
Boron Nitride-Doped Polyphenylenic Organogels
Jacopo Dosso, Hamid Oubaha, Francesco Fasano, Sorin Melinte, Jean-François Gohy, Colan E. Hughes,
Kenneth D. M. Harris, Nicola Demitri, Michela Abrami, Mario Grassi, and Davide Bonifazi*

Cite This: Chem. Mater. 2022, 34, 10670−10680 Read Online

ACCESS Metrics & More Article Recommendations *sı Supporting Information

ABSTRACT: Herein, we describe the synthesis of the first boron
nitride-doped polyphenylenic material obtained through a [4 + 2]
cycloaddition reaction between a triethynyl borazine unit and a
biscyclopentadienone derivative, which undergoes organogel
formation in chlorinated solvents (the critical jellification
concentration is 4% w/w in CHCl3). The polymer has been
characterized extensively by Fourier-transform infrared spectrosco-
py, solid-state 13C NMR, solid-state 11B NMR, and by comparison
with the isolated monomeric unit. Furthermore, the polymer gels
formed in chlorinated solvents have been thoroughly characterized
and studied, showing rheological properties comparable to those of
polyacrylamide gels with a low crosslinker percentage. Given the
thermal and chemical stability, the material was studied as a
potential support for solid-state electrolytes. showing properties comparable to those of polyethylene glycol-based electrolytes, thus
presenting great potential for the application of this new class of material in lithium-ion batteries.

■ INTRODUCTION
In the last decades, polyphenylene-based materials have been
the subject of extensive research efforts.1,2 This interest is
related to the many different potential applications of these
materials, from precursors in graphene synthesis3,4 to antennae
systems,5−7 proton exchange membranes,8,9 optoelectronic
devices,10 and self-assembled systems.11 Structural modifica-
tions of the polyphenylene-based frameworks by heteroatom-
doping12,13 or peripheral addition of functional groups14−16 are
currently the main strategies to enrich the chemical and
physical properties of polyphenylenic materials. Polymeric
phenylene-based materials are principally prepared by
exploiting [4 + 2] cycloaddition reactions with CO
extrusion.17,18 Particularly, the pioneering work of Müllen
and co-workers showed how a large variety of controlled
structures, tailored for a given application, can be prepared
through an appropriate combination of specifically designed
dienes and alkyne precursors.19

We contributed to the field by preparing discrete borazino-
doped oligophenylenes following the [4 + 2] cycloaddition
with CO extrusion synthetic route using opportunely function-
alized ethynyl- and tetraphenylcyclopentadienone-bearing
borazine derivatives (Figure 1b).20 The replacement of a
phenyl ring with a borazine ring proved to be particularly
effective in breaking the π-conjugation, causing a blue shift in
the emission envelopes compared to those of the all-carbon
congeners.20,21 Borazino-doped oligophenylenes can also be
prepared by exploiting a condensation reaction approach,
either condensing previously formed chloroborazoles22 via a

silicon/boron exchange (Figure 1a)23 or by using a mixture of
para-phenylendiamine and aniline with BCl3, followed by the
addition of an aryl lithium derivative (Figure 1b).21 When only
arylendiamine derivatives are used, boron nitride (BN)-doped
polymeric materials can be obtained in which chloro-borazole
units are formed (Figure 1a).24,25

In this case, the moisture-sensitive nature of the chloro-
borazole units limits the manipulation of these materials under
normal ambient conditions and consequently limits the
versatility of their applications. The presence of BN (or BO)
bonds proved to increase the affinity of the materials toward
polar or charged species,24,26 which is particularly important
when engineering materials for gas adsorption/storage
applications24,25 and solid-state electrolytes (SSEs).27,28 More-
over, the insertion of the thermally stable BN bonds has
frequently led to the use of BN polymers as pre-ceramic/
hybrid materials.29−31 With the objective of preparing porous
functional borazine-doped materials, this paper tackles the
challenge of engineering borazino-bearing polyphenylene-
based polymeric structures. When devising the preparation
and structure of these materials, we must consider the
susceptibility of the BN core toward moisture.32,33 Up to
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now, we have circumvented this problem by preparing
borazine precursors bearing 2,6-disubstituted aryl moieties at
the B-position, with the 2,6-substituents sitting atop the boron
atoms, shielding them from possible hydrolytic reaction
(Figure 1b).32,33 On the one hand, although this approach
has been effective in providing robust borazine linkers for
preparing porous metal−organic frameworks,34 the preparation
of sterically protected borazine precursors is synthetically
demanding and could be a limiting factor in expanding the
chemical space of these BN precursors. On the other hand, the
preparation of borazino-doped polyphenylenic materials by
exploiting borazine formation as the polymerization reaction
would require the use of strongly reactive BCl3 and BBr3 boron
sources.24,25 Moreover, it would be very difficult to function-
alize the B-atoms with protecting aryl substituents in a later
step due to the generally low solubility of the final materials

and the high steric hindrance surrounding the B-atoms.21

Based on these considerations, we concluded that a desirable
synthetic approach would involve a borazine precursor that,
through a high-yielding reaction, could polymerize and
simultaneously place sterically shielding moieties atop the
boron centers. This line of thought led us to conjecture that
the B,B′,B″-triethynyl-N,N′,N″ triphenyl borazine scaffold,35

known to be relatively stable under normal ambient
conditions,36 could serve as a suitable precursor to undergo
polymerization through [4 + 2] cycloaddition with CO
extrusion when reacted with a suitable biscyclopentadienone
(Figure 1c). If a tetraphenylcyclopentadienone scaffold is used,
formation of the tetra-substituted B-aryl moiety would place a
phenyl ring atop the boron centers, making the borazine ring
inert toward hydrolysis reaction. Embracing this synthetic
strategy, we prepared a B,B′,B″-triethynyl-N,N′,N″ triphenyl

Figure 1. From molecular to macromolecular borazino-phenylenes.
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borazine precursor and explored its potential use to prepare
porous materials through [4 + 2] cycloaddition with CO
extrusion as the polymerization reaction.

■ RESULTS AND DISCUSSION
Synthesis and Structural Characterization of the

Borazine-Based Monomeric Units and Polymeric Mate-
rials. Our synthetic efforts commenced with the preparation of
B,B′,B″-triethynyl-N,N′,N″-triphenyl borazine 2, which was
prepared following a modified procedure37,38 from those
originally developed by Groszos and Stafiej39 and subsequently
by Yamaguchi.40 Reaction of aniline with BCl3 in refluxing
toluene gave the corresponding chloro-borazole intermediate
which, on reaction with a solution of HC�CMgBr at 0 °C,
gave 2 in 70% yield (Scheme 1). The product proved to be
moisture-sensitive but sufficiently stable when stored under
anhydrous conditions.36 We first studied the [4 + 2]
cycloadditions on B,B′,B″-triethynyl borazines using commer-
cially available tetraphenylcyclopentadienone in dry and
degassed Ph2O at 220 °C (Scheme 1). As expected, product
3 could be obtained in a 47% yield (78% yield for a single
reaction) as a mixture of diastereomers (i.e., cc-3 and ct-3
atropoisomers). To estimate the isomeric excess of the
cycloaddition reaction, a multidimensional nuclear magnetic
resonance (NMR) analysis using 13C-DEPTq, 1H-13C HSQC,
and HMBC experiments was carried out in C6D6 (Figures
S17−S20). In the 1H NMR spectrum of the atropoisomeric

mixture, three singlets were observed at 7.52, 7.45, and 7.32
ppm, integrating as 1, 2, and 0.3 protons, respectively (Figure
S20). As the only proton resonances present as singlets are
those on the aryl group bonded on the boron atom (Hct and
Hcc), it is reasonable to assume that the proton resonances at
7.52 and 7.45 ppm (in 1:2 ratio) are those of ct-3, whereas the
peak at 7.32 ppm is assigned to cc-3. From the HSQC
experiment, the proton resonances at 7.52 and 7.45 ppm
correlate with the 13C signals at 136.4 and 135.8 ppm, whereas
the signal at 7.32 ppm correlates with the 13C peak centered at
135.7 ppm (Figures S19 and S20). As the proton resonances
correlate only with quaternary carbons, the correct assignment
for the singlet signals was confirmed beyond doubt. In fact, the
only protons showing an exclusive correlation with quaternary
carbons are those on the B-aryl ring (Figure S20). Integrating
the peaks areas for the Hct and Hcc resonances, we estimate that
reference cycloadduct 3 was obtained with a 90% ct-
atropoisomeric excess.

Further confirmation of the structures of both isomers was
obtained by single-crystal X-ray diffraction (XRD) analysis of
crystals grown by slow diffusion of MeOH vapor into a CH2Br2
solution of a mixture of cc-3 and ct-3 (Figure 2). Two types of
crystal were obtained, each containing one isomer (specifically
with space group P63 for isomer cc-3 and space group P1̅ for
isomer ct-3). While cc-3 features all three in-phenyl moieties
on the same side of the B3N3 core, ct-3 has one in-phenyl ring
on the opposite side. As discussed in Section S2.1 of the

Scheme 1. Synthesis of BN-Doped Polymer Starting with Aniline: Monomeric Cycloadduct 3, Double Dienophile 6, and BN-
Polymera

aCrystal structure of derivative 2 is also shown; space group: R3̅.
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Supporting Information, a powder XRD study of the bulk
sample of cycloadduct 3 prepared directly from the chemical
reactions shown in Scheme 1, followed by crystallization from
CH2Br2, indicates that the only detectable crystalline phase is
the P1̅ phase of the CH2Br2 solvate of 3, which contains the ct
isomer. We note that other crystalline phases (e.g., containing
the cc isomer) may also be present but are below the detection
limit, which is estimated to be several percent given the
relatively poor signal-to-noise level of the powder XRD data.
This study confirms that the bulk sample of cycloadduct 3
prepared directly from the chemical reactions shown in
Scheme 1 contains predominantly the ct isomer, fully
consistent with the evidence from the multidimensional
NMR analysis discussed above.

To exploit the cycloaddition reaction to prepare borazine-
doped polyphenylenic polymers, we have designed a suitable
dimeric diene unit, terminating with two tetraphenylcyclopen-
tadienone moieties (molecule 6, Scheme 1). The first step of
the synthesis involved a double Sonogashira-type cross-
coupling reaction between phenylacetylene and 4,4′-diiodobi-
phenyl to yield bis-alkyne derivative 4 in quantitative yield.

Oxidation of molecule 4 in the presence of KMnO4 gave
tetracarbonyl derivative 5 in 97% yield, which was in turn
reacted with 1,3-diphenylacetone to produce the desired
dimeric cyclopentadienone 6 in good yield (52%). The
structure of biscyclopentadienone 6 was confirmed via NMR
spectroscopy and high resolution mass spectroscopy (HRMS)
(Figures S27−S29).

The cycloaddition reaction between borazine 2 and
biscyclopentadienone 6 in dry and degassed Ph2O at 220 °C
yielded a red gel. After precipitation and purification of the
solid, the resulting reddish material was reacted with
phenylacetylene in Ph2O at 230 °C to end-cap the unreacted
cyclopentadienone units. Purification of the resulting pale-
yellow solid with various sonication−centrifugation cycles
using different solvents (petroleum ether/CH2Cl2, acetone,
MeOH, and Et2O) gave the desired BN-polymer in 52% yield.
Given the insolubility of the product in common organic
solvents, characterization was carried out by thermogravimetric
analysis (TGA), attenuated total reflectance infrared spectros-
copy (ATR−IR), and solid-state NMR techniques. TGA
measurements showed that the solid is thermally stable up to
400 °C (Figure S30), trapping ca. 10−20% of the solvent (see
mass loss at around 100 °C). ATR−IR analysis of both
cycloadduct 3 and BN-polymer (Figure S31) showed strong
signals at ca. 1355 and 1321 cm−1 assigned to BN bond
stretching. Notably, no signals related to C�O bonds were
detected, suggesting the full conversion of the end-capping
reaction. High-resolution solid-state 13C NMR spectra
recorded using the 1H → 13C CPMAS technique for precursor
2, reference cycloadduct 3, and the BN-polymer material are
shown in Figure 3. The solid-state 13C NMR spectrum of
precursor 2 has isotropic peaks at 84 and 101 ppm due to the
ethynyl moieties and isotropic peaks in the range 125−150
ppm due to aromatic environments. The fact that the ethynyl
peaks are absent from the solid-state 13C NMR spectra of the
cycloadduct 3 and BN-polymer samples is consistent with our
hypothesis of complete conversion of the cycloaddition

Figure 2. Molecular structures of cycloadduct isomers cc-3 (a) and ct-
3 (b) in their crystal structures determined from single-crystal XRD,
with space groups P63 and P1̅, respectively.

Figure 3. Solid-state 1H → 13C CPMAS NMR spectra recorded for (a) borazine precursor 2, (b) reference cycloadduct 3, and (c) BN-polymer.
Peaks marked with asterisks are spinning sidebands. (d) One-dimensional projections of the solid-state 11B MQMAS NMR spectra onto the direct
dimension for cycloadduct 3 (red) and BN-polymer (black).
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reaction. The solid-state 13C NMR spectra of the cycloadduct
3 and BN-polymer materials contain multiple overlapped
peaks between 120 and 150 ppm, corresponding to the
aromatic 13C environments in these materials. The fact that the
solid-state 13C NMR spectra of cycloadduct 3 and BN-
polymer are virtually identical in this region (see the overlay of
the spectra in Figure S36) suggests that the local structure
around the central aromatic ring (including the conformations
of the substituents) is very similar in these materials. Low-
intensity peaks between ca. −15 and 60 ppm are assigned to
spinning sidebands and, in the case of BN-polymer, also to the
residual solvent (assigned as Et2O and MeOH), as annotated
on the spectra in Figure 3b,c.

Solid-state 11B MQMAS NMR spectra41 recorded for
samples of cycloadduct 3 and the BN-polymer are shown in
Figure S37, and one-dimensional projections of these spectra
onto the direct dimension are shown in Figure 3d. The one-
dimensional projections in Figure 3d were obtained from the
11B MQMAS NMR spectra by summation of all data between
39 and 49 ppm along the indirect dimension (vertical in Figure
S37; see details in the Supporting Information). In the one-
dimensional projections in Figure 3d, the shapes of the peaks
are very similar for cycloadduct 3 and the BN-polymer,
strongly suggesting that cycloadduct 3 and the BN-polymer
have similar values of the quadrupolar parameters and isotropic
chemical shifts for the 11B environments. Again, we may infer
from this observation that the local structures in the vicinity of
the central B3N3 rings (including the conformations of the
substituents bonded to the B atoms) are very similar in
cycloadduct 3 and the BN-polymer.
Gel Formation and Rheological Studies. As observed

during the preparation of the polymer in Ph2O, BN-polymer
shows a tendency to form gels. By suspending BN-polymer in
different solvents, it was observed that chlorinated solvents
(such as CHCl3 and CH2Cl2) give gels upon sonication with a
critical jellification concentration of 4 wt % for CHCl3. Low-
field 1H NMR (LF-NMR) studies (Table 1) were then carried

out to study the jellification behavior at three different
concentrations to obtain data within the sub-gelated (2%) to
super-gelated (8%) systems. In this analysis, the relaxation time
T2 was considered since it depends not only on the magnetic
field strength (B0) and temperature but also on the presence of
solid surfaces such as those typical of a polymeric gel. The
relaxation process is faster with increasing concentration of the
“solid” component, which is reflected in a smaller T2. In the
case of non-homogeneous systems, where meshes of different
sizes can exist, the average T2 depends on the relaxation time
arising from each different mesh size present in the gel. In
general, the 1H relaxation is faster with decreasing mesh size.

As expected, T2 is observed to decrease as the polymer
concentration increases (Table 1). When moving from 2 to 8%

concentration, an increasing number of relaxation times (T2i
values) are detected, reflecting a higher heterogeneity of the
jellifying network and suggesting the presence of meshes of
different sizes (with small T2i times corresponding to small
cavity size). From the rheological point of view, we analyzed
the 4 wt % gel by short stress sweep (SSS) and frequency
sweep (FS) measurements. From SSS measurements (Figure
S39), the presence of an elastic modulus G′ much greater than
the viscous modulus G″ further confirms the formation of a
jellified material.

FS measurements (Figure 4) along with Maxwell best fitting
(solid lines) allowed an estimation of the shear modulus (G),
the cross linking (ρx), and the mesh size (ξRHEO) of the gel,
giving G = 667 ± 54 Pa, ρx = 2.7 × 10−7 ± 2.2 × 10−8, and
ξRHEO = 23.0 ± 0.6 nm. The value of G is comparable to that of
a polyacrylamide gel with a low crosslinking percentage,42

which is in line with the low cross-linking value obtained from
the measurement. The mesh size is consistent with a
mesoporous material; however, the isotherm of N2 adsorption
at 77 K, measured on the xerogel, indicates a macroporous/
non-porous material (Figure S45) with a calculated apparent
Brunauer−Emmett−Teller surface area of 62 m2/g, which
suggests that the porous structure collapses upon drying.
BN-Polymer as Support in SSEs. The ability to form gels,

the thermal stability, and the presence of polar BN bonds (see,
e.g., the case for boroxines27,28) make this material a good
candidate as the support component in Li+-containing SSEs.
Thus, BN-polymer/TEGDME (tetraethylene glycol dimethyl
ether)/LiClO4-based SSEs were prepared following the
process shown in Figure 5 and tested (the technical details
are reported in the Supporting Information). BN-polymer was
first suspended in CH2Cl2 (2 mL) under ultra-sonication at 35
°C for 2 h followed by vigorous stirring at r.t. for 12 h. Then,
the TEGDME solution in CH2Cl2 (0.5 mL) was added and the
obtained mixtures stirred at r.t. for 12 h. Finally, the LiClO4
solutions at different concentrations (15, 20, and 25 wt %) in
THF (0.5 mL) were added to the BN-polymer/TEGDME
suspensions and ultra-sonicated at 35 °C for 2 h followed by
vigorous stirring at r.t. for 48 h so that homogeneous
suspensions were obtained. The SSEs were deposited by
solution cast on stainless steel disks adapted for Swagelok cells
and dried at r.t. for 18 h followed by drying under vacuum at
70 °C for 2 h.

The ion transport behavior of the SSEs prepared in this way
was investigated by electrochemical impedance spectroscopy at
r.t., using TEGDME/15 wt % LiClO4 liquid electrolyte as the
reference (Figures 6a, S44 and Table 2). Solid electrolytes
containing BN-polymer showed a decrease in ionic con-
ductivity with increasing salt content, with the highest ionic
conductivity of about 1.51 × 10−5 S cm−1 for the sample
containing 15 wt % of LiClO4 (Figure 6b and Table 2). The
bulk electrolyte resistance value (Rb) increases with increasing
amount of LiClO4 incorporated into the BN-polymer/
TEGDME matrix due to a decrease in the available
coordination sites of TEGDME by ion pairing, which is
consistent with the ether crown ion chelation mechanism.43−45

This could be due to the distance between dissociated ions
becoming too small and thus enabling the recombination into
neutral ion pairs. This in turn leads to the formation of large
aggregates of ions that reduce the segmental motion of
ethylene oxide sites in the network, thus hampering the
polymer motion (which is essential for fast ion conduc-
tion).46−51

Table 1. Values of T2 from LF-NMR for Gels Formed with
Various Concentrations of BN-Polymer in CHCl3

BN-
polymer
wt %

T21
(ms)

A1
(%)

T22
(ms)

A2
(%)

T23
(ms)

A3
(%)

T24
(ms)

A4
(%)

0% 2531 100
2% 2373 81 1350 19
4% 1927 73 981 18 108 9
8% 1537 51 635 20 133 11 23 17
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The estimated values of Ea are listed in Table 3.52 The lower
the value of activation energy in the system, the higher the
ionic conductivity at r.t. and vice versa.53 At low temperatures,
the BN-polymer-based electrolyte exhibits a lower ionic
conductivity than that of the liquid TEGDME/15 % wt.
LiClO4 system. However, it presents a similar trend compared
to the liquid TEGDME/15 % wt. LiClO4 system at high
temperatures. The lower activation energy for ion migration at
high temperatures is probably due to the amorphous nature of
the polymer, which promotes more free volume in the polymer
electrolyte system upon increasing temperature.54,55 Further-
more, the wettability of BN-polymer pores by TEGDME
increases at high temperatures, leading to a softer network, and
TEGDME chains act as a transport medium.56 In addition, the
interaction of lithium salts with TEGDME and the presence of
BN polar bonds help to weaken the ionic interaction in the salt
and thus improve the charge carriers mobility.52,57 Since
conductivity is influenced by temperature, σ was studied as a
function of T for pure TEGDME, liquid TEGDME/15 wt %
LiClO4, and BN-polymer/TEGDME/15 wt % LiClO4 (Figure
6c). The ionic conductivity of the BN-polymer/TEGDME/15
wt % LiClO4 electrolyte increases up to 2.7 × 10−4 S cm−1 at
373 K. Figure 6c shows a linear variation in plots of log (σ)
versus 103/T, suggesting an Arrhenius-type thermally activated

process:58 σ = σ0 exp(−Ea/kT) where σ is the conductivity, Ea
is the activation energy associated with conduction, k is the
Boltzmann constant, T is the temperature, and σ0 is a
preexponential term.

To investigate how the morphological changes of the BN-
polymer/TEGDME/LiClO4-based electrolytes could affect
the performance, the films were subjected to scanning electron
microscopy (SEM) analysis (Figure S41). Pure BN-polymer
(see Figure S41a) has a “sponge-like” structure containing
cavities with an average diameter in the micrometer range (1−
20 μm), whereas no pores are visible in the BN-polymer/
TEGDME/LiClO4 composite (Figure S41b−d). For the 15 wt
% LiClO4 sample, the higher conductivity could be attributed
to the relatively homogenous structure, implying a good
dispersion of all components in the electrolyte film (Figure
S41b). However, the 20 wt % LiClO4 sample presents spherical
aggregates with an average diameter in the micrometer range,
which could be ascribed to the lithium salt not completely
dissolved in the polymer matrix (Figure S41c). Increasing the
amount of the Li+ salt to 25 wt % leads to a further decrease in
the conductivity of the SSE. This could be attributed to the
bigger aggregates formed in the polymer matrix leading to a
microstructure that is interspersed with big pores (Figure
S41d).

Figure 4. (a) Xerogel and (b) organogel of BN-polymer; (c) FS plot (circles) and Maxwell fitting (solid lines) for the 4 wt % gel in CHCl3.

Figure 5. Process to prepare the BN-polymer/TEGDME/LiClO4-based SSEs.
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The thermal stability of the BN-polymer/TEGDME/
LiClO4 SSEs was studied by TGA (measured under a N2
atmosphere at a heating rate of 10 °C min−1 from r.t. to 1000
°C, Figure S42a) and differential scanning calorimetry (DSC),
(measured under a N2 flow at a ramp rate of 10 °C min−1,
Figure S42b) on both the single components and the films. As
expected, BN-polymer/TEGDME/LiClO4 samples display the
same thermal behavior as that of the single components. A

gradual weight loss of about 5% is observed during the initial
heating up to 100 °C, which can be attributed to the loss of
moisture present in the electrolytes. The first significant weight
loss (about 45−55%) is due to the evaporation or degradation
of TEGDME at 150 °C, followed by a gradual loss of about 5%
between 300 and 450 °C due to LiClO4. The complete
decomposition of the sample takes place between 500 and 600
°C with a weight loss of about 75%, in line with the TGA data

Figure 6. (a) Nyquist plots of pure BN-polymer, TEGDME/15 wt % LiClO4, and BN-polymer/TEGDME/x LiClO4 (x = 15, 20, or 25 wt % of
LiClO4) at r.t. (b) Ionic conductivity at r.t. of TEGDME/15 wt % LiClO4 reference and BN-polymer-based SSEs as a function of LiClO4 content.
(c) Arrhenius plots of ionic conductivity vs reciprocal absolute temperature for TEGDME, liquid TEGDME/15 wt % LiClO4, and BN-polymer/
TEGDME/15 wt % LiClO4 electrolytes. (d) Current vs time profile of a symmetrical Li/BN-polymer/TEGDME/15 wt % LiClO4/Li cell
configuration after applying a DC voltage of 10 mV on the cell for determining the Li+ transfer number.

Table 2. Characteristic Properties of the Prepared SSEs at r.t. as a Function of Lithium Salt Content; t: Thickness, A: Surface
Area of the Specimen, Rb: Bulk Electrolyte Resistance, and σ: Ionic Conductivity

wt %

sample BN-polymer TEGDME LiClO4 t (cm) A (cm2) Rb (Ω) σ (S cm−1)

0 100 0.018 1.33
1 85 15 0.02159 1.33 526 3.08 × 10−5

2 42.5 42.5 15 0.02451 0.79 2060 1.51 × 10−5

3 40 40 20 0.03 0.79 5580 6.80 × 10−6

4 37.5 37.5 25 0.036 0.79 20586 1.50 × 10−6

Table 3. Room Temperature (25 °C) and 100 °C Values of Ionic Conductivity as Well as Activation Energy Values for the
TEGDME, Liquid TEGDME/15 wt % LiClO4, BN-Polymer/TEGDME/15 wt % LiClO4 Electrolytes

sample σ (S cm−1) 25 °C σ (S cm−1) 100 °C Ea (eV) 25−100 °C
pure TEGDME 1.62 × 10−8 4.43 × 10−8 0.12
liquid TEGDME/15 wt % LiClO4 3.08 × 10−5 1.18 × 10−4 0.20
BN-polymer/TEGDME/15 wt % LiClO4 1.51 × 10−5 2.75 × 10−4 0.38
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on the pristine BN-polymer (Figure S30). The DSC results
(Figure S42b) for BN-polymer/TEGDME/LiClO4 in the
range 30−250 °C show no endothermic peak associated with
melting, which is a further demonstration of the amorphous
nature of the polymer and the polymer−salt systems. The
absence of a temperature of glass transition suggests the high
rigidity of BN-polymer, possibly related to the blocking of
segmental motion, which would be consistent with the low
conductivity. The electrochemical stability of the highest
conducting SSE system was also studied with linear sweep
voltammetry (LSV) and cyclic voltammetry (CV) using a
stainless steel working electrode and Li metal as the reference
and counter electrodes. The SSE system proved to be
electrochemically stable between 1.84 and 3.70 V versus Li/
Li+ with no decomposition of any of the components in this
potential region (Figure S43a). The CV responses for seven
cycles (Figure S43b) present redox peaks around 1.55 and at
3.86 V corresponding to anodic oxidation and cathodic
reduction, respectively. While no changes in the redox peak
voltages are observed during the cycles, the overlapping of the
sweeps indicates that the charge-transfer reaction at the
interface between the solid electrolyte and Li metal is
reversible. From the CV study, the range of electrochemical
stability goes from 2.00 to 3.60 V, which is in very good
accordance with LSV results (Figure S43a). Finally, the Li-ion
transference number (tLi+) was evaluated following the
potentiostatic polarization method. A symmetric Li/BN-
polymer/TEGDME/15 wt % LiClO4/Li cell configuration
was used in this study, and a DC polarization with 10 mV
potential was applied until the current reached a steady state
(Figure 6d). The initial total current decreases with time from
1.405 μA and reaches a steady state value of 0.238 μA after 18
h. The interfacial bulk resistance increases from 2260 to 21,713
Ω through polarization. Thus, the BN-polymer/TEGDME/15
wt % LiClO4 electrolyte presents a transference number of
about 0.2, which is in the range of those observed for
polyethylene glycol (PEG)-based electrolytes.56

■ CONCLUSIONS
In conclusion, we have reported on a unique BN-doped gel
material obtained through a polymerization reaction exploiting
the [4 + 2] cycloaddition with CO extrusion between B-
ethynyl-substituted borazine and a suitable biscyclopentadie-
none derivative. Considering that only a few examples of [4 +
2] cycloadditions are reported on alkynes directly bonded to
boron atoms,59−61 to the best of our knowledge, this is the first
example of a Diels Alder cycloaddition for a B-alkynyl
functionalized borazine. Solid-state 13C NMR, solid-state 11B
NMR, and Fourier-transform infrared (FT-IR) spectroscopic
characterization were used to confirm the formation of a BN-
doped polymeric material, which was characterized by
comparison with the monomeric unit. The new BN-doped
polyphenylenic material efficiently forms organogels in
chlorinated solvents, producing the only example to date of a
borazine-doped gel. Rheological investigations confirmed the
formation of the gel and allowed us to estimate the shear
modulus, the mesh size, and the crosslinking density in the gel.
Since the organogel material has high thermal and chemical
stability, it was integrated as a support component in a SSE for
lithium-ion batteries. In particular, the SSE with BN-polymer/
TEGDME/15 wt % LiClO4 composition exhibits an Arrhenius
behavior and a r.t. ionic conductivity of 1.51 × 10−5 S cm−1

with a Li+ transference number of about 0.2, which is

comparable to that of PEG-based electrolytes. Furthermore,
the electrical conductivity studies suggest an enhanced
performance of the 15 wt % SSE at higher temperatures.
This result represents a stepping stone toward future potential
applications of BNC materials in the field of lithium-ion
batteries.

■ EXPERIMENTAL SECTION
Instrumentation. Thin-layer chromatography was conducted on

pre-coated aluminum sheets with 0.20 mm Merk Millipore silica gel
60 with fluorescent indicator F254. Column chromatography was
carried out using Merck Gerduran silica gel 60 (particle size 40−63
μm). Melting points were measured using a Gallenkamp apparatus in
open capillary tubes and have not been corrected. NMR spectra were
recorded with a Bruker Fourier 300 MHz spectrometer equipped with
a dual (13C, 1H) probe, a Bruker AVANCE III HD 400 MHz NMR
spectrometer equipped with a Broadband multinuclear (BBFO)
SmartProbe, or a Bruker AVANCE III HD 500 MHz spectrometer
equipped with Broadband multinuclear (BBO) Prodigy CryoProbe.
1H spectra were obtained at 500, 400, or 300 MHz, 13C spectra were
obtained at 75, 100, or 126 MHz, and 11B were obtained at 128 or
224 MHz; all spectra were obtained at r.t. if not otherwise stated.
Chemical shifts were reported in ppm according to tetramethylsilane
using the solvent residual signal as an internal reference (CDCl3: δH =
7.26 ppm, δC = 77.16 ppm; CD2Cl2: δH = 5.32, δC = 54.00, C6D6 δH =
7.16 ppm, δC = 128.6). Coupling constants (J) were given in hertz.
Resonance multiplicity was described as s (singlet), d (doublet), t
(triplet), dd (doublet of doublets), dt (doublet of triplets), td (triplet
of doublets), q (quartet), m (multiplet), and bs (broad signal).
Carbon spectra were acquired with a complete decoupling for the
proton. LF NMR was performed at 20 °C with a Bruker Minispec mq
20 (0.47 T, Germany). The determination of the average water
protons transverse (spin−spin) relaxation time (T2m) was performed
according to the CPMG sequence (Carr−Purcell−Meiboom−Gill)
{90°[−τ − 180° − τ(echo)]n − TR} with a 8.36 μs wide 90° pulse, τ
= 250 μs, and TR (sequences repetition rate) equal to 5 s. Solid-state
NMR 1H → 13C CPMAS NMR spectra were recorded with a Bruker
Avance III HD spectrometer at 9.4 T [Larmor frequencies: 400.2
MHz (1H), 100.6 MHz (13C)] using ramped CP for the borazine
precursor 2, the reference 3, and the BN-polymer material, with
magic angle spinning frequencies of 10, 12, and 12 kHz, respectively.
11B MQMAS NMR spectra were recorded with a Bruker Avance III
HD spectrometer at 9.4 T [Larmor frequency: 128.4 MHz (11B)]
using a four-pulse split-t1 sequence with the indirect dimension scaled
to have the same contribution from the isotropic shift as the direct
dimension (please refer to the Supporting Information for more
details). Powder XRD data for the crystallized sample of 3 (prepared
by diffusion of MeOH into a solution of 3 in CH2Br2) were recorded
at 21 °C on a Bruker D8 diffractometer (Ge-monochromated CuKα1
radiation; transmission mode; Våntec detector covering 3° in 2θ; 2θ
range, 4° to 50°; step size, 0.016°; data collection time, 119.5 hr). IR
spectra were recorded with a Shimadzu IR Affinity 1S FTIR
spectrometer in ATR mode with a diamond mono-crystal. Mass
spectrometry: (i) high-resolution ESI mass spectra were obtained with
a Waters LCT HR TOF mass spectrometer in the positive or negative
ion mode. (ii) High-resolution MALDI mass spectra were obtained
with a Bruker Autoflex speed MALDI-TOF instrument; the sample
was prepared with a 1:1 ratio of sample to the matrix DCTB (15 mg/
mL) in CH2Cl2; all these analyses were carried out at Cardiff
University. Rheological measurements were performed using a stress-
controlled rotational rheometer (Haake Mars Rheometer, 379−0200
Thermo Electron GmbH, Karlsruhe, Germany) equipped with parallel
plate geometry (PP35, ϕ = 35 mm, serrated surfaces to avoid slippage
at the wall). The measuring device was kept at 10 °C inside a glass
bell at saturated conditions to avoid evaporation effects. SSEs. TGA
was performed using a TGA/SDTA-851 instrument from METTLER
TOLEDO at a heating rate of 10 °C min−1 from room temperature to
1000 °C under N2 flow. DSC was performed with a METTLER
TOLEDO DSC-1 STARe system instrument under a N2 flow at a
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ramp rate of 10 °C min−1 in the temperature range of 30−250 °C.
Powder XRD was performed with a STOE StadiP X-ray
diffractometer with Cu Kα1 radiation (λ = 1.5418 Å) from 2θ = 1.5
up to 60° with a 0.02° increment using an operation voltage and
current of 40 kV and 40 mA, respectively. SEM images were obtained
with a FEI XL30 FEG equipped with a Raith laser interferometer-
controlled stage operated at 10 kV and the Elphy Plus software.
Electrochemical measurements of the optimized films of BN-
polymer/TEGDME/LiClO4-based SSEs were studied using a Bio-
logic Science Instruments VMP-300 potentiostat analyzer.
Materials and Methods. Synthesis. Chemicals were purchased

from Sigma-Aldrich, Acros Organics, TCI, Apollo Scientific, Alfa
Aesar, and Fluorochem and were used as received. Solvents were
purchased from Fisher Scientific, while deuterated solvents were from
Eurisotop and Sigma-Aldrich. THF and toluene were dried on a
Braun MB SPS-800 solvent purification system and further dried over
activated 4 Å molecular sieves. Diphenyl ether (Ph2O) was dried over
4 Å molecular sieves. Aniline was distilled from CaH2 under reduced
pressure and stored away from light in a N2 atmosphere. Aniline was
left on CaH2 overnight prior to distillation. Low-temperature baths
were prepared using different solvent mixtures depending on the
desired temperature: −84 °C with ethyl acetate/liq. N2, −10 °C with
ice/NaCl, and 0 °C with ice/H2O. Anhydrous conditions were
achieved by drying Schlenk tubes or two-neck flasks by flaming with a
heat gun under vacuum and purging with N2. The inert atmosphere
was maintained using N2-filled balloons equipped with a syringe and
needle that was used to penetrate the silicon stoppers used to close
the flask’s necks. Additions of liquid reagents were performed using
plastic syringes. Degassing of solutions was performed using the
freeze−pump−thaw procedure: solutions were frozen using liquid N2
and kept under vacuum for 10 min before thawing. Alternatively,
degassing was performed by bubbling N2 in the reaction solution
under sonication for at least 10 min. Molecular sieves (4 Å) were
activated by heating at 165 °C under vacuum overnight and by further
heating with heat gun under vacuum immediately before use. All
reactions were performed in dry conditions and under inert
atmosphere unless otherwise stated. All procedures for the synthesis
are reported in the Supporting Information. SSE. Lithium perchlorate
LiClO4 (battery grade) was obtained from Acros and used without
further purification. TEGDME from Sigma-Aldrich was dried under
vacuum at 70 °C for 48 h before use. CH2Cl2 and THF (spectroscopy
grade) were purchased from VWR and were used as received.
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(2) Hammer, B. A. G.; Müllen, K. Dimensional evolution of
polyphenylenes: Expanding in all directions. Chem. Rev. 2016, 116,
2103−2140.
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