Skip to main content
. 2022 Dec 15;84:102722. doi: 10.1016/j.media.2022.102722

Table 2.

Quantitative segmentation results of the lung regions on CT slices. The performance is reported as Dice (%), B-Acc (%) and MAE (%). 95% confidence intervals are presented in brackets. We performed experiments with classic segmentation methods such as U-Net (Ronneberger et al., 2015), U-Net++ (Zhou et al., 2019), and cutting-edge methods such as PraNet (Fan et al., 2020a), RBA-Net (Meng et al., 2020a), CABNet (Meng et al., 2020b), GRB-GCN (Meng et al., 2021c) and BI-Gconv (Meng et al., 2021a). Notably, we sampled 120 vertices for CABNet (Meng et al., 2020b) and RBA-Net (Meng et al., 2020a) to construct a smooth boundary.

Methods Metrics
Dice (%)↑ B-Acc (%)↑ MAE (%)↓
U-Net 95.7
(93.2, 97.6)
96.9
(95.0, 98.4)
1.49
(1.12, 1.68)
textitU-Net++ 94.1
(92.2, 96.0)
95.0
(93.2, 97.5)
1.98
(1.56, 2.23)
PraNet 95.2
(94.0, 96.6)
96.0
(95.1, 98.0)
1.55
(1.38, 1.68)
RBA-Net 96.2
(95.2, 98.0)
96.8
(95.9, 98.0)
1.45
(1.29, 1.56)
CABNet 95.4
(93.8, 96.7)
96.4
(94.7, 98.1)
1.60
(1.42, 1.78)
GRB-GCN 96.6
(94.9, 97.9)
96.7
(95.8, 97.9)
1.50
(1.32, 1.68)
BI-GConv 96.3
(94.8, 98.0)
96.5
(94.7, 98.2)
1.52
(1.34, 1.69)