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Abstract

Influenza infection induces lung epithelial cell injury via
programmed cell death. Glutathione, a potent antioxidant, has
been reported to be associated with influenza infection. We
hypothesized that lung epithelial cell death during influenza
infection is regulated by glutathione metabolism. Eight-week-
old male and female BALB/c mice were infected with influenza
(PR8: A/PR/8/34 [H1N1]) via intranasal instillation. Metabolomic
analyses were performed on whole lung lysate after influenza
infection. For in vitro analysis, Beas-2B cells were infected with
influenza. RNA was extracted, and QuantiTect Primer Assay was
used to assess gene expression. Glutathione concentrations were
assessed by colorimetric assay. Influenza infection resulted in
increased inflammation and epithelial cell injury in our murine
model, leading to increased morbidity and mortality. In both our

in vivo and in vitro models, influenza infection was found to
induce apoptosis and necroptosis. Influenza infection led to
decreased glutathione metabolism and reduced glutathione
reductase activity in lung epithelial cells. Genetic inhibition of
glutathione reductase suppressed apoptosis and necroptosis of
lung epithelial cells. Pharmacologic inhibition of glutathione
reductase reduced airway inflammation, lung injury, and cell
death in our murine influenza model. Our results demonstrate
that glutathione reductase activity is suppressed during influenza.
Glutathione reductase inhibition prevents epithelial cell death
and morbidity in our murine influenza model. Our results
suggest that glutathione reductase-dependent glutathione
metabolism may play an important role in the host response to
viral infection by regulating lung epithelial cell death.
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Influenza, a viral infection that attacks the
respiratory system, is caused by influenza A
and influenza B viruses in humans (1). It is
estimated that influenza has resulted in
between 9 million and 45 million illnesses,
140,000 and 810,000 hospitalizations, and
12,000 and 61,000 deaths in the United States
annually since 2010 (2). Risk factors for
influenza infection include metabolic
derangements seen in conditions such as
diabetes, obesity, and advanced age (3–5).

The replication of the influenza virus
depends on host cellular metabolic pathways
involving nucleic acids, lipids, and
glycoproteins (6, 7). In mice, influenza
infection affects more than 100 metabolites

in serum, lung, and BAL fluid (8). On a
mechanistic level, influenza virus infection
interferes with the cellular metabolic
pathways of glycolysis, glutaminolysis,
pentose phosphate, and fatty acid synthesis
to generate ATP (adenosine triphosphate)
and structural materials of viral replication
(9). Previous work has demonstrated that
altering metabolic processes can improve the
outcomes of influenza. Specifically,
suppression of glycolysis can result in
reduced viral replication (10). In another
study, inhibition of the mTOR pathway,
a key regulatory pathway involved in
protein synthesis and viral replication,
significantly reduced viral replication and

mortality in murine models of influenza
infection (11, 12).

This paper investigates the role of
glutathione metabolism in influenza
infection. Glutathione, a key antioxidant that
neutralizes reactive oxygen species induced
in host cells during RNA virus infection,
regulates innate immunity at various degrees
during influenza infection (13, 14). The
cellular content of glutathione is inversely
related to influenza virus replication in the
cell (15). Glutathione-dependent antiviral
pathways appear to be pivotal in the immune
response against influenza. Amatore and
colleagues showed that influenza infection
induces increased glutathione synthesis in
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cells, which subsequently triggers the Th1
(T helper type 1) cellular response
downstream (15). Previously, it has been
shown that the administration of glutathione
in drinking water can reduce viral titers in
the murine lung during influenza (16).

Little is known about the pathogenetic
effects of glutathione metabolism in the lung
in response to influenza infection. In our
study, we hypothesize that glutathione
metabolism regulates influenza-induced
epithelial cell death and that inhibition of
glutathione reductase will ameliorate
programmed cell death, airway
inflammation, and lung injury during
influenza infection in our murine model.

Methods

Detailed methods are provided in the data
supplement.

Results

Glutathione Metabolism Is Altered in
Murine Lung during
Influenza Infection
To investigatemetabolic changes in the lung
during influenza infection, we performed
metabolomic analyses (Figure 1A) on both
influenza-infected and controlmice over
multiple time points. Youngmicewere infected
intranasally with a sublethal dose of theH1N1
influenzaA virus Puerto Rico/8/34 strain, and
metabolic profilingwas performed on lung
lysates. Principal–component analysis revealed
amarkedly alteredmetabolic profile in the lung
on influenza infection (Figure 1B).Of these
metabolic alterations, we focused on changes in
the glutathionemetabolismpathway that were
identified inmice during the course of
influenza infection (Figure 1C). Specifically, we
examined changes in the tissue concentrations
of both the reduced (GSH) and oxidized
(GSSG) forms of glutathione, in addition to the
ratio of GSH toGSSG.When comparedwith
control samples, a significant decrease in both
GSHandGSSG concentrationswas observed
byDay 7 after influenza infection (Figure 1D).
It is important to note that theGSH toGSSG
ratio was also significantly decreased, indicating
a comparatively greater reduction inGSH than
GSSG.

With aging being a major risk factor for
mortality and morbidity in influenza
infection, we assessed if these changes in
glutathione metabolism after infection are

different in aged versus youngmice.
Interestingly, unlike in young mice, there
were no observed significant changes in
concentrations of GSH and GSSG during
influenza infection in aged mice lungs
(Figures E1A and E1B in the data
supplement). In addition, both GSH and
GSSG appear to be consistently lower in
elderly mice. This demonstrates that storage
of glutathione at baseline is lower in elderly
mice compared with young control samples,
which may contribute to impaired
glutathione metabolism in older mice in
response to influenza infection. This suggests
that glutathione metabolismmay play a
protective role in pathogenesis during
influenza infection. Taken together, there
appears to be selective dysregulation of
glutathione metabolism in response to
influenza infection as a function of age.

Glutathione Reductase Activity Is
Decreased during Influenza Infection
To expand on these results, we assessed for
changes in enzymatic activity that control
glutathione metabolism in our murine
influenza model. We first used a
conventional colorimetric assay to confirm a
reduction of GSH and GSSG concentrations
in influenza-infected lungs (Figure 2A). We
thenmeasured the activity of glutathione
reductase, an enzyme that catalyzes the
reduction of GSSG to GSH, in mouse lungs
7 days after infection. A significant decrease
in glutathione reductase activity was
observed in influenza-infected lungs
compared with healthy control samples
(Figure 2B). We further examined if these
observations were reproducible in an in vitro
model system of human lung epithelial cells.
Similar to our in vivomurine studies, there
was a significant decrease in GSH, GSH to
GSSG ratio, and glutathione reductase
activity in influenza-treated Beas-2B cells, a
human lung epithelial cell line (Figures 2C
and 2D). In addition, the gene expressionof
glutathione reductasewas significantly
reduced in influenza-infected epithelial cells
comparedwith control samples (Figure 2E).
Wenext examinedenzymes that oxidizeGSH
toGSSGbyperformingPCRarraysonpanels
of glutathioneperoxidase enzymes.The gene
expressionof glutathioneperoxidaseswas
found tobe comparable between influenza-
infected andcontrolmice, in
contradistinction to glutathione reductase
(FiguresE2AandE2B).

Inflammation, Lung Injury, and Cell
Death Are Increased in
Influenza Infection
In prior work, we demonstrated that
influenza infection increases morbidity in a
mouse model (Stout-Delgado, JI, 2012). Here
we furthered our investigation and showed
that markers of inflammation (cell count) and
lung injury (lactate dehydrogenase [LDH],
and total protein) in BAL fluid are
significantly increased inmice as the course of
influenza infection progresses (Figures 3A–3C
and E3).We then assessed cell death during
influenza infection using TUNEL staining. A
TUNEL1 cell death response was increased
after influenza infection (Figure 4A).We also
evaluated representative markers of apoptosis
and necroptosis byWestern blot (Figure 4B).
During influenza infection, there was a
significant increase in the expression of the
programmed cell death markers, such as
cleaved caspase 3, cleaved PARP, RIPK3
(receptor-interacting serine/threonine-protein
kinase 3), phospho RIPK3, andMLKL (mixed
lineage kinase domain-like protein).

Influenza Induces Epithelial Cell
Death In Vitro
We investigated if influenza activates cell
death pathways in cultured human epithelial
cells (Beas-2B). Beas-2B cells treated with
influenza were less confluent and exhibited
morphological features of cell death,
including cell shrinkage and fragmentation,
compared with control cells (Figure 5A). Cell
cytotoxicity after incremental doses of
influenza infection was then analyzed.
Cytotoxicity was found to be increased in a
dose-dependent manner in Beas-2B cells as
measured by LDH concentrations and viral
toxglo assay (Figures 5B and 5C). We then
assessed for apoptosis and necroptosis in
our in vitro influenza model. Protein
concentrations of the programmed cell death
markers PARP, cleaved PARP, caspase 3,
cleaved caspase 3, RIPK3, phospho-RIPK3,
andMLKL were found to be increased in
Beas-2B cells after influenza treatment. These
results show apoptosis and necroptosis and
possible mechanisms for cell death in our
model.

Genetic Inhibition of Glutathione
Reductase Decreases Apoptotic and
Necroptotic Cell Death In Vitro
Transfection of Beas-2B with siRNA
targeting glutathione reductase (GSR)
resulted in suppression of GSR gene
expression and reduction in glutathione
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reductase activity (Figures E4A and E4B) and
was protective against programmed cell
death during influenza infection (Figure 6A).
It was also protective against apoptotic cell
death in the presence of the apoptosis
inducer staurosporine (Figure 6B). In
addition, the expression of the apoptotic
markers PARP, cleaved PARP, caspase 3, and
cleaved caspase 3 were decreased in Beas-2B
cells transfected with GSR siRNA compared
with control siRNA after treatment with
staurosporine (Figure 6C).We then tested the
effect of glutathione reductase on necroptotic
cell death by analyzing cell cytotoxicity after
treatment with the necroptosis inducers TNF,

smacmimetic, and Z-VAD (carbobenzoxy-
valyl-alanyl-aspartyl-[O-methyl]- fluorome-
thylketone) treatment. As in apoptosis, there
was reduced necroptotic cell death in Beas-2B
cells transfected with GSR siRNA compared
with control siRNA (Figure 6D). In addition,
expression of the necroptosis markers
phospho RIPK3 and phosphoMLKLwere
decreased in Beas-2B cells transfected with
GSR siRNA compared with control siRNA
after treatment with the necroptosis inducers
TNF, smacmimetic, and Z-VAD (Figure 6E).
Taken together, these results demonstrate the
critical role of glutathione reductase in
apoptotic and necroptotic cell death.

Pharmacologic Inhibition of
Glutathione Reductase Reduces
Airway Inflammation, Lung Injury, and
Cell Death
To investigate the role of glutathione
reductase in influenza-induced lung injury
in vivo, we examined the impact of lomustine,
a potent glutathione reductase inhibitor, on
mice after influenza infection (Figure 7A). To
confirm the effect of lomustine on glutathione
metabolism, wemeasured GSH, GSSG, and
GSH to GSSG ratio in influenza-infected
lungs after lomustine treatment (Figure E5A).
We noted a significant decrease in GSH and
GSH to GSSG ratio, whereas GSSGwas
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Figure 1. Glutathione metabolism is decreased in the murine lung during influenza infection. (A) Experimental layout of influenza-induced lung
injury (Day 0 intranasal instillation of 125 PFU of influenza, PR8: A/Puerto Rico/8/1934 H1N1, 50 ml volume in PBS per mouse). (B) Two-
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GSSG = oxidized glutathione; PLS-DA = partial least squares-discriminant analysis.
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comparable between lomustine-treated lungs
and control samples. Lomustine acts as a
DNA-alkylating agent, and it also inhibits
various key enzymatic reactions by
carbamylating proteins. Alkylation could

inhibit genome expression and replication
andmight cause base-mispairing to occur,
resulting in an increasedmutation rate which
can affect pro- or antiproliferation ability. We
thus examined if lomustine has any cytotoxic

effects apart from that because of influenza
infection.We found that the cytotoxic effect
was comparable between lomustine-treated
and untreated Beas-2B cells after influenza
infection (Figure E5B). Although the serum
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half-life of lomustine ranges from 16 hours to
2 days, on the basis of our measurements of
lung tissue GSR activity, its effect on GSR
appears to last at least 72 hours after the first
injection (Figure E5C).

When compared with nontreated
control samples, lomustine treatment
reduced inflammation in the airways,
subepithelial area, and alveolar septum
(Figure 7B). Inflammatory cell count and
total protein concentration in BAL fluid were
significantly suppressed by lomustine
treatment when compared with vehicle
control samples (Figures 7C and 7D). LDH
concentrations in BAL fluid were also
decreased after lomustine treatment
(Figure 7E). Lomustine further decreased
protein expression of the programmed cell
death markers cleaved PARP, cleaved
caspase 3, phospho-RIPK3, andMLKL
(Figure 7F). These results point to a
protective effect of glutathione reductase
inhibition in influenza-infected lungs by
regulating apoptosis and necroptosis.
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Discussion

Metabolic derangement accompanying
influenza infection has been increasingly
recognized as having an important role in the
pathogenesis of virus-induced lung injury. In
this study, we demonstrate that metabolites
of glutathione metabolism undergo
significant alterations during the course of
influenza infection and that these alterations
arise from reduced glutathione reductase
activity in influenza-infected lungs.
Moreover, we showed that inhibition of
glutathione reductase protects epithelial cells
from apoptosis and necroptosis, pointing to
the potential ameliorative effects of
glutathione reductase inhibition during
influenza-induced lung injury.

It is well established that advanced age is
a significant risk factor for morbidity in
influenza infection in humans as well as in

mouse models (17, 18). A strength of our
study was that we used both young and aged
mice influenza models to identify glutathione
metabolism as an important metabolic
pathway in influenza infection. In young
mice, progressive reduction in both GSH and
GSSH concentrations, as well as GSH to
GSSH ratio, were observed during the course
of influenza infection, whereas GSH and
GSSH remained unchanged in aged mice.
We believe the relatively dynamic changes in
glutathione metabolism seen in youngmice
may underlie their superior clinical outcomes
compared with aged mice during influenza
infection. In one of our prior studies, young
mice began to recover clinically on Day 7
after influenza inoculation, whereas aged
mice began to further clinically deteriorate at
this time point. This divergence in clinical
course parallels has been observed in human
influenza, in which young persons without

significant comorbidities tend to recover by
Day 7, whereas older persons with
comorbidities often clinically deteriorate.

The mechanism by which changes in
glutathione metabolism alter the course of
influenza infection appears to be
multifactorial. It is known that glutathione
detoxifies cells by restoring enzymatic and
nonenzymatic antioxidants and serves as a
nonenzymatic antioxidant itself. Indeed,
higher concentrations of the reduced form of
glutathione have been considered protective
against influenza infection. In our study,
however, we found that reduction in absolute
concentrations of GSH that accompany
glutathione reductase inhibition correlates
paradoxically with superior clinical
outcomes. On the basis of our results, it is
our belief that dynamic changes in GSH/
GSSH balance result from glutathione
reductase activity and not necessarily the
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absolute concentrations of these metabolites
that are important in influenza infection.

Glutathione reductase inhibition
ameliorating clinical outcomes in influenza
infection is a central finding in our study.
Mechanistically, we demonstrated a

reduction in apoptosis and necroptosis in
lung epithelial cells on inhibition of
glutathione reductase. Whether
mitochondria, which are classically
implicated in programmed cell death
pathways (19), are affected by glutathione

reductase inhibition is unknown.
Interestingly, a study has reported that cell
death is promoted by the extent of depletion
of mitochondrial glutathione rather than the
changes in the cytoplasmic pool (20). These
findings are consistent with the potential role
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of glutathione reductase in regulating
apoptotic cell death by altering concentrations
of glutathione inmitochondria.

The direct effect of glutathione
reductase inhibition on necroptosis is also
not well established. It is possible that
dysregulated glutathione metabolism in
mitochondria may promote necroptosis by
altering the function of PGAM5
(phosphoglycerate mutase family member 5)
and DRP1 (dynamin-related protein 1),
mitochondrial proteins that are known to be
associated with the necrosome (21, 22).

In our study, glutathione reductase
activity was suppressed with lomustine. We
chose this pharmacologic inhibition as
lomustine is already currently used to treat

patients with oncologic conditions, including
brain tumors and hematologic malignancies
(23, 24), and thus this medication would be
readily available for any future potential
clinical trials on glutathione reductase
inhibition in human patients. Another
advantage of lomustine is that it can be
administered orally, although we used
intraperitoneal injection in our study to
deliver an exact dose of lomustine to mice. It
is important to mention that in our study,
lomustine was administered before
inoculation with influenza. Additional
studies will be required to evaluate its
therapeutic effects after influenza onset.

This is the first studywe know to
demonstrate that glutathione reductase activity

directly affects clinical outcomes during
influenza infection. The importance of
glutathionemetabolism and enzymes such as
glutathione reductase that affect its delicate
balance has been gaining traction in the
scientific community. Although glutathione
reductase has been an attractive target for drug
development, no successful glutathione
reductase-related therapeutics have been
implemented in pulmonary disease to date.
Our data gives support for the selective
inhibition of glutathione reductase as a
promisingmeans of treating severe influenza
infection.�

Author disclosures are available with the
text of this article at www.atsjournals.org.
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