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1  |  INTRODUC TION

Sleep apnoea syndrome (SAS) is a common disorder characterized 
by repetitive episodes of oxygen desaturation during sleep, by de-
velopment of daytime sleepiness, and by deterioration of quality of 
life.1,2 SAS is caused by the obstruction of the upper airway, and 

moderate to severe cases of SAS affect 10%–17% of men and 3%–
9% of women aged between 30 and 70 years.3 During sleep, the 
repeated upper airway obstruction in SAS patients can cause seri-
ous recurrent apnoea, and it exposes these patients to alternating 
low oxygen pressure and normal oxygen pressure levels, that is, 
intermittent hypoxia (IH).4 SAS is associated with many systemic 
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Abstract
Sleep apnoea syndrome is characterized by recurrent episodes of oxygen 
desaturation and reoxygenation (intermittent hypoxia [IH]) and is a risk factor for 
insulin resistance/Type 2 diabetes. The induction of insulin resistance in skeletal 
muscle is a key phenomenon to develop diabetes. However, the mechanisms linking 
IH stress and insulin resistance remain elusive. We exposed human RD and mouse 
C2C12 muscle cells to normoxia or IH and measured their mRNA levels by real-time 
RT-PCR. We found that IH significantly increased the mRNA and protein levels of 
muscle-derived insulin resistance-factors (myokines) such as IL-8, osteonectin (ON), 
and myonectin (MN) in muscle cells. We further analysed the IH-induced expression 
mechanisms of IL-8, ON, and MN genes in muscle cells. Deletion analyses of the human 
myokine promoter(s) revealed that the regions −152 to −151 in IL-8, −105 to −99 in 
ON, and − 3741 to −3738 in MN promoters were responsible for the activation by IH 
in RD cells. The promoters contain consensus transcription factor binding sequences 
for OCT1 in IL-8 and MN promoters, and for NRF2 in ON promoter, respectively. The 
introduction of siRNA for OCT1 abolished the IH-induced expression(s) of IL-8 and 
MN and siRNA for NRF2 abolished the IH-induced expression of ON.
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complications, such as obesity, type 2 diabetes,4–7 dyslipidaemia,4,7 
cardiovascular diseases (e.g., hypertension, coronary disease, heart 
failure, and stroke),8 pulmonary hypertension,5,9 neurocognitive 
deficits,10,11 depression,12 and impaired memory.13

Recently, several proteins called myokines, which are exclusively 
or predominantly secreted in muscle tissue, were established as di-
rectly affecting glucose and lipid metabolism.14–16 For example, some 
myokines such as interleukin (IL)-6, IL-8, IL-15, and tumour necrosis 
factor-α (TNFα) were found to express highly in muscles of Type 2 
diabetes patients17 decreasing insulin sensitivity.18 Moreover, newly 
diagnosed Type 2 diabetes and impaired glucose tolerance subjects 
had higher circulating erythroferrone (ERFE)/myonectin (MN) con-
centrations than normal subjects; also, plasma MN is correlated pos-
itively with waist/hip ratio, body fat percentage, triglyceride, fasting 
blood glucose, 2-hour blood glucose after glucose overload, fasting 
insulin, haemoglobin A1c, and with the homeostasis model assess-
ment of insulin resistance.19 However, the IH-induced changes in the 
levels of these myokines in myocytes remain elusive.

In the present study, using muscle cells and an in vitro IH system, 
which is a controlled gas delivery system that regulates the flow of 
nitrogen and oxygen to generate IH, we investigated the direct ef-
fect of IH, a hallmark of SAS, on the gene expression levels of IL-6, 
IL-8, IL-15, TNFα, myostatin (MSTN), brain-derived neurotrophic factor 
(BDNF), IRISIN, Decorin (DCN), secreted protein acidic and cysteine 
rich (SPARC)/osteonectin (ON), ERFE/MN, glucose transporter type 4 
(GLUT4), mitogen-activated protein kinase 14 (MAPK14), phosphatidy-
linositol 3-kinase regulatory subunit β (PI3KR2), and sirtuin 2 (SIRT2). A 
significant increase in the mRNA levels of IL-8, ON, and MN in two 
different muscle cells in response to IH treatment was detected. We 
also showed that the IH-induced upregulation of IL-8 and MN re-
quires octamer binding transcription factor 1 (OCT1) and that the 
IH-induced upregulation of ON requires nuclear factor erythroid 
2-related factor 2 (NRF2) as transcriptional factors.

2  |  MATERIAL S AND METHODS

2.1  |  Cell culture

Mouse C2C12 skeletal myoblasts were purchased from Riken 
BioResource Research Center (Tsukuba, Japan). The cells were 
maintained in Dulbecco's Modified Eagle Medium (DMEM) 
(FUJIFILM Wako Pure Chemical Corporation) containing 10% (v/v) 
fetal calf serum (FCS), 100 units/ml penicillin G (FUJIMILM Wako), 
and 100 μg/ml streptomycin (FUJIFILM Wako). Once a suitable of 
cell proliferation was achieved (90% confluency), the medium was 
changed to the differentiation medium (DMEM containing 2% [v/v] 
horse serum, 100 units/ml penicillin G, and 100 μg/ml streptomycin). 
Human rhabdomyosarcoma RD cells were purchased from the 
Japanese Collection of Research Bioresources Cell Bank (JCRB). The 
cells were grown in Eagle's Minimum Essential Medium (E-MEM) 
medium (FUJIFILM Wako) containing 10% (v/v) FCS, 100 units/ml 
penicillin G, and 100 μg/ml streptomycin. The cells were exposed to 

either normoxia (21% O2, 5% CO2, and balanced N2) or intermittent 
hypoxia (IH: 64 cycles of 5  min of sustained hypoxia [SH: 1% O2, 
5% CO2, and balanced N2] and 10 min of normoxia) using a custom-
designed, computer-controlled incubation chamber attached to an 
external O2-CO2-N2 computer-driven controller (O2 programmable 
control, 9200EX, Wakenbtech CO., Ltd), as described.4,20–24 These 
conditions are similar to those reported in studies involving patients 
with severe SAS, wherein patients are repeatedly exposed to severe 
hypoxemia followed by mild hypoxemia or normoxia (i.e., IH). We 
previously reported that the magnitude of IH expressed by SpO2 
fluctuated between 75%–98% and 50%–80% in SAS,4 which was 
nearly equivalent to the medium condition in the present study.

2.2  |  Real-time reverse transcriptase-polymerase 
chain reaction (RT-PCR)

Total RNA was isolated from C2C12 and RD cells using an RNeasy 
Protect Cell Mini Kit (Qiagen, Hilden, Germany), and cDNA was 
synthesized from the total RNA as template by using a High 
Capacity cDNA Reverse Transcription Kit (Applied Biosystems) as 
described.4,20–25 Real-time PCR was performed using an SYBR® Fast 
qPCR kit (KAPA Biosystems) and a Thermal Cycler Dice Real Time 
System (Takara Bio). All PCR primers were synthesized by Nihon 
Gene Research Laboratories, Inc. (NGRL); the primer sequences 
for each primer set are described in Table  1. PCR was performed 
as follows: an initial step at 95°C for 3 min followed by 40 cycles of 
95°C for 3 sec and 60°C for 20 sec for β-actin, rat insulinoma gene 
(Rig)/RpS15, IL-6, CCL2, IL-8, IL-15, TNFα, MSTN, BDNF, IRISIN, DCN, 
SPARC/ON, ERFE/MN, NOX2, GLUT4, MAPK14, PI3KR2, and SIRT2. 
The mRNA expression levels were normalized to the mRNA level of 
Rig/RpS15 in mouse samples or of β-actin in human samples.

2.3  |  Measurement of IL-8, ON, and MN in culture 
medium by ELISA

RD cells (1 × 105 cells/ml in E-MEM containing 10% (v/v) FCS, 
100 units/ml penicillin G, and 100 μg/ml streptomycin) were seeded 
in 24-well plate. Cells were exposed to either normoxia or IH for 
24 h; the culture medium was collected, and the concentrations of 
IL-8, SPARC (ON), and ERFE (MN) were measured by using an IL-8 
ELISA Kit (Proteintech Group Inc), a Human/Pig Osteonectin EIA 
Kit (Takara Bio), and an Erythroferrone (ERFE) ELISA kit (CLOUD-
CLONE Corp), respectively.

2.4  |  RNA interference

Small interfering RNA (siRNA) directed against human OCT1 and 
NRF2 were synthesized by NGRL. The sense sequences of siRNA for 
human OCT1 and NRF2 were 5′-CCUCGGAAGAGAUCACUAUtt-3′ 
(corresponding to the 1295–1313 of NM_002697.4) and 
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TA B L E  1  PCR primers for real-time RT-PCR.

Target mRNA Primer sequence (Accession number: Position)

Human

GLUT4 5′-CCCCCTCAGCAGCGAGTGA-3′ 
(NM_001042.3: 260–278)

5′-GCACCGCCAGGACATTGTTG-3′ 
(NM_001042.3: 559–578)

MAPK14 5′-CGAGCGTTACCAGAACCTGT-3′ 
(NM_001315.3: 413–432)

5′-GGAGAGCTTCTTCACTGCCA-3′ 
(NM_001315.3: 499–518)

PI3KR2 5′-ATGGCACCTTCCTAGTCCGAGA-3′ 
(NM_005027.4: 1601–1622)

5′-CTCTGAGAAGCCATAGTGCCCA-3′ 
(NM_005027.4: 1707–1728)

SIRT2 5′-CAGACCCCTCTCACCCTCTG-3′ 
(NM_012237.4: 108–127)

5′-GTCATAGAGGCCGGTGGATG-3′ 
(NM_012237.4: 393–412)

IL-6 5′-GGTACATCCTCGACGGCATC-3′ 
(NM_000600.5: 236–255)

5′-GCCTCTTTGCTGCTTTCACAC-3′ 
(NM_000600.5: 294–314)

IL-8 5′-TAGCAAAATTGAGGCCAAGG-3′ 
(NM_000584.4: 683–702)

5′-GGACTTGTGGATCCTGGCTA-3′ 
(NM_000584.4: 868–887)

IL-15 5′-ATGGATGGCTGCTGGAAAC-3′ 
(NM_000585.5: 313–331)

5′-TGCACTGAAACAGCCCAAAA-3′ 
(NM_000585.5: 491–510)

TNFα 5′-CTTCTCCTTCCTGATCGTGG-3′ 
(NM_000594.4: 282–301)

5′-TCTCAGCTCCACGCCATT-3′ 
(NM_000594.4: 529–537)

MSTN 5′-TGGTCATGATCTTGCTGTAACCTT-3′ 
(NM_005259.3: 832–855)

5′-TGTCTGTTACCTTGACCTCTAAAAACG-3′ 
(NM_005259.3: 885–911)

BDNF 5′-CAGGGGCATAGACAAAAG-3′ 
(NM_170735.6: 1682–1699)

5′-CTTCCCCTTTTAATGGTC-3′ 
(NM_170735.6: 1817–1834)

IRISIN 5′-AGGTGCTGATCATCGTCGT-3′ 
(NM_001171941.3: 454–472)

5′-CCTCTGCAGTCCAGGGATT-3′ 
(NM_001171941.3: 679–697)

DCN 5′-CGCCTCATCTGAGGGAGCTT-3′ 
(NM_001920.5: 999–1018)

5′-TACTGGACCGGGTTGCTGAA-3′ 
(NM_001920.5: 1184–1203)

(Continues)

Target mRNA Primer sequence (Accession number: Position)

SPARC/ON 5′-CACGGCAAGGTGTGCGAG-3′ 
(NM_003118.4: 299–316)

5′-AGAAGTGGCAGGAAGAGTCGAA-3′ 
(NM_003118.4: 419–440)

ERFE/MN 5′-AGTCCCGGTGCCAGCGCAA-3′ 
(NM_001291832.2: 904–922)

5′-CGCCCAGGAGGACAGCACTGAA-3′ 
(NM_001291832.2: 1077–1098)

β-Actin 5′-GCGAGAAGATGACCCAGA-3′ 
(NM_001101.5: 431–448)

5′-CAGAGGCGTACAGGGATA-3′ 
(NM_001101.5: 503–520)

Mouse

Il-6 5′-ACAACCACGGCCTTCCCTACTT-3′ 
(NM_031168.2: 139–160)

5′-CAGGATTTCCCAGCGAACATGTG-3′ 
(NM_031168.2: 245–264)

Il-8 5′-CAGAAAGGAAGTGATAGCAGTCCCA-3′ 
(NM_011339.2: 211–235)

5′-CAAAGTGTCTAGAGGTCTCCCGAA-3′ 
(NM_011339.2: 441–464)

Il-15 5′-ACATCCATCTCGTGCTACTTGT-3′ 
(NM_008357.2: 537–558)

5′-GCCTCTGTTTTAGGGAGACCT-3′ 
(NM_008357.2: 629–649)

Tnfα 5′-CCTCCCTCTCATCAGTTCTA-3′ 
(NM_013693.3: 368–387)

5′-ACTTGGTGGTTTGCTACGAC-3′ 
(NM_013693.3: 450–469)

Mstn 5′-ACTGGAATCCGATCTCTGAAACTT-3′ 
(NM_010834.3: 688–711)

5′-GACCTCTTGGGTGTGTCTGTCAC-3′ 
(NM_010834.3: 898–920)

Bdnf 5′-ATTAGCGAGTGGGTCACAGC-3′ 
(NM_007540.4: 1097–1116)

5′-TCAGTTGGCCTTTGGATACC-3′ 
(NM_007540.4: 1180–1199)

Irisin 5′-TGAAGTGGTCATTGGCTTTGC-3′ 
(NM_027402.4: 248–268)

5′-GCGGGTGGTGGTGTTCAC-3′ 
(NM_027402.4: 318–335)

Dcn 5′-GCTGCGGAAATCCGACTTC-3′ 
(NM_001190451.2: 791–809)

5′-TTGCCGCCCAGTTCTATGAC-3′ 
(NM_001190451.2: 831–850)

Sparc/On 5′-AAACATGGCAAGGTGTGTGA-3′ 
(NM_009242.5: 535–554)

5′-AAGTGGCAGGAAGAGTCGAA-3′ 
(NM_009242.5: 658–677)

TA B L E  1  (Continued)

(Continues)
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5′-CCCAUUGAUGUUUCUGAUCUAtt-3′ (corresponding to the 
1097–1117 of NM_006164.5), respectively. The Silencer® Select 
Human Scrambled siRNA was purchased from Ambion® and was 
used as a control. Transfection of siRNAs into RD cells was carried 
out using Lipofectamine® RNAiMAX Transfection Reagent (Life 
Technologies). Cells were transfected with 5 pmol each of siRNA in a 
24-well culture dish as described.20–25

2.5  |  Construction of reporter plasmid and 
luciferase assay

Reporter plasmids were prepared by inserting the promoter frag-
ments of human IL-8 (−1914 to +98, −521 to +98, −194 to +98, −178 
to +98, −152 to +98, −151 to +98, −149 to +98, −147 to +98, −141 
to +98, −133 to +98, −115 to +98, and − 95 to +98), ON (−2702 to 
+145, −997 to +145, −712 to +145, −516 to +145, −105 to +145, −99 
to +145, −92 to +145, −72 to +145, and − 41 to +145), and MN (−3741 
to −221, −3738 to −221, −3729 to −221, −3721 to −221, −3702 to 
−221, −3692 to −221, −3634 to −221, −3582 to −221, −3492 to 
−221, −3249 to −221, and − 3013 to −221) upstream of a firefly lu-
ciferase reporter gene in the pGL4.17[luc2/Neo] vector (Promega). 
The reporter plasmids were transfected into human RD cells using 
Lipofectamine® 3000 (Invitrogen), as described,20–25 and the cells 
were exposed to either 64 cycles/24 h of IH, mimicking the myocytes 
of SAS patients, or to normoxia for 24 h. The cells were harvested, 
and cell extracts were prepared in Extraction Buffer (0.1 M potas-
sium phosphate, pH  7.8/0.2% Triton X-100; Life Technologies). To 
monitor transfection efficiency, we co-transfected pCMV-SPORT-
βgal plasmid (Life Technologies) in all experiments at a 1:10 dilution. 
Luciferase activity was measured using a PicaGene Luciferase Assay 
System (Toyo-ink) and was normalized by the β-galactosidase activ-
ity as described previously.20–25

2.6  |  Data analysis

Results are expressed as mean ± SE. Statistical significance was 
determined by Student's t-test using the GraphPad Prism software 
(GraphPad Software).

3  |  RESULTS

3.1  |  Gene expression levels of IL-8, ON, and MN in 
muscle cells were increased by IH

We exposed human RD muscle cells and differentiated mouse 
C2C12 muscle cells to normoxia or IH for 24 h. After the treatment, 
we measured the mRNA levels of GLUT4, MAPK14, PI3KR2, SIRT2, 
TNFα, IL-6, IL-8, IL-15, MSTN, BDNF, IRISIN, DCN, SPARC/ON, and 
ERFE/MN by real-time reverse transcriptase-polymerase chain 
reaction (RT-PCR). As shown in Figure 1A, IH significantly increased 
the mRNA levels of MSTN, BDNF, IL-8, ON, and MN in the human RD 
muscle cells, whereas IH-specific elevations were not observed in 
GLUT4, MAPK14, PI3KR2, SIRT2, TNFα, IL-6, IL-15, IRISIN, and DCN. 
In mouse C2C12 cells that have differentiated into muscle cells, IH 
significantly increased the mRNA levels of IL-8, On, and Mn, but no 
IH-specific elevations in Mstn and Bdnf were observed (Figure 1B).

Furthermore, we measured the IL-8, ON (SPARC), and MN (ERFE) 
protein levels in the RD cell culture medium by using enzyme-linked 
immunosorbent assay (ELISA), and found that the levels of IL-8, ON, 
and MN were significantly increased by IH: IL-8 (p < 0.0001), ON 
(p < 0.0001), and MN (p = 0.0079) (Figure 2).

3.2  |  Regions essential for the IH-induced IL-8, 
ON, and MN promoter activities are localized

In order to investigate the mechanism by which the mRNA levels 
of IL-8, ON, and MN were upregulated by IH, we prepared the re-
porter plasmids by inserting various lengths of IL-8, ON, and MN pro-
moter fragments upstream of a firefly luciferase reporter gene in the 
pGL4.17 vector, transfected them into RD cells, and measured their 
luciferase activities after IH treatment. As shown in Figure 3A, a de-
letion down to position −152 of the IL-8 promoter region resulted in 
the IH-induced upregulation of the reporter gene expression, but 
an additional deletion to nucleotide −151 attenuated the IH-induced 
promoter activity. Concerning ON promoter, the deletion down to 

Target mRNA Primer sequence (Accession number: Position)

Erfe/Mn 5′-GGTGGATCGGCGTGCGTTG-3′ 
(NM_173395.2: 654–672)

5′-TCCCGGGGTCGTGTTGGTC-3′ 
(NM_173395.2: 830–848)

Rig/RpS15 5′-ACGGCAAGACCTTCAACCAG-3′ 
(NM_009091.2: 343–362)

5′-ATGGAGAACTCGCCCAGGTAG-3′ 
(NM_009091.2: 392–412)

TA B L E  1  (Continued)

F I G U R E  1  The mRNA levels of IL-8, ON, MN, GLUT4, MAPK14, PI3KR2, SIRT2, TNFα, IL-6, IL-15, MSTN, BDNF, IRISIN, and DCN. (A) Human 
RD and (B) differentiated mouse C2C12 cells treated with normoxia, IH, or sustained hypoxia (SH). The mRNA levels were measured by 
real-time RT-PCR and normalized by β-actin for human cells or by ribosomal protein S15 (RpS15) for mouse cells as internal standard. Data 
are expressed as mean ± SE of the samples (n = 4–6). Statistical analyses were performed using Student's t-test. IH significantly increased 
the mRNA levels of IL-8, ON, and MN in both muscle (RD and C2C12) cells. GLUT4, MAPK14, PI3KR2, SIRT2, TNFα, IL-6, IL-15, IRISIN, and DCN 
mRNAs levels in IH-stimulated RD cells were 1.104, 0.9821, 1.007, 1.044, 0.8798, 1.020, 1.099, 1.031, and 1.031-folds against normoxia 
(p = 0.1359, 0.6857, 0.5248, 0.5073, 0.3248, 0.8539, 0.1328, 0.2225, and 0.8294, respectively). The mRNA levels of Tnfα, Il-6, Mstn, and 
Irisin in IH-stimulated differentiated C2C12 cells were 1.185, 0.5283, 0.6559, and 0.7994-folds (p = 0.5533, 0.3395, 0.6559, and 0.3952, 
respectively).
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position −105 caused the IH-induced upregulation of the reporter 
gene expression, but an additional deletion to nucleotide −99 at-
tenuated the IH-induced promoter activity (Figure 3B). Similarly, a 
deletion down to position −3741 of the MN promoter caused the 
IH-induced upregulation of the reporter gene expression, but an 
additional deletion to nucleotide −3738 attenuated the IH-induced 
promoter activity (Figure  3C). These results indicate that the IH-
induced upregulation of IL-8, ON, and MN mRNAs is caused by the 
transcriptional activation of IL-8, ON, and MN genes and that the 
−152 to −151 promoter region of the IL-8 gene, −105 to −99 region 
of the ON gene, and the −3741 to −3738 region of the MN gene are 
essential for the IH-induced promoter activity.

3.3  |  OCT1 and NRF2 are key factors for the IH-
induced upregulation of IL-8, ON, and MN mRNA 
expression levels

To further investigate the mechanism by which IH upregulates 
the IL-8, ON, and MN mRNA levels, we conducted a computer-
aided search for sequences similar to known cis-acting elements 
containing the −152 to −151 promoter region of the IL-8 gene, the 
−105 to −99 promoter region of the ON gene, and the −3741 to 
−3738 region of the MN gene using the TFBIND program (http://
tfbind.hgc.jp). The result showed that the −152 ~ promoter region of 
IL-8 and the −3741 ~ promoter region of MN contained the possible 
OCT1 binding sequences, whereas the −151 ~ promoter region of 
IL-8 and the −3738 ~ promoter region of MN lost the OCT1 binding 
sequences. The −105 ~ promoter region of ON contains a possible 
NRF2 transcription factor binding sequence, whereas there is no 
NRF2 binding sequence in the −99 ~ promoter region.

To investigate whether OCT1 and/or NRF2 were essential for 
the IH-induced upregulation of IL-8, ON, and MN mRNA levels, we 
introduced small interfering RNA (siRNA) s against human OCT1 and 

NRF2 mRNAs into RD cells and analysed the IH-induced mRNA ex-
pression levels of IL-8, ON, and MN by real-time RT-PCR. As shown 
in Figures 4A–C, the IH-induced upregulation of IL-8, ON, and MN 
mRNAs, respectively, were abolished by the human OCT1 and NRF2 
siRNAs. Furthermore, IH-induced upregulation of IL-8, ON, and MN 
in the culture medium were also abolished by the introduction of 
human OCT1 and NRF2 siRNAs (Figures 5A–C). Specifically, the re-
sults indicated that OCT1 is a key factor for the IH-induced upregu-
lation of IL-8 and MN mRNA expression levels and that NRF2 serves 
as an essential factor for the IH-induced upregulation of ON mRNA 
expression.

4  |  DISCUSSION

In this study, we demonstrated that IH exposure induced the increase 
in the IL-8, ON, and MN mRNA levels in muscle cells. Furthermore, 
we elucidated the mechanisms by which IH upregulates the mRNA 
levels of the myokines IL-8, ON, and MN, and we revealed the OCT1- 
and NRF2-mediated transcriptional regulation in IH-stimulated 
myocytes.

The causal mechanisms mediating the association between 
IH and insulin resistance/glucose intolerance are not well estab-
lished; however, augmented dysfunction/inflammation in muscle 
cells might be involved.18,26–30 It is well known that macrophages, 
which infiltrate into muscle tissue, are increased in obese patients, 
resulting in the upregulation of pro-inflammatory cytokines, such 
as IL-8.31 Some mechanisms linking IH stress and muscle tissue 
inflammation have been reported.32,33 Recently, IH was shown to 
induce impairment of muscle tissue, leading to various changes 
in the secretion of inflammatory cytokines called myokines.34 
Myokines, which are bioactive mediators produced and released 
by myocytes, play important roles in many physiological and 
pathophysiological processes that contribute in the modulation 

F I G U R E  2  Concentrations of IL-8, ON, 
and MN in RD muscle cell culture medium. 
RD cells were treated with normoxia or 
IH for 24 h. The (A) IL-8, (B) ON, and (C) 
MN concentrations in the medium were 
measured by ELISA. Data are expressed 
as mean ± SE for each group (n = 12). 
Statistical analyses were performed using 
Student's t-test.
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F I G U R E  3  Localization of the essential 
region for IH-induced IL-8, ON, and 
MN promoter activities. RD cells were 
transfected with constructs containing 
various lengths of promoter fragments 
upstream of a firefly luciferase reporter 
gene in the pGL4.17 vector. After 
treatment with normoxia (N) or IH, the 
luciferase activity was measured. The 
diagram represents relative luciferase 
activities of (A) “-1914” in IL-8, (B) “-2702” 
in ON, and (C) “-3741” in MN in the 
normoxia group. All data are expressed as 
the mean ± SE for each group (n = 4–16). 
*: p < 0.05 vs Normoxia, **: p < 0.01 vs 
Normoxia, ***: p < 0.001 vs Normoxia, and 
****: <p < 0.0001 vs Normoxia. Statistical 
analyses were performed using Student's 
t-test.
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of homeostasis, lipid and/or glucose metabolism, and inflamma-
tion.18,35,36 IL-8, also referred to as chemokine (C-X-C motif) ligand 
8, is a key regulator of monocyte infiltration into skeletal muscle 
and is involved in muscle tissue inflammation and insulin resis-
tance.37–39 In this study, the mRNA levels of IL-8 were significantly 
increased in the IH condition in mouse C2C12 and human RD mus-
cle cells. ON, also referred to as SPARC, is an acidic extracellular 
matrix glycoprotein that plays a vital role in bone mineralization, 
cell-matrix interactions, and collagen binding.40 ON plays a key 
role in obesity-related insulin resistance, and increased levels of 
ON contribute to impaired glucose homeostasis; however, the role 
of ON as a myokine in the IH condition has not yet been fully eluci-
dated.41,42 In this study, ON was produced/secreted by C2C12 and 
RD myocytes in the IH condition. In SAS patients, the circulating 

levels of IL-8 were reportedly elevated,43 and the production of 
IL-8 in monocytes was upregulated.44 ON has also been reported 
to be associated with insulin resistance, dyslipidaemia, and inflam-
mation.42 Overexpression of ON was observed in diet-induced 
obese rats, and ON caused insulin resistance in 3  T3-L1 mouse 
adipocytes.45

MN, also referred to as erythroferrone (ERFE) or C1q/TNF-
related protein isoform 15 (CTRP15), is a pro-inflammatory myokine 
and reported to be associated with insulin resistance.19,46 Recently, 
MN was proposed as a marker of insulin resistance, obesity, and di-
abetes19; however, the relationship between insulin resistance and 
MN expression remains controversial.19,47 Our results demonstrated 
that MN was produced/secreted by RD myocytes in the IH condi-
tion (Figures 1 and 2). In addition, recent studies indicated that MN 

F I G U R E  4  Inhibition of the IH-induced upregulation of the IL-8, ON, and MN mRNAs by transfection of OCT1 and NRF2 siRNAs into RD 
cells. After the introduction of OCT1 and NRF2 siRNAs, RD cells were treated with normoxia or IH for 24 h. The mRNA expression levels 
of (A) IL-8, (B) ON, and (C) MN were measured by real-time RT-PCR and normalized by β-Actin as internal standard. Data are expressed as 
the mean ± SE for each group (n = 4). Statistical analyses were performed using Student's t-test. IH-induced expressions of IL-8 mRNA in 
siOCT1 introduction, of ON mRNA in siNRF2 introduction, and of MN mRNA in siOCT1 introduction were not upregulated (1.409, 0.972, and 
0.6851-fold, respectively).
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gene knockout female mice had larger gonadal fat pads and had de-
veloped mild insulin resistance when fed with a high-fat diet, and 
MN-deficient male mice showed impaired lipid tolerance.48 On the 
basis of our results and of the reported findings, MN may be upreg-
ulated in SAS patients and can lead these patients to develop insulin 
resistance/Type 2 diabetes and dyslipidaemia.49 In addition to IL-8 
and ON, MN is possibly one of the myokines that promote insulin 
resistance in IH condition. There are some reports that upregulated 
myokines (IL-8, ON, and MN) in muscle cells under insulin-resistant 
conditions. Anti-diabetic 5′ AMP-activated protein kinase (AMPK) 
activator 5-aminoimidazole-4-carboxamide-1-beta-d-ribonucleosi
de (AICAR) reduced IL-6 and IL-8 in human skeletal muscle cells.50 
In insulin-resistant condition, ON was upregulated in skeletal muscle 
cells via microRNA-29a downregulation mechanism.51 Plasma lev-
els of MN are associated with insulin resistance in adult humans.52 

Therefore, IL-8, ON, and MN expressed in skeletal muscle cells could 
be involved in IH-induced diabetes and/or insulin resistance.

We investigated the mechanisms by which IH upregulates the 
mRNA levels of IL-8, ON, and MN, and we found that the promoter 
activities of these genes were increased by IH via OCT1 and NRF2. 
This finding suggests that the IH-induced upregulation of IL-8, ON, 
and MN mRNAs is regulated in the transcriptional step.

Interestingly, significant increases in the IL-8, ON, and MN gene 
expression levels induced by IH were observed. The subsequent 
promoter assays indicated that the IH-induced upregulation of IL-8, 
ON, and MN mRNAs was caused by the transcriptional activation 
of these genes. In addition, RNA interference experiments revealed 
that the transcriptional activation of IL-8 and MN by IH required 
OCT1 and that the transcriptional activation of ON by IH needed 
NRF2. Furthermore, we demonstrated that both OCT1 and NRF2 

F I G U R E  5  Concentrations of IL-8, ON, and MN in RD muscle cell culture medium. After introduction of OCT1 and NRF2 siRNA, RD cells 
were treated with normoxia or IH for 24 h. The (A) IL-8, (B) ON, and (C) MN concentrations in the medium were measured by ELISA. Data are 
expressed as mean ± SE for each group (n = 5–6). Statistical analyses were performed using Student's t-test. IH-induced expressions of IL-8 
in siOCT1 introduction, ON in NRF2 introduction, and MN in siOCT1 introduction were not upregulated (p = 0.0773, 0.1465, and 0.7654, 
respectively).
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are essential for the IH-induced upregulation of IL-8, MN, and ON 
mRNA expression levels. The gene expression levels of IL-8, MN, 
and ON, which are expressed in muscle cells, are remarkably upreg-
ulated by IH through the transcription factors OCT1 and NRF2. As a 
computer-aided search revealed that the −152 to −151 region of the 
IL-8 promoter and the −3741 to −3738 region of the MN promoter, 
as well as the −105 to −99 region of the ON promoter, (both promot-
ers are essential for the IH-induced IL-8, MN, and ON transcription) 
include the possible OCT1 and NRF2 transcription factor binding se-
quences; thus, we focused on OCT1 and NRF2 as important players 
in the IH-induced upregulation of IL-8, MN, and ON mRNAs in muscle 
cells.

OCT1, a POU class 2 homeobox1 (POU2F1), transcription factor, 
was among the first identified members of the POU transcription 
factor family.53 The members of this family contain the POU domain, 
a 160-amino acid region necessary for DNA binding to the octameric 
sequence ATGCAAAT.54 Oct1 was reported to function as a sen-
sor for metabolic and stress signals in pancreatic islets.55 Although 
OCT1 expression has not yet been reported in SAS patients or in 
cells in the IH condition, OCT1 could function as an intramuscular IH 
sensor to express IL-8 and MN.

NRF2, which was originally isolated as a homologue of the 
haematopoietic transcription factor NF-E2 p45,56 is the key tran-
scription factor regulating antioxidant response. NRF2 signalling 
is repressed by Kelch-like ECH-associated protein 1 (KEAP1)57 at 
basal condition and is induced by oxidative stress. Most papers re-
porting on the relationship between NRF2 and SAS/IH suggested 
some protective functions of NRF2 in SAS/IH conditions.58–61 
Stress-induced upregulation of ON was reported in vascular 
smooth muscle cells.62,63 It is quite reasonable that the KEAP1-
NRF2 system functions as an intracellular sensor for oxygen and 
oxidative stress in IH condition. As a result, ON transcription could 
be activated by NRF2.

In this study, we observed no elevation of GLUT4 mRNA in IH-
treated human RD cells (Figure  1A). Siquws et al. exposed rats to 
intermittent hypoxia (IH) for 30 days and reported that there is 
no change in the expressions of Glut1 and Glut4 in soleus muscle 
but an increase in the translocation of Glut4 from vesicles to the 
plasma membrane.64 In contrast, Wang et al. exposed rat to IH for 
28 days and reported that the expressions of Glut4 mRNA, total 
Glut4, and plasma membrane protein of Glut4 in skeletal muscle 
were decreased.65 Thus, the effect of IH on Glut4 expression and 
localization seems to be controversial. Bdnf mRNA was elevated in 
IH and further elevated in SH in human RD and mouse C2C12 cells 
(Figure 1A,B). Although there is no report concerning Bdnf elevation 
in IH condition, Bdnf is reported to be a positive-acting myokine that 
is abundantly expressed in slow-twitch skeletal muscle fibres, and 
its beneficial effects in skeletal muscle are mediated through AMPK-
PGC1α-mediated mitochondrial function and β-oxidation.66–69 In SH 
condition, Nagahisa and Miyata reported that the muscle fibre area 
was decreased and mRNA expression of Bdnf was significantly in-
creased in young soleus muscle.70 Therefore, in stress condition (SH 

and/or IH), it is quite possible that muscle cells express Bdnf to main-
tain muscle function and cell numbers. Although the mechanism of 
hypoxia-induced Bdnf expression is interesting, it is not IH-specific 
phenomenon (Figure 1B) and therefore we did not further investi-
gated in this paper.

In this study, we use in vitro IH model to investigate the change 
in gene expression and its molecular mechanism. How similar/differ-
ent to/from SAS patients are problems in in vitro system. Although 
the O2 concentrations of in vitro system is similar to IH patients and 
the in vitro system can examine direct effects of IH excluding effects 
of other organs and cells,71 the results from in vitro system some-
times are different from that occur in SAS patients. Therefore, our 
results obtained in this study indicated a possible occurrence in SAS 
patients and clinical studies using SAS patients are required.

In conclusion, this study revealed that the gene expression levels 
of IL-8, ON, and MN in IH-treated myocytes were increased by OCT1, 
which acts on the −152 to −151 region of the IL-8 promoter and on 
the −3741 to −3738 region of the MN promoter, and by NRF2, which 
acts on the −105 to −99 region of the ON promoter. Our results 
suggest that in SAS patients, the upregulation of IL-8, ON, and MN 
may induce a pro-inflammatory phenotype in muscle tissue, lead-
ing to the development of insulin resistance and decreased insulin 
sensitivity.
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