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ABSTRACT: Enhanced sampling methods are indispensable in
computational chemistry and physics, where atomistic simulations
cannot exhaustively sample the high-dimensional configuration space of
dynamical systems due to the sampling problem. A class of such
enhanced sampling methods works by identifying a few slow degrees of
freedom, termed collective variables (CVs), and enhancing the sampling
along these CVs. Selecting CVs to analyze and drive the sampling is not
trivial and often relies on chemical intuition. Despite routinely
circumventing this issue using manifold learning to estimate CVs
directly from standard simulations, such methods cannot provide mappings to a low-dimensional manifold from enhanced sampling
simulations, as the geometry and density of the learned manifold are biased. Here, we address this crucial issue and provide a general
reweighting framework based on anisotropic diffusion maps for manifold learning that takes into account that the learning data set is
sampled from a biased probability distribution. We consider manifold learning methods based on constructing a Markov chain
describing transition probabilities between high-dimensional samples. We show that our framework reverts the biasing effect,
yielding CVs that correctly describe the equilibrium density. This advancement enables the construction of low-dimensional CVs
using manifold learning directly from the data generated by enhanced sampling simulations. We call our framework reweighted
manifold learning. We show that it can be used in many manifold learning techniques on data from both standard and enhanced
sampling simulations.

1. INTRODUCTION
Among the main challenges in atomistic simulations of
chemical systems is the significant temporal disparity between
the timescales explored in standard atomistic simulations and
the long timescales observed in experiments. Atomistic
simulations can only reach timescales of up to milliseconds
and thus cannot exhaustively sample the high-dimensional
phase space, leading to the so-called sampling problem that has
both theoretical and computational consequences for dynam-
ical systems. The reason for the sampling problem is that these
systems are characterized by many metastable states (i.e., high-
probability regions) separated by energy barriers (i.e., low-
probability regions) much higher than thermal energy (≫kBT).
This leads to the kinetic entrapment of the system in a single
metastable state as on the timescales obtained in standard
atomistic simulations transitions to other metastable states are
infrequent events. Such transitions between metastable states
can be related to a few slow degrees of freedom that define a
low-dimensional energy landscape. Examples of processes
exhibiting metastability include catalysis,1 phase and glass
transitions,2−4 photoactivation,5,6 and ligand dissociation.7−10

A possible resolution to the sampling problem is given by
enhanced sampling methods.11−15 Over the years, various
strategies for enhanced sampling have emerged, for example,
tempering, variational, or biasing approaches; see ref 15 for
classification and references therein. In this article, we consider

a class of such enhanced sampling methods based on the work
by Torrie and Valleau,16 which devised a framework for
enhanced sampling that modifies the Boltzmann probability
distribution by introducing a bias potential acting in a low-
dimensional space of collective variables (CVs) that corre-
sponds to slow degrees of freedom. However, identifying the
reduced space of these CVs capturing the underlying chemical
processes must be done before enhanced sampling simulations;
it is far from trivial and often relies on experience and intuition.
Consequently, many data-driven approaches are used to
perform dimensionality reduction and construct CVs using
samples directly from exploratory trajectories.17−27

An example of such data-driven approaches is manifold
learning.28 The core of most manifold learning methods is
having a notion of similarity between high-dimensional data
samples, usually through a distance metric.29−31 The distances
are integrated into a global parametrization of the data using
kernels to represent a Markov chain containing information
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about transition probabilities that can be used to learn a
smooth and low-dimensional manifold that captures the
essentials of the data. This way, we can employ dimensionality
reduction methods to learn CVs corresponding to slow degrees
of freedom. We can distinguish two main approaches that
manifold learning methods take to obtain a mapping to a low-
dimensional representation of data: (i) eigendecomposi-
tion32−40 and (ii) divergence optimization.30,31,41

When using manifold learning on dynamical data resulting
from atomistic simulations, these data must contain statistically
sufficient information about the sampled chemical process. If a
high-dimensional data set used in manifold learning does not
capture the rare transitions between metastable states, the
learned low-dimensional CVs will not capture them either.
Unbiased atomistic simulations by construction sample only a
fraction of the available configuration space and generally
capture fast equilibrium processes. Therefore, employing
unbiased simulations as learning data sets for manifold learning
methods can lead to undersampled and nonoptimal CVs that
do not capture the slow degrees of freedom corresponding to
the rare chemical processes.
We can circumvent this issue by using the learning data set

from enhanced sampling simulations, where transitions
between metastable states are more frequently observed and
are no longer rare events. However, in this case, the simulation
data set is biased and does not correspond to the real system,
as it is sampled from a biased probability distribution. Using
these biased simulation data directly in manifold learning
algorithms renders low-dimensional manifolds that are also
biased (i.e., their geometry, density, and importance) and thus
CVs that do not correspond to the chemical process.
Therefore, in manifold learning, we need to correctly take
into account that we use biased simulation data when learning
CVs from enhanced sampling simulations. Despite several
attempts in this direction,22,24,42−46 this area remains unex-
plored.
In this work, we consider the problem of using manifold

learning methods on data from enhanced sampling simulations.
We provide a unified framework for manifold learning to
construct CVs using biased simulation data, which we call
reweighted manifold learning. To this aim, we derive a pairwise
reweighting procedure inspired by anisotropic diffusion maps,
which accounts for sampling from a biased probability
distribution. We term this procedure diffusion reweighting.
Our framework considers the underlying geometry, density,
and importance of the simulation data to construct a low-
dimensional manifold for CVs encoding the most informative
characteristics of high-dimensional dynamics of the atomistic
system.

Our general framework can be used in many manifold
learning techniques on data from both standard and enhanced
sampling atomistic simulations. We show that our diffusion
reweighting procedure can be employed in manifold learning
methods that use both eigendecomposition and divergence
optimization. We demonstrate the validity and relevance of our
framework on both a simple model potential and high-
dimensional atomistic systems.

2. THEORY
In this section, we introduce the theory behind CVs (Section
2.1), enhanced sampling (Section 2.2), reweighting (Section
2.3), and biased data (Section 2.4) that we need to derive
diffusion reweighting (Section 2.5).
2.1. Collective Variables. In statistical physics, we

consider an n-dimensional system specified in complete detail
by its configuration variables x ∈ Rn. These configuration
variables indicate the microscopic coordinates of the system or
any other variables (i.e., functions of the microscopic
coordinates) relative to the studied process, for example, an
invariant representation. As a result, such a statistical
representation is generally of high dimensionality.
In general, the configuration variables x are sampled during a

simulation according to some, possibly unknown, high-
dimensional probability distribution P(x) that has a corre-
sponding energy landscape U(x) given by the negative
logarithm of the probability distribution and an appropriate
energy scale. If x consists of the microscopic coordinates, this
distribution is known and is the stationary Boltzmann
distribution

P x( )
1

e U x( )=
(1)

where U(x) is the potential energy function of the system, the
canonical partition function is xd e U x( )= , and β−1 =
kBT is the thermal energy, with T and kB denoting the
temperature and Boltzmann’s constant, respectively. Without
the loss of generality, we limit the discussion to the canonical
ensemble (NVT) here.
The high-dimensional description of the system is very

demanding to work with directly; hence, many classical
approaches in statistical physics were proposed to introduce
a coarse-grained representation, for example, the Mori−
Zwanzig formalism47,48 or Koopman’s theory.49

To reduce the dimensionality of the high-dimensional space
and obtain a more useful representation with a lower number
of degrees of freedom, we map the configuration variables to a
limited number of functions of the configuration variables, or

Figure 1. Target mapping from high-dimensional samples of configuration variables x to a low-dimensional manifold spanned by CVs z. In our
framework, learning CVs is equivalent to finding the optimal parametrization of the target mapping z = ξ(x) [eq 2]. The target mapping performs
the reduction from Rn to Rd so that the relation pkl between the high-dimensional samples xk and xl is preserved in the relation qkl in a low-
dimensional manifold between the CV samples zk and zl. For a detailed discussion, see Sections 2.5 and 3.2.
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so-called CVs. A corresponding target mapping ξ is the
following

x x x( ) ( )k k
d

1{ } = (2)

where d is the number of CVs (d ≪ n) and {ξk} are CVs.
The parametrization of the target mapping is performed to

retain the system characteristics after embedding into the low-
dimensional CV space (Figure 1). In contrast to the
configuration variables x, there are several requirements that
the optimal CVs should fulfill, that is, (i) they should be few in
number (i.e., the CV space should be low-dimensional), (ii)
they should correspond to slow modes of the system, and (iii)
they should separate relevant metastable states. If these
requirements are met, we can quantitatively describe rare
events.
Let us assume that the target mapping and the CVs are

known. Then, we can calculate the equilibrium marginal
distribution of CVs by integrating over other variables

P Pz x z x x( ) d ( ( )) ( )= (3)

where the δ-distribution is δ(z − ξ(x)) = ∏kδ(zk − ξk(x)).
Having the marginal equilibrium probability, we can define

the free-energy landscape in the CV space as the negative
logarithm multiplied by the thermal energy

F Pz z( )
1

log ( )=
(4)

In practice, free-energy landscapes for systems severely
affected by the sampling problem are characterized by many
metastable states separated by high kinetic barriers that impede
transitions between metastable states. Consequently, on the
timescales that we can simulate, the system stays kinetically
trapped in a single free-energy minimum and cannot explore
the CV space efficiently.
2.2. Enhanced Sampling. CV-based enhanced sampling

techniques overcome the sampling problem by introducing a
bias potential V(z) acting in the CV space designed to enhance
CV fluctuations. The functional form of the bias depends on
the enhanced sampling method used.12,15,16,50−52 The bias
potential can be static16 or adaptively constructed on the fly
during the simulation.12,15,50−52 Regardless of how the bias
potential is constructed, it leads to a biased CV distribution
that is smoother and easier to sample than the unbiased
distribution [eq 3]

P z z x( ) ( ( ))
1

eV V
V

F Vz z( ( ) ( ))= = +

(5)

where ⟨·⟩V denotes the biased ensemble average, and the
biased partition function is zd eV

F Vz z( ( ) ( ))= + .
CV-based enhanced sampling methods construct the bias

potential to reduce or entirely flatten free-energy barriers. Let
us consider well-tempered metadynamics,51 which is the
method we employ in this work. Well-tempered metadynamics
uses a history-dependent bias potential updated iteratively by
periodically depositing Gaussians centered at the current
location in the CV space. The bias potential is given as

i
k
jjjj

y
{
zzzzV G Vz z z z( ) ( , )exp

1
1

( )
l

l l=
(6)

where Gσ(z, zl) is a scaled Gaussian kernel with a bandwidth
set σ, zl is the center of l-th added Gaussian, and γ is a bias
factor that determines how much we enhance CV fluctuations.
Well-tempered metadynamics convergences to a biased CV
distribution given by the so-called well-tempered distribution

P
P

P
z

z
z z

( )
( )

d ( )V

1/

1/= [ ]
[ ] (7)

which we can view as sampling an effective free-energy
landscape F/γ with barriers reduced by a factor of γ.
2.3. Reweighting. Biasing results in a gradual divergence

from the equilibrium CV distribution to a smoother and easier
to sample biased CV distribution, that is, from eq 3 to eq 7 in
the case of well-tempered metadynamics. Consequently, the
importance of each sample is given by a statistical weight
needed to account for the effect of the bias potential when
obtaining equilibrium properties such as the free-energy
landscape. This contrasts with unbiased simulations where
samples are equally important as they are sampled according to
the equilibrium distribution.
A functional form of the weights depends on a particular

method. Generally, for methods employing a bias potential
V(z), the weight associated with a CV sample z can be written
as

w z( ) e V z( )= (8)

In the case of a static bias, the weights are given by eq 8. In
contrast, well-tempered metadynamics uses an adaptive bias
potential [eq 6], and we need to account for a time-dependent
constant given by12,53

( )
( )

c
V

V

z z

z z

1
log

d exp ( )

d exp ( )

1

1
1

=
(9)

which is independent of z. We can then redefine the weights as

w z( ) e V cz( ( ) )= (10)

where V(z) − c is called the relative bias potential.
Note that in the abovementioned discussion, we assume that

the dependence of the bias potential on the simulation time is
implicit. We can ignore the time dependence once the
simulation reaches convergence; then, the relative bias
potential V(z) − c is quasi-stationary and does not change
considerably (the bias potential V(z) and the time-dependent
constant c can still increase, while the relative bias potential
converges). In practice, when performing reweighting, we
ignore a short initial transient part of the simulation, where the
relative bias potential is still changing considerably.
The standard reweighting works by employing the weights

to obtain the stationary equilibrium distribution from the
biased CV distribution, that is, P(z) ∝ w(z)PV(z). The
unbiased probability distribution P(z) can be computed by
histograming or kernel density estimation, where each sample z
is weighted by eq 8. This is done routinely in advanced
simulation codes, for example, PLUMED.54,55

Manifold learning methods cannot use the standard
reweighting to unbias pairwise relations between samples.
Instead, a nontrivial approach to reweighting in the form of
r(xk, xl) is required, where r(xk, xl) is a pairwise reweighting
factor that characterizes the importance of the relation between
samples xk and xl.
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2.4. Biased Data for Manifold Learning. Given the
requirements for the optimal CVs (Section 2.1), it is nontrivial
to provide low-dimensional CVs knowing only the microscopic
coordinates. Instead, we often resort to an intermediate
description and select a large set of the configuration variables
(often called features). For example, this might be internal
coordinates such as distances, dihedral angles, and so forth.
These configuration variables then define a high-dimensional
space, which we reduce to the optimal low-dimensional CVs.
For a list of helpful configuration variables to characterize
different chemical systems, see, for example, the PLUMED

documentation.56

Consider data obtained from enhanced sampling simulations
in which we record or select samples of the high-dimensional
configuration variables x. These data define the training set
from which manifold learning methods construct a low-
dimensional manifold. The training data set can be generally
expressed as

D wx x( , ( ))V k
n

k k
K

1= { } = (11)

where K is the number of samples, and the sample set is
augmented by the corresponding statistical weights. Note that
the weights depend on x through CV mapping [eq 2].
2.5. Diffusion Reweighting. Geometrically, the existence

of a low-dimensional representation assumes that the high-
dimensional dynamical system populates a low-dimensional
manifold. This assumption is known as the manifold
hypothesis.42 Under this view, the fast degrees of freedom
are adiabatically slaved to the dynamics of the slow degrees of
freedom, which correspond to the optimal CVs due to the
presence of fast equilibration within the metastable states.
Methods leveraging this assumption belong to a class of
manifold learning techniques.
The core of manifold learning methods appropriate for

dimensionality reduction in dynamical systems is the
construction of a random walk through a Markov chain on
the data set, where the transition probabilities pkl depend on a
kernel function and distances between samples. Depending on
how the transition probabilities pkl are used to find a target
mapping to a low-dimensional manifold, we can distinguish
two main approaches: (i) eigendecomposition32−40 and (ii)
divergence optimization.30,31,41 In manifold learning methods
using eigendecomposition, eigenvalues and eigenvectors are
used to construct the target mapping. In methods employing
divergence optimization, however, the transition probabilities
pkl are used to find a Markov transition matrix qkl constructed
from low-dimensional samples (Figure 1).
Although many kernels can be considered in manifold

learning, a typical choice in spectral embedding methods is a
Gaussian kernel dependent on Euclidean distances29,36

i
k
jjj y

{
zzzp G x x x x( , ) exp

1
kl k l k l

2=
(12)

where ε is a positive parameter chosen depending on the given
data set, as it induces a length scale that should match
the distance between neighboring samples. Equation 12
models the Markov transition matrix if every row is normalized
to unity.
However, this construction includes information only on the

manifold geometry given by the pairwise distances. The
remaining components required for our reweighting approach
are the density and importance of the data.

For the Markov transition matrix, the reweighting procedure
must be reformulated to include the weights w(xk) and w(xl)
for a pair of samples xk and xl, respectively. Our plan is to
derive such a pairwise reweighting formula, where each
pairwise transition probability given by the Markov transition
matrix M(xk, xl) depends also on a reweighting factor r(xk, xl).
We assume that a reweighted Markov transition matrix can be
defined in a simple form

M r Gx x x x x x( , ) ( , ) ( , )k l k l k l (13)

where M is row-stochastic. The Markov transition matrix then
models the unbiased Markov chain, where each entry is the
probability of the jump from xk to xl.
To account for the manifold density, we need to employ a

density-preserving kernel. In contrast to Laplacian eigenmaps
that are appropriate for data sampled uniformly,29,35 diffusion
maps allow working with data sampled from any underlying
probability distribution. Specifically, let us consider the
pairwise transition probabilities based on an anisotropic
diffusion kernel given by36

G
x x

x x
x x

( , )
( , )

( ) ( )k l
k l

k l
=

[ ] [ ] (14)

where ρ(x) is a kernel density estimator and α ∈ [0, 1] is the
anisotropic diffusion parameter, which is crucial to properly
include information about the data density and importance.37

Based on the anisotropic diffusion parameter, a diffusion map
can be used to parametrize a family of low-dimensional
embeddings.
In eq 14, the density estimator ρ(xk) at a sample xk must be

reweighted to account on the data importance

w Gx x x x( ) ( ) ( , )k
l

l k l=
(15)

which is a weighed kernel density estimate up to an
unimportant multiplicative constant. After the reweighting,
the density estimator characterizes the unbiased density, in
contrast to the biased density estimate that is given as

Gx x x( ) ( , )V k
l

k l=
(16)

where the subscript V denotes that the density estimate is
calculated under the bias potential V.
In theory, if the underlying probability distribution of high-

dimensional samples is known analytically, it is possible to
express ρ directly from this distribution;39 for example, from a
Boltzmann distribution [eq 1] if the samples are represented
by the microscopic coordinates. However, this is valid only in
the case of sufficient sampling and is thus rarely reachable in
practice. Moreover, the high-dimensional distribution P(x) of
the configuration variables is unknown in general (Section
2.1). For this reason, we write ρ as a kernel density estimate
[eq 15].
We can understand the meaning behind the anisotropic

diffusion kernel by considering eq 14. The dynamics described
by eq 14 is local as samples closer to each other have a higher
probability of being close in the respective low-dimensional
manifold and vice versa in the case that they are farther apart.
This information about the underlying geometry is given by
Gε(xk, xl), which requires that the transition probabilities are
penalized between the geometrically distant samples xk and xl.
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The density and importance of samples are encoded in the
unbiased density estimates [eq 15].
Depending on the α value in eq 14, three interesting cases of

diffusion maps can be considered asymptotically.37 Namely, (i)
for α = 1/2, eq 14 corresponds to the Markov chain that is an
approximation of the diffusion given by the Fokker−Planck
generator, with the underlying data density proportional to the
equilibrium density, allowing us to approximate the long-time
behavior of the microscopic coordinates. Other values of α are
also possible, for example, (ii) for α = 0, we get the classical
normalized graph Laplacian, and (iii) for α = 1, we ignore the
underlying density, and the diffusion operator approximates
the Laplace−Beltrami operator. We note that this asymptotic
behavior holds in the limit of infinite data K → ∞ and ε → 0
when considering the microscopic coordinates. As we are
interested in finding low-dimensional CVs, the case for α = 1/2
is appropriate to model asymptotically the slowest degrees of
freedom, accounting for both the underlying geometry and
density of the manifold.
As we have all the required ingredients for the reweighting of

Markov transition matrices, we focus on deriving the
reweighting factor. Here, we discuss only an outline, while a
detailed derivation is provided in Appendix A.
Based on eq 14, the Markov transition matrix can be

estimated by weighting each Gaussian term and normalizing it
so that it is row-stochastic

M
w

w
x x

x x x
x x x

( , )
( ) ( , )

( ) ( , )k l
l k l

m m k m
=

(17)

Next, by inserting eq 14 to eq 17, we can see that the
Markov transition matrix M can be written also using the
Gaussian kernels

M
w w

Gx x
x

x
x

x
x x( , )

( )
( )

( )
( )

( , )k l
k

k

l

l
k l[ ] [ ] (18)

where we can recognize the reweighting factor by comparing
the result to eq 13. Therefore, we get the following expression

r
w w

x x
x

x
x

x
( , )

( )
( )

( )
( )k l

k

k

l

l
=

[ ] [ ] (19)

We can also approximate the reweighting factor by rewriting
eq 19 with the biased density estimate [eq 16]

r
w w

w

w

w

w

w w

x x
x

x

x

x

x

x x

x

x x

x
x

x
x

( , )
( )

( )

( )

( )

( )

( ) ( )

( )

( ) ( )

( )
( )

( )
( )

k l
k

k

l

l

k

k V k

l

l V l

k

V k

l

V l

=

=
(20)

where we set α = 1/2. Equation 20 is the final form of the
reweighting factor that we use here. A detailed derivation of eq
20 is provided in Appendix A. Although the derivation of eq 20
is presented using the Gaussian kernel, our framework can be
used in other manifold learning methods, as demonstrated in
Section 3.
Equation 18 denotes an unbiased Markov chain with the

transition probability from xk to xl in one time step t given by

t t Mx x x x x xPr ( 1) ( ) ( , )l k k l{ + = | = } = (21)

We term our reweighting procedure diffusion reweighting.
We postulate that the derived Markov transition matrix [eq 18]
has the following three properties that make the construction
of eq 21 from enhanced sampling simulations feasible. Namely,
the Markov transition matrix encodes the information about:

1 Geometry Gε(xk, xl): The probability of transitions
between samples lying far from each other is low, and it
is high for those in close proximity.

2 Density x( )l[ ] : The anisotropic diffusion constant α ∈
[0, 1] is used as a density-scaling term, as in diffusion
maps. See eq 14 and the corresponding description.

3 Importance w(xl): The statistical weights from enhanced
sampling decide according to the bias if a sample is
important, that is, the metastable states where the
weights are higher are more important than high free-
energy regions.

2.6. Implementation. Our framework is implemented in a
development version of PLUMED 2.754,55 as the LowLearner
module and will be made publicly available in the coming
future. Its initial implementation incorporating several
algorithms used in this work can be accessed at Zenodo
(doi: 10.5281/zenodo.4756093) and from PLUMED-NEST55

repository under plumID:21.023 at https://plumed-nest.org/
eggs/21/023/.

3. REWEIGHTED MANIFOLD LEARNING
We incorporate diffusion reweighting into several manifold
learning methods and apply them to find a low-dimensional
representation in a model system and high-dimensional
atomistic simulation problems represented by biased simu-
lation data. Specifically, we consider diffusion reweighting in
diffusion maps37−39 and recently introduced stochastic
embedding methods for learning CVs and adaptive biasing.22,24

To demonstrate the validity of our framework, we construct
a diffusion map for standard testing systems such as a particle
moving on an analytical potential and alanine dipeptide. For
the stochastic embedding methods, we choose a mini-protein
chignolin. For the two atomistic systems, alanine dipeptide and
chignolin, we describe the systems using two different types of
high-dimensional representations (distances and dihedral
angles, respectively) to show that the framework can work
regardless of the chosen configuration variables.
3.1. Diffusion Maps. We start by considering the case of

diffusion maps, on which we base the derivation of the
reweighting factor r(xk, xl) (Section 2.5). By rewriting the
diffusion kernel using the biased density estimates [eq 20], we
can use it to construct a low-dimensional embedding from a
biased data set. We directly use eq 18 to estimate the transition
probabilities, while using eq 20, to account for the sampling
from any biased distribution.
3.1.1. Target Mapping ξ(x): Eigendecomposition.With the

exemption of the reweighting factor, further steps in our
approach to diffusion maps proceed as in its standard
formulation.37 Let us briefly recap these steps.
In diffusion maps, the spectral decomposition of the Markov

transition matrix M is performed to define a low-dimensional
embedding, Mψ = λψ, where {λl} and {ψl} are eigenvalues and
eigenvectors, respectively. The eigenvalues are related to the
effective timescales as l

1
log l

= and can be used to

determine the slowest processes in the dynamics. Then, the
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eigenvectors corresponding to the largest eigenvalues define a
reduced space. Given this interpretation, the target mapping
[eq 2] is defined by the diffusion coordinates

x x( ) ( )k k k
d

0
1= { } = (22)

where ξ(x) is computed using the first d eigenvalues and
eigenvectors, with the equilibrium density represented by the
zeroth coordinate λ0ψ0. In eq 22, the spectrum of the
eigenvalues {λl} is sorted by the nonincreasing value, λ0 = 1
> λ1 ≥··· ≥ λd−1.
The truncation up to d − 1 of eq 22 for metastable systems

corresponds to a negligible error on the order of O(λd/λd−1).
37

In other words, this assumption relates to a large spectral gap
that separates slow degrees of freedom ( )d 1> and fast
degrees of freedom ( )d 1< . For a detailed description behind
the construction of the diffusion coordinates from unbiased
data, we refer to works by Coifman.36,38,39 By inspecting the
spectral gap obtained via the eigendecomposition of the
reweighted Markov transition matrix, it is possible to verify
that the selected high-dimensional representation sampled
from a biased distribution contains enough information to
render a physically meaningful low-dimensional manifold.

3.1.2. Example: Model Potential. As a simple and
illustrative example of applying diffusion reweighting within
the diffusion map framework, we consider a case where
dimensionality reduction is not performed. Namely, we run an
enhanced sampling simulation of a single particle moving along
the x variable on a one-dimensional potential U(x) with three
Gaussian-like metastable states with different energy depths
and energy barriers between the minima [Figure 2a]. In this
system, the highest energy barrier is ∼50 kBT, which makes the
transitions from the deepest minimum rare. The dynamics is
modeled by a Langevin integrator57 using temperature T = 1, a

friction coefficient of 10, and a time step of 0.005. We employ
the PESMD code in the PLUMED

54,55 plugin. We bias the x
variable using well-tempered metadynamics51 with a bias factor
of γ = 10. Further details about the simulation are given in
Supporting Information in Section S1A.
We present our results in Figure 2b. We can see that the

nonreweighted (without applying diffusion reweighting)
diffusion map learns the biased distribution (given by λ0ψ0)
along the coordinate x, where the three energy minima
correspond to the maxima of the biased distribution.
Additionally, the first two diffusion coordinates are not
orthogonal, and there is a lack of separation between the
metastable states.
In contrast, the reweighted diffusion map can represent the

equilibrium density (λ0ψ0), where only the first energy
minimum is populated due to the high-free energies separating
the states. The λ0ψ0 and λ1ψ1 diffusion coordinates properly
separate the samples. We can see that λ1ψ1 is almost marginal
due to the lack of additional dimensions for the potential
energy.
The example presented in Figure 2 is, of course, a trivial case

in which no dimensionality reduction is performed; however, it
indicates that diffusion reweighting can be used to reweight the
transition probabilities successfully and that the standard
diffusion map trained on the biased data captures an incorrect
representation.
3.1.3. Example: Alanine Dipeptide. As a next example, we

consider alanine dipeptide (Ace-Ala-Nme) in a gas phase
described using the Amber99-SB force field.58 The data set is
generated by a 100 ns molecular dynamics simulation59,60

using the GROMACS 2019.2 code61 patched with a development
version of the PLUMED

54,55 plugin. The simulation is performed
by well-tempered metadynamics51 at 300 K using the
backbone dihedral angles Φ and Ψ for biasing with a bias
factor of 5. We select the Φ and Ψ dihedral angles as biasing
them is sufficient to sample accelerated transitions between
several metastable states of alanine dipeptide. Using this setup,
the convergence of the bias potential is obtained quickly.
Further details about the simulation are given in Supporting
Information (Section S1B).
Using diffusion maps, we reduce the high-dimensional space

consisting of all pairwise distances between the heavy atoms (n
= 45) to two dimensions. The diffusion maps are constructed
using ε = 0.078 estimated as the median of the pairwise
distances.

Figure 2. Diffusion maps generated for the reweighted and nonreweighted (without applying diffusion reweighting) biased simulation of a particle
in simple (a) one-dimensional potential U(x), where the energy barriers separating the deepest minimum are on the order of 50 kBT, and the
corresponding transitions from this state are rare events. (b) Comparison between the nonreweighted (blue) and reweighted (red) diffusion maps:
the equilibrium densities along the coordinate x and diffusion coordinates λ0ψ0 vs λ1ψ1, with coloring according to the x value. The enhanced
sampling simulation is performed using well-tempered metadynamics51 with a bias factor of 10 by employing the PESMD code in the PLUMED

54,55

plugin.
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We present diffusion reweighting results for alanine
dipeptide in Figure 3. The eigenvalues of the Markov transition
matrix have a spectral gap (i.e., timescale separation) with only
a few eigenvalues close to one and all other eigenvalues much
smaller than one. Thus, only the first few eigenvectors are
needed to approximate the diffusion coordinates [eq 22], and
thus the target mapping to the CV space. The eigenvalues {λl}
indicate that the spectral gap is slightly wider for the
reweighted transition probability matrix, as can be seen in
Figure 3b. Consequently, the effective timescales l

1
log l

=
calculated from the eigenvalues indicate that the reweighted
diffusion map corresponds to slower processes; see Supporting
Information (Figures S3 and S4).
We can see that the nonreweighted approach cannot

correctly account for the transition probabilities calculated
based on the biased simulation, as we expected. The transitions
between the metastable states are so frequent that the zeroth
diffusion coordinate (the equilibrium density) suggests only
one metastable state [Figure 3c]. In Supporting Information
(Figure S2), we show that the separation of samples in the
reweighted diffusion map is much better than for the
nonreweighted diffusion map. It resembles a “typical” diffusion
map from unbiased data sets.
In the reweighted case, the low-dimensional coordinates can

distinguish between the relevant metastable states. Addition-
ally, using eq 20, the zeroth diffusion-map coordinate, λ0ψ0(x),
correctly encodes the information about the Boltzmann
equilibrium distribution of alanine dipeptide in the dihedral
angle space, which is not possible using the standard (i.e.,
nonreweighted) diffusion map in the case of biased simulation
data [Figure 3c]. By comparing the reweighted diffusion map
to a diffusion map constructed from an unbiased parallel
tempering replica at 300 K, we can see that the embeddings
and eigenvalues are virtually identical; see Supporting
Information (Figure S5).
These results further corroborate our findings and show that

when performing a dimensionality reduction from data
resulting from enhanced sampling, the reweighting factor [eq

20] is needed to revert the effect of biasing in the transition
probability matrix.
3.2. Stochastic Embeddings. Next, we move to employ

diffusion reweighting in more recent approaches. We consider
manifold learning methods devised primarily to learn CVs
from biased simulation trajectories: multiscale reweighted
stochastic embedding (MRSE)24 and stochastic kinetic embed-
ding (STKE).22 These methods use approximations of the
reweighting factor [eq 20]. Our aim is not to compare results
obtained using these methods but to present and discuss how
diffusion reweighting can be approximated and employed in
manifold learning methods other than diffusion maps.
First, let us focus on a general procedure these stochastic

embedding methods use to parametrize manifolds. Mainly, we
discuss how these methods use the Markov transition matrices
to parametrize the target mapping to low-dimensional
manifolds. The construction of the Markov transition matrix
with reweighting from biased data in each technique is
discussed in the remainder of this section.
3.2.1. Target Mapping ξθ(x): Divergence Optimization. As

mentioned above, the stochastic embedding methods belong
to the second category of manifold learning methods we
consider here, that is, based on divergence optimization. Thus,
unlike diffusion maps, the eigendecomposition is not
performed in these methods. Instead, the target mapping ξ is
parametrized based on neural networks that perform nonlinear
dimensionality reduction. The target mapping is given as

z x x: ( ) (23)

where θ = {θk} are parameters of the target mapping adjusted
such that the low-dimensional manifold of CVs is optimal with
respect to a selected statistical measure. Using eq 23, the
distance between samples in a manifold can be given as

z z x x( ) ( )k l k l= (24)

Note that in some simple cases, the mapping in eq 23 can
also be represented using a linear combination. However, deep
learning has been successful in a broad range of learning
problems, and using more intricate approximations for the

Figure 3. Reweighted diffusion maps on a peptide model system (Ace-Ala-Nme) in vacuum at 300 K simulated using well-tempered
metadynamics51 enhancing the Φ and Ψ dihedral angles and a bias factor γ = 5. The diffusion map is calculated using a high-dimensional space of
45 pairwise distances between heavy atoms. (a) Representative structure of alanine dipeptide with the dihedral angles Φ and Ψ. (b) Spectrum of
eigenvalues {λl} obtained from the eigendecomposition for the nonreweighted (blue) and reweighted (red) Markov transition matrices. (c)
Samples are shown in the dihedral angle space for the nonreweighted (blue label) and reweighted (red label) diffusion map with colors representing
the first and second diffusion-map coordinates λ0ψ0(x) and λ1ψ1(x), respectively. The color bar represents the constructed diffusion coordinates.
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mapping between high-dimensional and low-dimensional
spaces is quite common for complex data sets.62,63

The target mapping is parametrized by comparing the
Markov transition matrix M(xk, xl) = (pkl) (Section 3.2.2)
constructed from the high-dimensional samples to a Markov
transition matrix Q(zk, zl) = (qkl) built from low-dimensional
samples mapped using the target mapping [eq 23].
In STKE, we use a Gaussian kernel for Q

i
k
jjj y

{
zzzq x xexp

1
( ) ( )kl k l

2

(25)

In MRSE, we employ a one-dimensional t-distribution, as
implemented in t-SNE.31,63 Taking the target mapping as
defined in eq 23, the transition probabilities in the low-
dimensional space qkl in MRSE are

q x x(1 ( ) ( ) )kl k l
2 1+ (26)

The choice of the t-distribution for Q in MRSE is motivated
by the apparent crowding problem,31 that is, as the volume of a
small-dimensional neighborhood grows slower than the
volume of a high-dimensional one, the neighborhood is
stretched so that moderately distant sample pairs are placed
too far apart. As outlined in ref 31, the use of a heavy-tailed
distribution for the low-dimensional representation allows
moderate distances in the high-dimensional space to be
represented by much larger distances in the manifold,
encouraging gaps to form in the low-dimensional map between
the clusters present in the data, alleviating the crowding
problem to some degree.
Finally, the Markov transition matrices computed from the

high-dimensional and low-dimensional samples need to be
compared. The most common choice for such a metric is
employing a statistic distance, particularly the Kullback−
Leibler divergence

i
k
jjjjjj

y
{
zzzzzzD M Q p

p

q
( , ; ) log

k l
kl

kl

kl
KL =

(27)

where in contrast to the standard formulation of the Kullback−
Leibler divergence that compares two probability distributions,
eq 27 is computed for every pair of rows from M and Q, and
then summed. Equivalently, we can minimize the cross-
entropy,

D M Q p q( , ; ) log( )
k l

kl klCE =
(28)

as the probabilities pkl stay constant during the optimization.
There are many choices possible for the comparison between
M and Q, for example, the Jensen−Shannon divergence.22
The Kullback−Leibler divergence optimization is performed

to train the target mapping represented by a neural network.
As the target mapping is parametric, the gradients of DKL, with
respect to the parameters θ = {θk} of the neural network, can
be estimated effortlessly using backpropagation. For further
details about training neural networks, we refer to Appendix E.
3.2.2. Reweighted Markov Transitions. After explaining

how the parametric mapping is constructed in the reweighted
stochastic embeddings, we proceed to formulate the Markov
transition matrices and the reweighting factors for these
methods.
First, let us consider the reweighting performed in MRSE.24

This method employs the following reweighting factor

r w wx x x x( , ) ( ) ( )k l k l= (29)

where we neglect the biased density estimates ρV [cf. eqs 29
and 20]. The reweighting factor [eq 29] written as a geometric
mean between two statistical weights can be justified by the
fact that the bias potential is additive, as shown in eq 8, and a
geometric mean is appropriate to preserve this relation. We
note that similar reweighting procedures have been used in refs
45 46, and 64.
The Markov transition matrix in MRSE is expressed as a

Gaussian mixture, where each Gaussian is evaluated for
different ε values and reweighted using eq 29

M w Gx x x x x( , ) ( ) ( , )k l l k l
{ } (30)

where we omit the normalization constant for brevity. The sum
in eq 30 is over bandwidths that are automatically estimated
and selected to fit that data. Note that many methods can be
used for this purpose; however, to facilitate analysis, we use a
method from ref 24. As this procedure is mostly technical, for
details about estimating bandwidths and constructing the
Gaussian mixture, we refer to Appendix C.
Second, let us consider STKE. Suppose high-dimensional

samples are resampled so that each sample keeps a certain
distance away from the others. In that case, the distribution of
samples can be viewed as approximately uniform. Then, w(x)
can be replaced by the unbiased probability density estimator
ρ(x) in eq 29. Thus, the reweighting factor is given by

r x x x x( , ) ( ) ( )k l k l= (31)

which is the formula used in STKE.22,65 The corresponding
Markov transition matrix is

M Gx x x x x( , ) ( ) ( , )k l l k l (32)

where, as in eq 30, the k-th reweighting term is canceled out
during normalization.
An interesting property of the transition probabilities used

by this method is that by taking an approximation to the
normalization constant (Appendix B), we arrive at a transition
probability matrix of a similar form as in the square-root
approximation of the infinitesimal generator of the Fokker−
Planck operator66−69

M Gx x
x
x

x x( , )
( )
( )

( , )k l
l

k
k l=

(33)

for a single ε. The square-root approximation has been initially
derived by discretizing a one-dimensional Smoluchowski
equation.70 It can also be shown that eq 33 can be obtained
using the maximum path entropy approach.71,72

As many algorithmic choices are available for each procedure
incorporated in the reweighted stochastic embedding frame-
work, it is difficult to directly compare MRSE and STKE.
However, we aim to discuss how approximations of the
reweighting factor are employed in these methods and how
they can be used to learn CVs from biased data. Thus, in the
abovementioned discussion, we focus on the reweighting
procedures for the Markov transition matrices used by these
methods. To compare the parameters used by these methods,
see Appendix E.
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3.2.4. Example: Chignolin. As an example for the two
stochastic embedding methods, MRSE and STKE, we consider the
folding and unfolding of a ten amino-acid miniprotein,
chignolin (CLN025),73 in the solvent. We employ the
CHARMM27 force field74 and the TIP3P water model,75

and we perform the molecular dynamics simulation59,60 using
the GROMACS 2019.2 code61 patched with a development
version of the PLUMED

54,55 plugin. Our simulations are
performed at 340 K for easy comparison with other simulation
data, also simulated at 340 K.76,77 We perform a 1 μs well-
tempered metadynamics simulation with a large bias factor of
20. We select a high bias factor to illustrate that our framework
is able to learn metastable states in a low-dimensional manifold
even when the free-energy barriers are virtually flattened and
the system dynamics is close to diffusive at convergence.
As biased CVs, to enhance transitions between the folded

and unfolded conformations of CLN025 in the metadynamics
simulation, we choose the distance between Cα atoms of
residues Y1 and Y10 (d) and the radius of gyration (rg) [Figure
4c]. We consider CLN025 conformations folded when the
distance is below ∼0.8 nm and unfolded otherwise for >0.8
nm. From the resulting trajectory, we calculate the sines and
cosines of all the backbone Φ and Ψ dihedral angles and use
them as the high-dimensional representation of CLN025,
which amounts to 32 variables in total. We collect high-
dimensional samples every 1 ps for the biased training data set.
Then, the low-dimensional manifolds are trained on
representative samples selected, as described in refs 22 and
24. As we focus mainly on the Markov transition matrices and

diffusion reweighting here, we provide a detailed discussion of
the subsampling procedures in Appendix D.
In Figure 4, we present the resulting manifolds spanned by

the trained CVs computed using the reweighted stochastic
embedding methods (Section 3.2). The embedding presented
in Figure 4a is calculated using MRSE,24 while the embedding
presented in Figure 4b is calculated using STKE,22 using their
corresponding reweighting formulas given by eqs 29 and 31,
respectively. For each manifold, the corresponding free-energy
landscapes are calculated using kernel density estimation using
the weights to reweight each sample [eq 10].
We can observe that the free-energy landscape in the low-

dimensional manifold calculated by MRSE is highly heteroge-
neous, with multiple partially unfolded intermediate states and
many possible reaction pathways, as shown in Figure 4a. Such
a complex free-energy landscape shows that the dynamics of
CLN025 is more intricate and complex than what is visible in
the free-energy surface spanned by the distance and the radius
of gyration [Figure 4c], where we can see only the folded,
intermediate, and unfolded states and the remaining are
possibly degenerate.
In Figure 4, we can see the lower-lying free-energy basins in

the reweighted stochastic embeddings are captured by both
MRSE and STKE. We can also notice a slight difference between
the metastable states lying higher in free energy. Specifically,
MRSE captures more states below a threshold of 25 kJ/mol in
comparison to the embedding rendered by STKE, in which the
rest of the states are placed over 25 kJ/mol (i.e., mainly
different unfolded states).
In our simulations, we do not observe a misfolded state of

CLN025 shown to be highly populated in several studies78,79

employing different force fields (Amber9980 and Amber99-
SB,58 respectively) compared to CHARMM27 here.74 This
misfolded state is also not observed in the long unbiased
simulation from ref 76 that employs the same CHARMM27
force field as we do.
By comparing the free-energy barriers between the different

embeddings in Figure 4, we can see that they are similar,
particularly for the MRSE embedding and the free-energy surface
spanned by the distance and the radius of gyration, that is,
from 10 to 15 kJ/mol. We can compare our results to the
unbiased simulation data from the study of Lindorff-Larsen et

Figure 4. Reweighted stochastic embeddings calculated for chignolin in the TIP3P solvent at 340 K simulated using the CHARMM27 force field.
Low-dimensional manifolds are colored according to their free energy. (a) Representative conformations from the metastable states estimated by
the reweighted embedding methods are shown around the MRSE embedding. (b) Embedding obtained using STKE. Well-tempered metadynamics is
used to generate the training set consisting of sines and cosines of all Φ and Ψ dihedral angles, amounting to 32 variables in total. The training set is
generated by performing a 1 μs simulation with a bias factor γ = 20, enhancing the fluctuations of the distance d between the Cα atoms of residues
Y1 and Y10 and the radius of gyration rg. (c) Free-energy surface calculated along for d and rg. The axes and units for the embeddings are arbitrary
and thus not shown. See Supporting Information (Section S1C) for computational details.
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al.,76 where the authors perform a very long simulation and
observe a significant number of folding and unfolding events,
thus allowing unbiased estimates of free-energy barriers to be
obtained. In their study, CLN025 was shown to be a “fast
folder” with a corresponding free-energy barrier of ∼10 kJ/
mol. Similar estimates have also been obtained in ref 77.
Therefore, we can conclude that the free-energy barriers in the
embeddings agree well with previous computational studies.
Note that the simulation of CLN025 performed in ref 76 is

∼100 μs long, compared to our 1 μs simulation. This clearly
illustrates the great benefit of combining manifold learning
with the ability to learn from biased data sets.
Overall, both the separation of the CLN025 metastable

states and the free-energy landscapes calculated for the low-
dimensional embeddings suggest that the proposed framework
can be used to find slow CVs and physically valid free-energy
estimates. The presented results (Figure 4) clearly show that
using our approach, we can construct a meaningful and
informative low-dimensional representation of a dynamical
system from a biased data set, even when employing strong
biasing (i.e., the high bias-factor regime in the case of well-
tempered metadynamics).
We underline that diffusion reweighting makes learning CVs

from high-dimensional samples possible regardless of which
conformational variable is biased to generate the data set. This
extends the applicability of manifold learning methods to
atomistic trajectories of any type (unbiased and biased) and
makes it possible to learn CVs from a biased data set, where
the sampling is faster and more evident than in an unbiased
data set.

4. CONCLUSIONS
Nonlinear dimensionality reduction has been successfully
applied to high-dimensional data without dynamical informa-
tion. Dynamical data constitute a unique problem with
different characteristics compared to generic data. Standard
dimensionality reduction employed in analyzing dynamical
data may result in a representation that does not contain
dynamical information. This problem is even more pro-
nounced in enhanced sampling, where we sample a biased
probability distribution and additional assumptions on data
structure have to be made. As such, manifold learning methods
require a framework with several modifications that would
allow for working on trajectories obtained from enhanced
sampling simulations. In this work, we introduce such a
framework.
The main result of our work is deriving the reweighting

procedure for manifold learning methods that use transition
probabilities for building low-dimensional embeddings. These
advancements enable us to directly construct a low-dimen-
sional representation of CVs from enhanced sampling
simulations. We show how our approach can be leveraged to
reconstruct slow CVs from enhanced sampling simulations
even in high bias-factor regimes. Our framework can be further
exploited in constructing a low-dimensional representation for
dynamical systems using other manifold learning methods. For
instance, it could be used in spectral embedding maps29,35 or
stochastic neighbor embedding (e.g., t-SNE).30,31,63 There are
numerous stages at which such methods have scope for
different algorithmic choices. Consequently, many possible
algorithms can work within our framework.
An interesting direction for further research is to combine

diffusion reweighting with a metric different from Euclidean

distance, for instance, by considering a metric that enables
introducing a lag time, as done in the case of kinetic and
commute maps,81−83 a Mahalanobis kernel,84,85 or delay
coordinates.86 Diffusion reweighting can be extended to yield
intrinsic timescales directly from enhanced sampling simu-
lations based on their relation to eigenvalues. We plan to take
this road soon.
We underline that the presented diffusion reweighting can

be used in any enhanced sampling method as the method can
work with any functional form of the weights. For instance,
tempering methods such as parallel tempering87 can be used,
where the weights are given as e−ΔβU for the difference in the
inverse temperatures Δβ between the simulation temperature
and the target temperature.
A point that requires further addressing is the selection of

variables for a high-dimensional configuration space that carry
enough information about the system dynamics to characterize
a low-dimensional manifold. This issue is fundamental when
using the configuration variables other than the microscopic
coordinates. The configuration variables do not necessarily
need to be optimal. We do not have to know whether all of the
chosen configuration variables are relevant for the studied
process; some of them may be spurious and thermodynami-
cally meaningless. The primary assumption in selecting such
configuration variables is that some are relevant and capture
slower timescales of the studied process. This assumption can
be validated by using a diffusion map (with reweighting if the
samples are biased) to check if there is a clear separation of
timescales and if the dynamics of the selected configuration
variables is slower compared to other variables.47,88 Our
framework can be used for this aim; therefore, we plan to
investigate the effect of selecting the configuration variables on
constructing the low-dimensional CVs in the future.
Our framework makes it possible to generate biased data sets

that, given the construction of enhanced sampling methods,
sample a larger conformational space than standard atomistic
simulations and use such data to learn low-dimensional
embeddings. If a data set entails many infrequent events, the
low-dimensional representation is more prone to encode them
quantitatively. Moreover, in the case of the reweighted
stochastic embedding methods, which we cover here, the
generated embeddings can be used for biasing in an iterative
manner, for example, where we iterate between the learning
and biasing phases. We believe that the accurate construction
of the Markov transition probability matrix is a crucial element
in implementing such an algorithm optimally without being
restricted by kinetic bottlenecks (i.e., low-probability transition
regions).
Overall, we expect that our approach to manifold learning

from enhanced sampling simulations opens a variety of
potential directions in studying metastable dynamics that can
be explored.

■ APPENDIX

A. Diffusion Reweighting

Consider a data set wx x, ( )k k k
K

1{ } = where each sample xk is
high-dimensional, and the number of samples is given by K [eq
11].
A discrete probability distribution for a stochastic process

with a discrete state space is given by
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n wx x x x( ) ( ) ( )
l

l l=
(34)

where ∑kw(xk) = 1. Assuming a Gaussian kernel Gε, we can
account for the statistical weights to obtain the unbiased kernel
density estimate [eq 15]
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(35)

where the Dirac delta function δ(x − xl) leaves only the l-th
terms from the integral. Then, up to a normalization constant,
the diffusion-map kernel is given by

G
x x

x x
x x

( , )
( , )

( ) ( )k l
k l

k l[ ] [ ] (36)

where the parameter α is called the anisotropic diffusion
parameter. The normalization constant d(x) for eq 36 can be
calculated similarly to eq 35

d n wx x x x x x x x( ) d ( , ) ( ) ( ) ( , )k k
l

l k l= =
(37)

A Markov operator acting on an auxiliary function f(x)
can be written as

f K f nx x x x x x( )( ) d ( , ) ( ) ( )k k= (39)

where K is known as a kernel of the Markov operator , and
K nx x x xd ( , ) ( ) 1k = . Using the abovementioned definition,

we can evaluate the Markov transition matrix M(xk, xl) by
acting the Markov operator on the function f(xk) using the
anisotropic diffusion kernel [eq 36] as K in eq 39
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which gives us the definition of the Markov transition matrix
M.
By introducing a rescaled statistical weight
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=
[ ] (41)

we can write M(xk, xl) as

M
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l k l

n n k n
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(42)

Therefore, a general expression for the reweighting factor
can be given as

r w wx x x x( , ) ( ) ( )k l k l= (43)

where wα(xk) is canceled out in eq 42 during the normal-
ization. Alternatively, we can express eq 43 using a biased
density estimate ρV(xk) = ∑lGε(xk, xl) [eq 16]
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which is similar to the standard reweighting formula. Using eq
44 and setting α = 1/2, we obtain
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which concludes the derivation of eq 20.
B. Square-Root Approximation
Here, we want to derive eq 33 by considering approximations
to the Markov transition matrix used in STKE.22

As we discuss in Section 3.2, we want to obtain a format of
the transition matrix similar to that of the square-root
approximation to the Fokker−Planck operator. We start from
the reweighting factor given by eq 31 and construct the
following Markov transition matrix

M
G

G
x x

x x x

x x x
( , )

( ) ( , )

( ) ( , )
k l

l k l

n n k n

=
(46)

where ρ(xk) is canceled out due to the normalization. By
assuming that ε is sufficiently small, we can take the following
approximation to the normalization constant of eq 32

Gx x x x( ) ( , ) ( )
n

n k n k=
(47)

where we approximate the average of local densities under the
kernel density estimate by the density centered on xk. Then, eq
32 is

M Gx x
x
x

x x( , )
( )
( )

( , )k l
l

k
k l=

(48)

which gives us a relation similar to the square-root
approximation of the infinitesimal generator of the Fokker−
Planck operator66−69 [eq 33].
C. Gaussian Mixture for the Markov Transition Matrix M
Here, we describe a procedure used to automatically estimate
bandwidths for a Gaussian mixture used in MRSE. The
procedure is similar to that used in t-SNE, with the exemption
of using a Gaussian mixture instead of a single Gaussian and
expanding the procedure to account for the statistical weights.
We follow a procedure outlined in ref 24.
We use a Gaussian mixture to represent the Markov

transition matrix [eq 30]. Each Gaussian has a positive
parameter set ε = {εk}. We find the appropriate values of ε so
that the Shannon−Gibbs entropy of each row of M(xk, xl) ≡
(pkl), sk = −∑lpkl log pkl is approximately equal to the number
of neighbors np given as the logarithm of perplexity.31
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Considering the weights of the exponential form, w ek
Vk= ,

where Vk is the relative bias potential at the k-th sample [eq 9],
the entropy for the k-th row of the Markov transition matrix M
has to be corrected by including the bias potential in
comparison to that used in t-SNE.31 The bias-free term is
given by

s p p x xlogk
l

kl k
l

kl k l
2= +

(50)

and the correction term is

i
k
jjjjjj

y
{
zzzzzzs p V V

2k
l

kl l k= +
(51)

where the sum is the averaged bias potential with respect to the
transition probabilities of the Markov transition matrix M.
Therefore, the optimization of ε is performed by finding

such {εk} so that it minimizes the difference between the
Shannon−Gibbs entropy for the k-th row of M and the
number of neighbors in a manifold

s s nmin ( )k k k p= + (52)

which can be solved using a binary search. After finding the set
ε of bandwidths (each for a single row of M) for a perplexity
value, we can calculate the Gaussian mixture representation of
M as an average over M estimated for each selected perplexity.
Perplexities for each M matrix can be also estimated
automatically.
A detailed derivation and a discussion about the procedure

outlined here can be found in ref 24.
D. Landmark Sampling: Selecting the Training Set
For STKE, the training data set is selected using a geometric
subsampling scheme that results in landmarks distributed
uniformly. Specifically, the training data set is created such that
minkl∥xk − xl∥ ≥ rc, where rc is a minimal pairwise distance,
which modifies the level of sparsity for building the Markov
transition matrix.
In MRSE, we use weight-tempered random sampling in which

the training data set is selected according to statistical weights.
The statistical weights are scaled, w1/τ, where τ ≥ 1 is the
tempering parameter, and samples are selected according to
the scaled weights. It has been shown that in the limit of τ →
∞, we obtain the biased marginal probability, and for τ → 1,
we recover the unbiased probability. A detailed discussion with
a comparison to other landmark sampling algorithms is
provided in ref 24.
E. Parameters for Reweighted Stochastic Embedding
We show a summary of the reweighted stochastic embedding
methods and parameters in Table 1. Note that many

parameters for the reweighted stochastic embedding methods
are set as those in refs 22 and 24.
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