additional file 1: Fig. S4B).

We ran STRling joint-calling on the 260-individual subset of the 1000 Genomes Project 
samples used as controls above. The analysis took 373 CPU hours, for an average of 1.43 
h per sample (Additional file 1: Fig. S5A). The longest task was the “extract” stage, which 
finds informative reads and counts k-mers in them (mean: 64.1 min). The max RAM 
usage occurred during the joint merge stage (29.04 GB) and the joint outlier stage (27.05 
GB, Additional file 1: Fig. S5B). Across stages that run on a single sample, the max RAM 
usage was 2.047 GB. In contrast, the ExpansionHunter Denovo “profile” stage (analogous 
to STRling’s “extract” stage) typically requires less than 40 min and less than 1 GB RAM 
(Additional file 1: Fig. S6A-B). While STRling requires higher resource requirements than 
EHdn, STRling provides greater position accuracy and allele size estimates, both of which 
require assessing additional reads.

STRling’s most resource-intensive stage, “merge,” is also dependent on the number of 
samples, scaling at approximately 0.1 GB per genome (Additional file 1: Fig. S5C-D). Addi-
tionally, as more individuals are tested, an increasing number of variant STR loci are discov-
ered (Additional file 1: Fig. S5E). This number does appear to begin to plateau at thousands 
of individuals.

Discussion
STRling has the potential to go beyond the diagnosis of known STR disease, to dis-
cover new STR loci from existing short-read sequencing data with positional accu-
racy. At pathogenic loci, STRling has high sensitivity (83% for the outlier test), similar 
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to ExpansionHunter Denovo, except for the Fragile-X Syndrome locus. Critically, 
STRling was typically able to identify the genomic coordinates of STR expansions to 
base pair accuracy, in contrast to ExpansionHunter Denovo, which was typically off 
by more than 700 bp. Position accuracy is vital to interpretation and validation, espe-
cially for novel STR loci that have not previously been identified.

While we estimate STRling’s false discovery rate to be 0.078 for pathogenic STR 
loci, some of these individuals may be carriers of recessive alleles or are below the 
typical age of symptom onset. Therefore, the true rate at which it detects expanded 
alleles may be lower. For non-pathogenic 2–6 bp STR expansions, STRling’s FDR after 
recommended filters was 0.17, which is similar to the best-performing SV callers [34]. 
STRling showed limited accuracy for estimating the size of the STR allele, especially 
for alleles exceeding the insert size. This is a limitation of using short-read sequencing 
data to detect events larger than the read length.

Other than ExpansionHunter Denovo, STR-calling methods capable of calling large 
expansions, such as Expansion Hunter, gangSTR, and STRetch, only call reference 
STRs [21, 22, 24]. This is a key advantage of STRling. It does not rely on the repeat 
unit being present in the reference genome, and therefore is of particular value where 
individuals carry haplotypes that differ from the alleles found in the current reference 
genome. We found 650 variable novel loci in a subset of the 1000 Genomes, account-
ing for ~30% of expansions >50 bp in that cohort. While the T2T-CHM13 reference 
may contain many STR loci missing from GRCh38, repeat units often differ between 
individuals at the same locus (e.g., CANVAS), so having a complete reference is not 
sufficient to measure all novel STRs [35, 36].

STRling has been developed to scale to thousands of samples. It typically runs in 
less than 2 h per genome with less than 30 GB peak memory usage for joint stages 
on 260 samples (scaling at ~0.1 GB per genome) and ~2 GB for individual stages. We 
provide workflows in three languages, Nextflow [37], Bpipe [38], and WDL [39], for 
compatibility with cloud services such as AWS, Google Cloud, and Terra (https://​strli​
ng.​readt​hedocs.​io/​en/​latest/​workf​lows.​html).

Although we have used PacBio long reads as an orthogonal truth set to judge the 
accuracy of STRling STR detection, there are limitations to this approach. Despite 
the enormous promise of long-read sequencing technologies for their ability to span 
repetitive sequences, it has been observed that the number of repeat units can vary 
substantially between long reads in the same individual at the same locus [40]. The 
implication is that it may be difficult to determine the true allele size of an STR, even 
with long reads.

Furthermore, while there are key advantages to using long reads to detect STRs, thou-
sands of individuals with rare diseases have been sequenced with short-read technol-
ogies and remain without a genetic diagnosis. It is likely that a substantial proportion 
of patients without a molecular diagnosis may be harboring pathogenic repeat expan-
sions that are evading detection. This is particularly likely to be the case for rare genetic 
neurodegenerative disease, where STR expansions are a common known cause. Given 
its accuracy and locus specificity, STRling has the potential to contribute to solving the 
roughly half of sequenced rare disease cases that remain unsolved and to deepen our 
understanding of how STRs vary in the wider population [41].

https://strling.readthedocs.io/en/latest/workflows.html
https://strling.readthedocs.io/en/latest/workflows.html
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Conclusions
STRling is a fast and accurate method to detect STR expansions from short-read 
sequencing data. Critically, it can detect novel expansions, those that are missing 
from the reference genome. Several such loci are known to cause human disease. In 
contrast to previous computational methods to detect novel STRs, STRling is capable 
of defining the locus boundaries to base-pair accuracy. STRling is open source and 
freely available at https://​github.​com/​quinl​an-​lab/​STRli​ng.

Methods
STRling algorithm

STRling is open source and freely available under an MIT license at https://​github.​
com/​quinl​an-​lab/​STRli​ng [30]. STRling is predominantly written in the compiled nim 
language using the hts-nim library [42] with outlier analysis written in Python using 
pyranges [43], peddy [44], pandas [45], statsmodels [46], numpy [47], and scipy v1.2 
[48]. Workflows are available in Nextflow [37], Bpipe [38], and WDL [39] (https://​strli​
ng.​readt​hedocs.​io/​en/​latest/​workf​lows.​html).

Identifying and localizing informative reads with k‑mer counting

Illumina reads containing substantial repetitive content are frequently mis-mapped 
or left unmapped by alignment algorithms [49]. The first task is to recover STR-con-
taining reads and determine their most likely genomic origin. STRling first makes an 
index of large uninterrupted STR loci in the reference genome, by searching for per-
fect repeats in 100 bp windows, sliding by 60 bp at a time. Reads aligning to these 
STR “sink” regions are considered to have unreliable mapping locations. In the 
extract subcommand, STRling performs k-mer counting to identify STR content on 
reads aligning to STR regions, reads that are unmapped or have low mapping qual-
ity (MAPQ less than 40), and in the portions of reads that are soft-clipped. STRling 
counts k-mers of size 2–6 bp, sliding by k to generate non-overlapping k-mers. For 
each k-mer we perform all possible rotations and store the minimum. This enables 
us to retain sensitivity in the case of interruptions to the repeat that would change 
the phase. K-mers are represented as integers to avoid string comparisons, thereby 
increasing speed. A read is considered informative if any k-mer makes up at least 80% 
of the sequence by default. The most frequent k-mer is taken to be the representative 
repeat unit of that read. If that k-mer is a homopolymer (e.g., AA) then the repeat 
unit is reported to be a single base pair.

We consider the alignment location of high STR content reads unreliable. There-
fore, STRling uses paired information to localize these reads where possible. Specifi-
cally, if a read contains at least 80% STR content and has a well-mapped mate (MAPQ 
> 40 and non-repetitive), STRling uses the mapping position of the mate to relocate 
the STR read to a position that is the median fragment length away in the direction 
concordant with the orientation of the mate. This is called an “anchored pair” (Fig. 1). 
The empirical fragment length distribution is determined for each sample individu-
ally. If the mate does not have sufficient mapping quality to be used to relocate the 

https://github.com/quinlan-lab/STRling
https://github.com/quinlan-lab/STRling
https://github.com/quinlan-lab/STRling
https://strling.readthedocs.io/en/latest/workflows.html
https://strling.readthedocs.io/en/latest/workflows.html
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STR read, then the STR read is considered unmapped. If both reads exceed the STR 
content threshold then the pair are both considered unmapped and are recorded as 
an “unplaced pair” (Fig. 1).

Identifying STR loci

STRling bins informative STR reads by their representative k-mer then scans across 
them in genomic order looking for clusters of informative reads that may indicate an 
STR locus. To be considered, a position must have, by default, at least five informative 
reads, with at least one of those being anchored reads. The median center position of the 
reads is calculated; any reads that are more than the 98th percentile of the fragment dis-
tribution + 100 bp away from the center are removed, and any new reads within range 
are added. The process is repeated until the position stabilizes or a left clip is discovered, 
indicating a distinct STR locus. The “left” and “right” bounds of the putative locus are 
estimated using the edges of soft-clips, or if none are present, the center of the anchored 
reads.

For joint-calling, locus discovery is performed using reads from all samples using the 
merge subcommand, and the resulting positions are provided to the call subcommand 
for individual genotyping. By default, STRling discards any loci where less than five of 
these reads come from the same sample. The call subcommand additionally performs 
locus detection on any reads that cannot be assigned to the provided loci so that expan-
sions present in an individual genome can still be detected if joint-calling is performed 
on a different sample set.

Estimating allele length

STRling collects additional read evidence for each identified STR locus: reads that com-
pletely span the STR locus (“spanning reads”) and pairs of reads representing a fragment 
that spans the locus (“spanning pairs,” Fig. 1). Spanning reads are used to determine if an 
allele shorter than the read length is present at that locus, the size of which can be esti-
mated by taking the average indel size over the locus in all spanning reads.

To estimate the size of alleles greater than the read length, STRling counts the number 
of STR k-mers in all anchored and overlapping reads assigned to that locus. As an exper-
iment, we edited the reference genome at the Huntington’s Disease (HTT) locus to add 
300 alleles of varying length between 0 bp (reference allele) and 1800 bp insertion then 
simulated paired end reads using an empirical insert-size distribution. We found that the 
simulated allele size was well predicted by the number of anchored reads, or the sum of 
the k-mers in those anchored reads, up to the median fragment length (Additional file 1: 
Fig. S1). Beyond the median fragment length, the number of unplaced pairs predicted 
the allele size. We fitted a linear model to the simulated data and then applied the rela-
tionship to new samples to estimate the allele size.

Outlier detection

STR counts for each locus are normalized by the local sequencing depth to account for 
differences in library sizes between samples and local sequencing variations.

log2( (sum_str_counts + 1) / local_depth)
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At each locus STRling tests if the normalized log2 counts for that sample is greater 
than the median normalized log2 counts for all samples. STRling generates z-scores 
using the median and standard deviation of the normalized counts and correspond-
ing one-sided p-values, similarly to previously described outlier scores [22]. These are 
adjusted for multiple testing across all loci in a given sample using the Benjamini-Hoch-
berg method [50]. A locus is considered significant if the adjusted p-value is < 0.05.

Validation

Detecting expansions in novel and reference STR disease loci

We ran STRling on 134 Illumina PCR-free whole genomes of individuals with known 
STR disease loci including some unaffected carriers. This cohort had expansions in 14 
known STR disease loci, including 83 affected individuals and 11 carriers (Table 1). For 
FXS there were an additional 17 individuals with premutations, and 22 unaffected family 
members with alleles in the normal size range. Most of these individuals have been pre-
viously described [12, 20–22]. In addition, we included five individuals with CANVAS, 
one with SCA8, and one with DBQD2.

An STR disease locus was considered found if STRling reported a locus with the dis-
ease-causing repeat unit, within 500 bp either side of the position reported in the litera-
ture. The set of known STR disease loci that we interrogated can be found in the STRling 
repository at https://​github.​com/​quinl​an-​lab/​STRli​ng/​blob/​master/​data/​hg38.​STR_​
disea​se_​loci.​bed. The position error is the distance in base pairs of the STRling call from 
the position found in the literature. If the STRling call was within the true locus it was 
given a value of zero. The upstream and downstream sides of the locus were compared 
separately, then the maximum of these values was taken to be the position error for that 
locus. The same method was used to evaluate ExpansionHunter Denovo calls.

Comparison to other novel STR detection methods

We ran ExpansionHunter Denovo v0.9.0 [26] in outlier mode on the same 134 genomes 
used to validate STRling (see above), referred to as “EHdn affected vs. affected”. Addi-
tionally, each sample was run in outlier mode with a set of 260 unaffected controls, 
“EHdn affected vs. controls” (full workflow: https://​github.​com/​hdash​now/​longS​TR/​
blob/​master/​EHdn_​1vsCo​ntrols.​groovy). The commands used were:

ExpansionHunterDenovo profile --reads $input.cram --refer-

ence Homo_sapiens_assembly38.fasta --output-prefix $sample

ExpansionHunterDenovo merge --reference Homo_sapiens_

assembly38.fasta --manifest $input.manifest --output-pre-

fix all

python outlier.py locus --manifest $input.manifest --mul-

tisample-profile $input.json --output $output.tsv

An STR disease locus was considered found if ExpansionHunter Denovo reported 
a locus with the disease-causing repeat unit, within 500 bp either side of the position 
reported in the literature.

https://github.com/quinlan-lab/STRling/blob/master/data/hg38.STR_disease_loci.bed
https://github.com/quinlan-lab/STRling/blob/master/data/hg38.STR_disease_loci.bed
https://github.com/hdashnow/longSTR/blob/master/EHdn_1vsControls.groovy
https://github.com/hdashnow/longSTR/blob/master/EHdn_1vsControls.groovy
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Comparison to long reads: Ashkenazim trio

Illumina reads from the 300X Ashkenazim trio were downloaded from Genome In 
a Bottle (https://​github.​com/​genome-​in-a-​bottle/​giab_​data_​index​es), aligned with 
BWA MEM, and subsampled to approximately 30X using samtools view -h -C 
-s for a final mean sequencing depth of HG002 (son) 30.01X, HG003 (father) 33.20X 
and HG004 (mother) 33.96X.

We obtained assemblies of HiFi reads from the same Ashkenazim trio from PacBio. 
Individuals were assembled using PacBio Improved Phased Assembler with default 
settings (see Additional file  1: Supplementary Methods). Contigs were aligned to 
GRCh38 with pbmm2 then variants were called with bcftools mpileup. We then lim-
ited the callset to insertions greater than 10 bp and counted the most frequent 1–6 bp 
k-mer in each. Each STRling call from above was annotated with the closest PacBio 
insertion. We additionally counted the number of times the STRling repeat unit was 
found in the PacBio insertion. Before calculating true and false positives, we removed 
STRling calls overlapping segmental duplications, LCRs, centromeres, and telomeres 
and limited the calls to those on chromosomes chr1-22, X, and Y (excluding others, 
such as alt and decoy contigs). A STRling call was considered a true positive if it had a 
pacbio insertion with a matching most frequent k-mer, or if at least 50% of the PacBio 
insertion was made up of the STRling repeat unit. All other STRling calls with at least 
one overlapping PacBio contig but no matching variant call were considered false 
positives. Code for PacBio alignment, variant calling, k-mer counting, and compari-
son to STRling calls can be found at https://​github.​com/​hdash​now/​longS​TR.

STRling outlier results for the Ashkenazim trio were classified as Mendelian 
matches if the child’s alleles matched inheritance expectations, or Mendelian viola-
tions otherwise (code: https://​github.​com/​laure​lhiatt/​strli​ng-​MV). STRling alleles 
were considered matched if their sizes were within 25% of the parent allele or ten 
bp. Only loci with at least depth of 15 reads and no missing alleles were considered. 
STRling calls were compared to variants called from PacBio assemblies of the same 
individuals. PacBio variants were considered Mendelian matches if both child alleles 
of the designated repeat unit were within 10bp or 25% in size to matched parent 
alleles, and a Mendelian violation if this was not the case. The % difference in allele 
size between each parent-child pair was calculated as such: (parent - child)/parent.
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