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ABSTRACT: Computational chemistry is an essential tool in the
pharmaceutical industry. Quantum computing is a fast evolving
technology that promises to completely shift the computational
capabilities in many areas of chemical research by bringing into
reach currently impossible calculations. This perspective illustrates
the near-future applicability of quantum computation of molecules
to pharmaceutical problems. We briefly summarize and compare
the scaling properties of state-of-the-art quantum algorithms and
provide novel estimates of the quantum computational cost of
simulating progressively larger embedding regions of a pharma-
ceutically relevant covalent protein−drug complex involving the
drug Ibrutinib. Carrying out these calculations requires an error-
corrected quantum architecture that we describe. Our estimates
showcase that recent developments on quantum phase estimation algorithms have dramatically reduced the quantum resources
needed to run fully quantum calculations in active spaces of around 50 orbitals and electrons, from estimated over 1000 years using
the Trotterization approach to just a few days with sparse qubitization, painting a picture of fast and exciting progress in this nascent
field.

1. INTRODUCTION
The drug design process is a complex procedure in which
computers and wet-lab methods are used together in pursuing
new pharmaceuticals. Although most methods of computer-
aided drug design (CADD) rely on statistical fitting methods
or on classical mechanics,1 it has been argued that more
accurate quantum mechanical methods have an important
contribution to make to several aspects of CADD.2−4

Unfortunately, finding exact or nearly exact solutions for
chemically relevant systems becomes intractable for more than
∼30 electrons.5 Although efficient and accurate approxima-
tions exist for much larger systems than that, it remains
desirable to find methods that can deliver the exact quantum
mechanical solution in a cost-efficient way.

Being quantum systems themselves, quantum computers are
naturally suited to simulating quantum mechanical problems
without running out of memory exponentially fast. Many
aspects of chemical research are expected to benefit from
accurate quantum methods, including in the pharmaceutical
industry.6,7 Carrying out such industrially disruptive quantum
simulations requires very high fidelity quantum computers.

Quantum computers have seen a significant number of
experimental developments over the past several years. Recent

trapped ion quantum devices have an average of two-qubit gate
fidelities of up to 99.8%.8 Developments have also been seen in
superconducting technologies, most famously shown in the
50−60 qubit devices from Google and USTC, which claim to
show quantum computational advantage, the point where a
quantum computer is believed to have solved a classically
intractable problem, albeit not a problem with applications in
quantum chemistry.9,10 Superconducting devices have also
been developed with over 120 qubits, in particular IBM’s Eagle
processor.11 These devices are now at a point where it is
possible to run noisy intermediate-scale quantum algorithms
such as the variational quantum eigensolver,12 with the largest
experimental efforts to date simulating the binding energy of
hydrogen chains with up to 12 atoms.13−15 Along with early
applications, experimental groups have started showing initial
implementations of quantum error correction, a fundamental
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step in scaling up quantum computing where multiple physical
qubits are used to protect a smaller number of logical qubits
from errors,16 thus increasing the effective fidelity. These
experiments have been shown to suppress errors while keeping
a single logical qubit alive and applying some simple logical
gates in a number of platforms, including superconducting
devices,17 trapped ions,18−21 and nuclear-spin qubits in
diamond.22 These results show the significant progress that
has been made in quantum hardware, as well as laying the
groundwork to reaching large-scale fault-tolerant quantum
computation.

This perspective focuses on the disruption enabled by the
large-size complete active space configuration interaction
(CASCI) calculations admitted by near-future quantum
computers. We discuss the steps involved in running a
pharmaceutical application on a quantum computer, from
mapping the chemical problem onto quantum memory,
selecting a quantum algorithm, and specifying an error-
corrected quantum architecture to solve it. We illustrate
these steps with an example system: the drug Ibrutinib bound
covalently to Brutons tyrosine kinase. We estimate the
quantum computational resources needed to fully quantum
simulate progressively larger clusters of the binding pocket and
the Ibrutinib inhibitor. Our estimates exhibit that quantum
algorithmic developments over the past five years have
dramatically reduced the quantum resources needed to run
fully quantum calculations in active spaces of around 50
orbitals, which could be performed on sufficiently large error-
corrected quantum computers with a runtime of just a few
days.

This perspective is organized as follows. Section 2 discusses
the mapping of the electronic structure problem onto a
quantum computer. Section 3 discusses and compares the
scaling of the two salient quantum algorithms for finding the
ground-state energy of an electronic Hamiltonian�variationa
quantum eigensolver (VQE) and quantum phase estimation
(QPE). We conclude that QPE scales more favorably, and the
rest of the work focuses on this algorithm. Section 4 discusses
the aspects of error correction needed for estimating the
quantum resources needed to run QPE. The main ingredient
of the QPE algorithm is an efficiently implemented unitary
operator that is related to the Hamiltonian. Section 5 discusses
two methods to construct such unitary operators: Trotteriza-
tion and qubitization. Section 6 discusses the pharmaceutical
system of focus, the computational methods, and the active
spaces used. Section 7 contains the results of our resource
estimations. We find that qubitization gives much more
favorable runtimes than Trotterization. We conclude in Section
8.

2. CHEMISTRY ON A QUANTUM COMPUTER
2.1. Chemistry and the Electronic Structure Problem.

The question of how particles interact had already led the
ancient Greek and Roman atomists to talk about “hooked
atoms” that could intertwine and hold matter together. After
atomism was revived two millennia later, in his Opticks,
Newton preferred to hypothesize an attractive force, as yet
unknown, that holds atoms together. Accumulating knowledge
on electricity and electrochemistry in the 19th century favored
explanations featuring electrostatic interactions in this role.
The period also saw the rise of the theory of chemical valency
that sought to determine the number of partners an atom
might have in a compound and eventually led to the

characterization of the combining forces as chemical bonds.23

After the discovery of the electron and the refinement of atom
models that culminated in Bohr’s model in 1913, G. N. Lewis
put forward his own interpretation of the (covalent) chemical
bond as electron pairs shared between atomic nuclei24 and to
give a physical picture of that “hook and eye”, as he put it.25

But the real breakthrough promising quantitative predictions
came with the early application of quantum mechanics to
simple chemical systems in the late 1920s, including the works
of Burrau on H2

+,26 Heitler and London,27 and later Pauling28

anticipating valence bond theory, with Hund,29 Mulliken,30

and Lennard-Jones31 laying the foundations for molecular
orbital theory. However, starting from the first-principles of
quantum mechanics and special relativity leads to equations
that are insoluble in all but the simplest of cases, as Dirac
lamented in 1929, concluding that more efficient approximate
solutions are necessary.32 Current wave function based
methods of quantum chemistry rely on a series of
approximations that lead to a computable first guess, and
then, whenever possible, various other methods are applied to
account for the approximations made or, as computational
chemists say, to correct for the various “effects” neglected. To
begin with, typically a single molecule in a vacuum is
considered, without taking relativity into account and
considering static solutions only. To facilitate a quantum
mechanical treatment, one must be able to represent the
interactions among the electrons and nuclei of molecules as a
linear Hermitian operator, the Hamiltonian, the eigensolutions
of which represent the possible states of the system and the
total energies associated with them. To simplify the problem
further, the Born−Oppenheimer approximation33 posits that
electronic and nuclear degrees of freedom can be separated,
after which most methods focus on tackling the electronic
problem. The resulting time-independent Schrödinger equa-
tion reads

H E H T V V V,k k k e ee ne nn= = + + + (1)

where Ψk and Ek are the electronic wave function and energy of
the kth state and Ĥ is the electronic Hamiltonian consisting of
a kinetic energy term of the electrons (T̂e) and the potential
energy terms of the electron−electron (V̂ee), nuclear−electron
(V̂ne), and nuclear−nuclear (V̂nn) interactions.

At this stage, the computational problem is still intractable.
Further progress was made by assuming that electronic
coordinates can also be separated and the total wave function
has the form of a Slater determinant34

i( )
i

N

i
1

=
= (2)

where the antisymmetrizer permutes the particle labels and
sums over terms with the appropriate sign and norm factor.
Thus, the exact wave function describing N electrons is
approximated as a determinant Φ constructed from functions
describing a single electron, the molecular (spin−)orbitals φi.
Calculating the expectation value of Ĥ using Φ and minimizing
it with respect to the orbitals yields the Hartree−Fock (HF)
equations.35−37 To make the parametrization of this problem
easier, the molecular orbitals themselves are expanded as a
linear combination of known atomic orbitals. In molecular
calculations, a convenient choice for the latter is Gaussian
functions and, using these, the Hartree−Fock equations are
reduced to a set of algebraic equations for the expansion
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coefficients of molecular orbitals.38 While the algebraic
Hartree−Fock problem is soluble for molecules containing
several hundred atoms, being an effective one-electron theory,
it does not account for correlation effects between multiple
electrons.39 However, once the molecular orbitals are obtained
in a given atomic orbital basis, a linear combination of all
possible Slater determinants will yield the exact solution in that
basis. Unfortunately, this full configuration interaction (FCI)
solution scales exponentially with the number of electrons and
orbitals in the system. The classical solution to the problem is
to define less expensive ansaẗze for the wave function that only
scale polynomially,39 e.g., the coupled-cluster singles and
doubles (CCSD) ansatz. When correlation effects are weak,
i.e., when HF is a good starting guess, this approach has been
extremely successful in many areas of chemistry. For strongly
correlated systems, the most straightforward alternative to HF
is obtaining the FCI solution within a complete active space
(CAS)40 rather than for the entire orbital space. We will refer
to the configuration interaction solution within this active
space (for our purposes, without orbital optimization) as
CASCI. Unfortunately, this still leaves many important
problems outside the reach of quantum chemical methods
on the classical computer. For strongly correlated systems, the
main difficulty lies in the size of the active spaces required for
correctly describing some systems, an area where quantum
computers may make a breakthrough.41 For weakly correlated
systems, high-quality results delivered by quantum computers
may still yield significant improvements over popular density
functional theory (DFT) approaches42 or even efficient wave
function based approaches on the classical computer.

As it was pointed out even in the case of an archetypal
strongly correlated complex,41 outperforming popular density
functional methods is an important practical criterion. In
contrast, usual definitions of quantum advantage involve
formal criteria such as exponential speed-up, the relevance of
which to chemistry has been recently questioned.43 Here, a less
ambitious working definition is used: quantum benefit is
reached if quantum computers can outperform classical
computers in some industrially relevant process. An important
part of that is the ability to give better results than DFT at a
reasonable cost. Recent work on photochemical processes with
simulated quantum computing uses precisely such criteria.42

Unfortunately, the assessment of potential quantum benefit for
pharma remains a difficult task, not in the least because
predictive application of quantum mechanics in the drug
discovery process is a relatively new trend even using classical
computers.3 Some areas where quantum effects are known to
be important, such as the description of weak hydrogen
bonds,44 also stand out as the most likely candidates for
quantum benefit. In this perspective, our aim is to provide
quantum resource estimates for a protein−drug system in
which such interactions play an important role.

2.2. Quantum Computation. Quantum computers are
computational devices that use the laws of quantum mechanics
to perform calculations. The theory of quantum computing
was first developed in the early 1980s by pioneers including
Paul Benioff, Richard Feynman, David Deutsch, and Peter
Shor.45 The motivation for quantum computing comes from
the potential to perform calculations efficiently, which can only
be performed inefficiently on a digital computer. Here, efficient
means that the runtime is polynomial in the size of the
problem.

This initial work led in 1994 to the development of Shor’s
algorithm,46 which allows the prime factorization of an integer
to be performed in polynomial time, compared to the
superpolynomial time required by classical algorithms. In
1996, Lov Grover developed an algorithm to search an
unsorted database of size N in N( ) time, compared to the

N( ) runtime required by classical algorithms.47 These
discoveries demonstrate the potential for improved perform-
ance of certain quantum algorithms over classical ones.

The key to efficiently studying chemistry on a quantum
computer came in the late 1990s. Alexei Kitaev, building on the
work of Shor, introduced quantum phase estimation (QPE) in
1995 to study the Abelian stabilizer problem.48 In 1998, Cleve
et al. extended this QPE approach to estimate the phase of an
arbitrary unitary operator;49 the form of QPE introduced here
is identical to that often considered today. The QPE method
can be applied to find the eigenvalues of a chemical
Hamiltonian to a given accuracy with a runtime that scales
polynomially with system size. For this reason, we believe that
quantum computers can perform accurate chemical calcu-
lations beyond the reach of classical devices.

A quantum computer consists of a register of qubits or
quantum bits. Each of these qubits can be in a state |0⟩ or |1⟩.
However, following the laws of quantum mechanics, the state
can also be an arbitrary superposition of the two

0 1| = | + | (3)

in addition to possible entanglement between the qubits. Time
evolution in quantum mechanics is unitary, and as such the
gates performed on the qubits are unitary operations too. In
particular, a quantum computer is built to perform a small set
of basis unitary operations at the physical level. These
operations are designed to be universal; that is, any unitary
operator on any number of qubits can be built from these basis
gates. This can be achieved using gates that only act on one or
two qubits at a time, a fact that is crucial for physical
realizations of quantum computers; it is not realistic to perform
physical operations that entangle large numbers of qubits
simultaneously with high fidelity. Instead, these operations can
be built from much simpler physical operations. Finally, state
preparation and measurement are important components of
quantum computation; qubits are each prepared in state |0⟩ at
the start of a computation, and measurement causes wave
function collapse according to the Born rule.

One set of universal gates, which will be important for later
discussion of quantum error correction, consists of the
Hadamard gate (H) and phase gates S and T, defined in
matrix form by

H S
i

T
e

1
2

1 1
1 1

,
1 0
0

,
1 0

0 i /4

i
k
jjj y

{
zzz i

k
jjj y

{
zzz

i
k
jjjjj

y
{
zzzzz= = =

(4)

and the CNOT gate, defined by

CNOT

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

i

k

jjjjjjjjjjjjjj

y

{

zzzzzzzzzzzzzz
=

(5)

which flips the state of a second qubit, conditional on the first
being in state |1⟩. Programs built from these gates are often
represented by circuit diagrams. An example of the QPE circuit
diagram is given later in Section 2.4.2. For a thorough
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introduction to quantum computing, including circuit diagram
notation, we refer the reader to ref 50.

2.3. Qubit Hamiltonian. As discussed above, the great
promise of quantum computers for chemistry is that they can
find eigenvalues of a Hamiltonian with polynomial scaling.
This would render a great number of strongly correlated
chemical problems amenable to exact quantum mechanical
treatment with potential benefits in many branches of the
chemical industry.41 To realize this promise, the Hamiltonian
encoding the interactions in the chemical system needs to be
represented in a way that the quantum computer will be able
to interpret. One possibility for this is the second quantized
representation

H h h a a h a a a a
1
2p q

p
q

p q
p q r s

pr
sq

p r q s0
, , , ,

= + +† † †

(6)

where the Fermionic annihilation (aq) and creation (ap†)
operators are summed over the molecular spin−orbital labels p,
q, ... within the active space. It is important to emphasize that
such active spaces are often chosen to reduce the cost of the
calculation and involve the projection of the full Hamiltonian
to the CAS space.51 This causes screening terms to appear in
the matrix elements: the constant term h0 contains the
nuclear−nuclear interaction and any screening terms, the one-
body term hp

q includes the kinetic and nuclear−electron
attraction as well as any screening terms, and the two-body
term consists of the interelectronic repulsion term. Once the
Hartree−Fock solution or some other set of molecular orbitals
is available to define p, q, ..., it is possible to generate h0, hp

q, and
hpr
qs. The result of a quantum computation using such a CAS

Hamiltonian corresponds to a CASCI calculation on the
classical computer that becomes identical with the exact (FCI)
solution in the limit that the active space includes the entire
orbital space in a given basis.

In the next step, the Fermionic operators need to be mapped
to qubit operators, whose action on the qubits can be directly
calculated. The Jordan−Wigner transformation52 achieves this
using Pauli spin-matrices and requiring that the new
representation satisfy the anticommutation rules of Fermion
operators. The resulting transformation for creation operators
reads

a X iY Z
1
2

( )p p p
q p

q
†

< (7)

and for annihilation operators, it is

a X iY Z
1
2

( )p p p
q p

q+
< (8)

where Xp, Yp, and Zp are Pauli spin operators acting on the pth
qubit. It should be noted that there are alternatives to the
Jordan−Wigner transformation, and it has recently been
argued that, for larger chemical problems, the one proposed
by Bravyi and Kitaev53,54 will be more advantageous.55

Whichever method one chooses, the result is a qubit
Hamiltonian, i.e., a linear combination of Pauli strings that
represent the chemical system for the quantum computer and
serve as a starting point for quantum algorithms. We write this
as

H wP
i

L

i i
1

=
= (9)

where each Pi is a Pauli operator and wi its corresponding
(real) coefficient.

There are two main classes of algorithm for performing
computational chemistry calculations on quantum computers−
the variational quantum eigensolver (VQE) and quantum
phase estimation (QPE). The focus of this work is using the
latter to estimate the quantum computational resources
required to perform pharmaceutically relevant chemistry
calculations.

2.4. Algorithms. In this section, we outline the VQE and
QPE algorithms.
2.4.1. Variational Quantum Eigensolver. VQE12 is a

hybrid algorithm, making use of both classical and quantum
computational resources. A classical optimizer explores some
set of quantum states, seeking that with the smallest
Hamiltonian expectation value. By the variational principle,
any such expectation value is necessarily greater than or equal
to the ground-state energy. It is therefore hoped that the
smallest expectation value will be close to the ground-state
energy. Excited-state energies can also be sought through
extensions (e.g., see refs 56−60).

The set of states explored is known as an ansatz. These states
are prepared through some parametrized quantum circuit.
Having chosen some initial parameter values, the ansatz circuit
is run to prepare a particular quantum state and measurements
of the state made. Typically the ansatz circuit must be applied
many times to obtain sufficient information to estimate the
expectation of the Hamiltonian on the quantum state to some
desired level of accuracy. On the basis of this expectation, the
parameter values are updated by the classical optimizer and the
expectation estimation pSocess repeated until some con-
vergence criteria are satisfied. The VQE algorithm is illustrated
in Figure 1, and we provide further details of the different
aspects of the algorithm in section 3.1.1.

2.4.2. Quantum Phase Estimation. Quantum phase
estimation is another algorithm for calculating energies of
chemical systems.48,62 It requires deeper circuits than VQE,
but these must be performed typically only a handful of times.
Furthermore, QPE does not require an ansatz; it instead
calculates eigenvalues of the Hamiltonian directly, up to some
level of precision.

QPE makes use of the quantum Fourier transform to
estimate the eigenphases of a unitary operator, U. An
eigenphase, φi, satisfies

U ei
i

i
i| = | (10)

Figure 1. Outline of the VQE algorithm, indicating which parts occur
on the quantum computer and which parts on the classical.
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where |Ψi⟩ is the corresponding eigenstate. In order to perform
computational chemistry calculations, the unitary must be
constructed from the Hamiltonian; one choice is U = e−iĤt. The
operators U and Ĥ share eigenstates, and their eigenvalues are
related through Eit = −φi. An outline of the circuit used to
perform QPE is shown in Figure 2. There are two sets of

qubits; the state register (bottom) used to prepare the
eigenstate by the end of the calculation and the data register
(top) used to read bits corresponding to

2
i in binary fraction

representation. The precision of the estimate of the energy is
thus limited by the number of qubits in the data register.

Initially, the state register is prepared to contain a state
which is hoped to have significant overlap with the true ground
state�a common choice when performing chemistry calcu-
lations is the Hartree−Fock state. A sequence of controlled
unitaries U2d

k−1

are then applied to the state register, controlled
on the kth qubit of the data register, followed by performing
the inverse quantum Fourier transform on the data register.
Finally, the data register is measured to obtain an estimate of
an eigenphase. The probability of the estimate corresponding
to a particular eigenphase is given by the overlap probability of
the initial state with the corresponding eigenstate.

3. ALGORITHM CHOICES
In this section, we discuss the reasons for our focus on QPE
and present some details of our resource estimation
calculations. Further details are presented in following sections.

3.1. Algorithm Scaling. In order to motivate our
algorithmic choices, we first present simple scaling estimates
for the resources required to perform the algorithms outlined
in Section 2.4. We present this scaling in terms of a few key
parameters, ignoring the coefficients. We assume that the total
time scaling takes the form

n
n n

nt
g rep

QPU
=

(11)

where ng is the gate depth of a single circuit, nrep is the number
of times this circuit must be performed, and nQPU is the
number of available quantum processors of suitable size, that
is, the number of circuits that can be performed in parallel. The
gate depth is the number of layers of gates that must be
applied, where a layer of gates is a set of gates that can be
applied simultaneously.

We will now outline the form of these components for the
two algorithms. We define no and ne to be the number of spin
orbitals (which we note is twice the number of spatial orbitals)
and number of electrons in the chemical system respectively
and

E w
i

L

imax
1

= | |
= (12)

which gives the maximum possible value of any energy. We
recall the wi coefficients are those in the qubit form of the
Hamiltonian, eq 9, and L is the total number of terms. In both
cases, the time scaling will also depend on the desired level of
accuracy, ϵ, in the energy estimate.
3.1.1. VQE Resources. In this section, we perform a rough

estimate of the time taken to perform a VQE calculation,
considering eq 11. For a VQE calculation, the circuit depth ng
will depend on the ansatz. There may also be some additional
depth required to, for example, measure the appropriate
operators; in general, we aim to make assumptions that are
favorable toward VQE, and thus we will ignore this additional
circuit depth here. The number of times the circuit must be
repeated, nrep, will be the product of two factors�the number
of circuit applications required to obtain a single estimate of
the Hamiltonian expectation, na, and the number of
Hamiltonian expectations required in order to optimize the
parameters, nh, so that

n n nrep a h= (13)

A significant degree of parallelization is possible in VQE; we
will return to this once we have outlined the QPE scaling too.

We will now outline the form of the components in more
detail. For a full review of VQE and its components, see Tilly
et al.;63 a scaling of VQE is also presented there, though
different assumptions are made compared to ours.
3.1.1.1. Number of Qubits. We first define the number of

qubits, nq, needed to represent the relevant quantum states on
the quantum computer. We will assume that we have one qubit
per spin orbital, so

n nq
VQE

o= (14)

This is the case for both the Jordan−Wigner and Bravyi−
Kitaev transformations mentioned in Section 2.3. It is,
however, typically possible to reduce this number slightly by
conserving symmetries of the chemical system;64 however, this
will not have a large effect on our calculation and so we ignore
this possibility here.
3.1.1.2. Number of Parameters. It will next be important to

consider the ansatz. The choice of ansatz plays a key role in
determining the performance of a VQE calculation. The ideal
ansatz would

• enable preparation of a state close to the true ground
state;

• require as few parameters as possible, so as to minimize
the time required to perform the classical optimization;

• use as few quantum computational resources as possible.
In general, the ansatz circuit depth will thus depend on the
accuracy, ϵ, as a deeper circuit will typically allow a state closer
to the true ground state to be prepared. However, it is difficult
to quantify the relationship between ng and ϵ. In this section,
we will consider a fixed ansatz�the unitary coupled-cluster
singles−doubles (UCCSD) ansatz.65 This is a chemically

Figure 2. Outline of the circuit used to perform QPE, as discussed in
ref 61.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Perspective

https://doi.org/10.1021/acs.jctc.2c00574
J. Chem. Theory Comput. 2022, 18, 7001−7023

7005

https://pubs.acs.org/doi/10.1021/acs.jctc.2c00574?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.2c00574?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.2c00574?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.2c00574?fig=fig2&ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.2c00574?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


inspired ansatz, which means we have reason to believe the
ansatz space contains chemically relevant systems. The circuit
for this ansatz prepares the states

e( ) HFT T| = |
†

(15)

where |HF⟩ is the Hartree−Fock state and

T T T a a a a a a
i a

a
i

a i
i j a b

ab
ij

a b j i1 2
, , , ,

= + = +† † †

(16)

By varying the parameters θa
i and θab

ij , we can produce different
quantum states. Here, i, j, ... refer to occupied orbitals in the
Hartree−Fock state and a, b, ... refer to virtual orbitals. In the
VQE process, the θ parameters are optimized. We can see that
the operator T̂ contains components corresponding to single
and double excitations of electrons from the Hartree−Fock
state. For strongly correlated systems, UCCSD may not be able
to prepare a state which is suitably close to the ground state
due to the limitation on the excitations considered.

The key property of the ansatz that affects the VQE
calculation time is the number of parameters, np. For the
UCCSD ansatz, this is

n n n n( )p e
2

o e
2

(17)

which is the scaling of the number of θab
ij parameters. We will

assume that both ne and no − ne scale linearly with no and so

n np o
4

(18)

Finding good ansatze is a topic of ongoing research. More
recently proposed ansatz methods, which typically seek to
reduce the number of parameters and/or gate depth required
for a given level of accuracy, include the k-UpCCGSD66 ansatz
and adaptive ansatz procedures such as ADAPT-VQE.67 These
have been shown to outperform UCC in some cases; however,
their performance with larger chemical systems is difficult to
predict. Ansatze with further improved behavior may be
developed in the future.
3.1.1.3. Number of Hamiltonian Expectations. The

number of Hamiltonian expectations required in a particular
VQE calculation is difficult to know in advance as it will
depend on the shape of the ansatz parameter space. Here, we
make a favorable assumption. We will assume that the number
of Hamiltonian expectations required, nh, is simply given by

n nh p= (19)

This, for example, could arise if the optimizer needs only to
look in each parameter direction once, perhaps to verify that a
minimum has already been found. Needing any fewer
evaluations would imply that it was known before the
calculations occurred that some parameters were not needed
in the ansatz. Typical calculations will require more evaluations
than this.
3.1.1.4. Number of Ansatz Circuit Applications. As

mentioned above, the ansatz circuit must typically be applied
many times in order to obtain an expectation of the
Hamiltonian with respect to a particular state to a sufficient
degree of accuracy. The number of applications needed
depends on the form of the Hamiltonian and the particular
quantum state.

It is typically not possible to obtain measurements of the
Hamiltonian directly. However, measurements of Pauli
operators can easily be obtained, and so we can make use of

eq 9 in calculating the expectation of the Hamiltonian.
Assuming measurements of each Pauli are obtained separately,
the number of times the ansatz circuit must be performed is
given by68

n w P1
Var

i

L

i ia
1

2i
k
jjjjjj

y
{
zzzzzz= | | [ ]

= (20)

where ϵ is the desired error in the expectation estimate and

P PVar 1 ( ) ( )i i
2[ ] = | | (21)

The maximum value of each variance is 1 and so

n
E

a
max

2i
k
jjj y

{
zzz (22)

In the following we take the equality in this expression. This is
likely an overestimate in practice, but we believe it is sufficient
to demonstrate the challenges faced. We later take a generous
assumption in the scaling of Emax.

We note that it is possible to reduce this through several
different methods. It is possible to improve upon the
assumption that we measure each Pauli individually by, for
example, measuring commuting Paulis simultaneously69−72 or
factorizing the two-electron integral tensor.73 Such methods
reduce the overall number of measurements required while

retaining the scaling in ( )1
2 . This scaling can also be improved

using QPE-inspired methods at the cost of an increased circuit
depth;74,75 however, such increased depths are unlikely to be
possible in the noisy intermediate-scale quantum (NISQ) era,
before error correction is available.
3.1.1.5. Circuit Depth. We will assume that it is possible to

perform O(nq) parameters per layer of gates and so

n ng
VQE

o
3

(23)

for the UCCSD ansatz outlined above.
3.1.1.6. Summary. We therefore see that, for VQE, given

the assumptions we have made,

n n n n n
n E

, ,q
VQE

o g
VQE

o
3

rep
VQE o

4
max

2

2 (24)

The degree of parallelization will depend on the total number
of qubits available; we will discuss this once we have
considered QPE.
3.1.2. QPE Resources. In contrast to VQE, it is possible to

make a good estimation of the quantum computational
resources required to perform a QPE calculation for a given
chemical system. However, this does depend on the probability
overlap of the initial state with the ground state, η. In this
section, we present a rough scaling of the time taken to
perform a QPE calculation.
3.1.2.1. Circuit Depth and Number of Repetitions.

Considering first only the parameters ϵ and η, using textbook
phase estimation, one expects76

n n
1

,
1

g
QPE

rep
QPE

(25)

The scaling with the properties of the Hamiltonian depends on
the specifics of the quantum phase estimation calculation (see
later sections for details). Using the most recent methods,77
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the circuit depth depends on Emax, which we recall was defined
in eq 12, and no, the number of orbital basis functions, so that

n
E n

g
QPE max o

(26)

3.1.2.2. Number of Qubits. Like VQE, QPE requires
approximately no qubits to store the relevant quantum state.
However, QPE typically also requires additional auxiliary
qubits. First, such qubits are needed to store the bits
corresponding to the energy estimate. For the specific version
of QPE outlined in Section 2.4.2, the number of additional bits
is log2(1/ϵ); however, this can be reduced to just a single qubit
using iterative phase estimation.62,78 Auxiliary qubits are also
required for some methods of implementing the required
unitary operators. For the most recent methods,77 the number
of additional qubits required is Õ(no), and so

n nq o (27)

3.1.2.3. Error Correction Overhead. Because the circuits
used when performing QPE are very deep, we expect error
correction procedures to be required in order to obtain useful
results from the calculations. This introduces an overhead,
both in the number of qubits (spatial overhead) and the depth
of the circuit (temporal overhead). We write these overheads
as θS and θT, respectively. For the surface code, the overheads
are determined by the code distance, d, with θS ∼ d2 and θT ∼
d. We can therefore write θS ∼ θT

2. We note that, in order to
maintain a constant probability of a logical error occurring,
these overheads must increase with increasing logical circuit
depth and number of logical qubits; however, they increase
logarithmically and so we ignore this here. This can be seen
from eq 34, as will be motivated in Section 4.3. We therefore
write

n n n
E n

,q o T
2

g
QPE max o T

(28)

For further information about the error correction overhead in
the context of the surface code, see Section 4.
3.1.2.4. Summary. For QPE, we therefore have

n n n
E n

n, ,
1

q
QPE

o T
2

g
QPE max o T

rep
QPE

(29)

3.1.3. Comparison and Discussion. We presented the
scaling of the number of qubits, circuit depth, and number of
circuit repetitions for VQE and QPE in eqs 24 and 29,
respectively. We will now consider nQPU in the two cases. We
will assume that the total number of available qubits in the two
cases is nq

QPE. We note that, should additional qubits be
available, some degree of parallelization is possible for QPE as
the procedure must be repeated some number of times.
However, as this factor would be the same in both the VQE
and QPE scalings, we do not consider it further. Therefore, the
degree of parallelization possible for VQE is

n
n

nQPU
VQE q

QPE

q
VQE T

2=
(30)

Putting everything together, we therefore have, from eq 11,

n
n E

n
E n

,t
VQE o

7
max

2

T
2 2 t

QPE max o T
2 (31)

and so

n
n

n Eot
VQE

t
QPE

6
max

2

T
3

(32)

We will now consider the scaling of some of these terms
further. The scaling of Emax with no is typically examined
numerically and depends on the specific chemical system and,
for example, whether the increase in no is due to the increasing
number of atoms or increasing basis set size. Best estimates
find it scales between no and no

3.77 Here we take it to scale as
no, so as to be favorable toward the VQE scaling. We can
consider ϵ and η to be constant. The degree of accuracy in the
final energy estimate, ϵ, will typically be taken to be chemical
accuracy and thus not depend on the size of the system. While
η, the overlap of the initial state with the true ground state, will
be system-dependent, it has been suggested that it is typically
possible to prepare a simple state with a good degree of
overlap.79 We argued above that the increase in θT should be
logarithmic and did not consider such logarithmic factors. We
therefore find

n
n

no
t
VQE

t
QPE

7

(33)

and thus expect QPE to become preferable once the system is
large enough, this size being determined by the constant in
front of the scaling, which we have ignored in our analysis.
This motivates our choice of QPE for the remainder of this
work.

Our scaling analysis is not intended to be definitive, and we
acknowledge that there may be possible improvements to
VQE. However, VQE presents some more general difficulties.
As mentioned above, the choice of ansatz is key to determining
how close it is possible to get to the true ground state�it is
difficult to guarantee that the ansatz allows preparation of a
state that is close to the true ground state without having a
large number of parameters and circuit depth. Furthermore,
even if the ansatz can describe the desired state, there is no
guarantee that the optimizer will find it�it may instead
converge to a local minimum.

In this work, we have considered only the scaling of VQE
and compared it to that of QPE. Other works have performed
resource estimations for VQE and find runtimes to be
prohibitively large.80−82 For example, Gonthier et al.81 estimate
runtimes of approximately 1−100 days to perform a single
expectation evaluation for systems requiring approximately
100−300 qubits.

3.2. QPE in This Work. Having motivated our choice of
QPE, we now present some details of the algorithmic choices
made in this work. Further choices are discussed in the
following sections.

As mentioned above, in contrast to VQE, it is possible to
make a good estimation of the quantum computational
resources required to perform a QPE calculation for a given
chemical system. In this work, we present results of resource
calculations, given the chemical system and desired accuracy as
inputs and further allow for several algorithmic choices to be
made.

After a single run of phase estimation, an energy estimate is
obtained. However, this estimate may not be within the desired
accuracy of the true energy. This can be for several reasons.
First, it is possible that the estimate is of an energy other than
the desired ground-state energy. Second, as the true energies
can typically not be represented exactly in the finite number of
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chosen bits, there is some probability that an estimate, even of
the correct eigenstate, will not be to the desired level of
accuracy. Third, it is possible that our error correction
procedure failed and so a logical error occurred, making any
result obtained inaccurate. It is thus necessary to repeat the
phase estimation procedure several times, the number
depending on the overall desired probability of success. In
this work, we do not explicitly calculate the number of
repetitions needed but outline one possible method for doing
so in Appendix A. Alternative methods exist in the
literature.76,83

4. IMPLEMENTING ERROR-CORRECTED QUANTUM
ALGORITHMS

4.1. Quantum Error Correction and the Surface Code.
The theory of error correction is vital to practical computing
schemes. All physical computers are subject to noise, and this
noise can cause arbitrary errors that must be detected and
corrected to ensure accurate results. In classical computers an
error can flip a bit ‘0’ to a bit ‘1’ or vice versa, which can be
corrected by a variety of schemes. In quantum computing, the
task of correcting errors is dramatically more challenging.
Errors on quantum computers are continuous in the general
case; a qubit state |ψ⟩ can in theory be transformed to any new
state |ψ′⟩ by noise. Noise can also entangle multiple qubits.
Furthermore, measuring the state of a system to directly check
for errors will cause the wave function to collapse, thus losing
information if not done carefully. Quantum error correction
(QEC) is designed to overcome these challenges.

One might wonder if we can manage without QEC by
improving the accuracy of devices further. However, as we will
see later, useful quantum circuits may contain over 1010 logical
gates; the error rate of each of these gates would need to be
unrealistically small with iterations of current technology to
perform the full circuit without error, and proceeding without
QEC is not an option for large-scale quantum computing
applications.

Ultimately, QEC schemes exist that can protect against
arbitrary errors, provided sufficient resources are available. In
practice, this is done by encoding many physical qubits into a

logical qubit.16 The quantum threshold theorem then states
that if the error rate on the physical qubits is below a certain
threshold, the error rate on the logical qubits can be made
arbitrarily small.84−87 In general, the more physical qubits
available, the larger the logical qubit and the better the
protection that can be achieved. As such, resource estimation
for future QPE calculations must carefully include the effect of
QEC.

There is a wide family of techniques for QEC. Here we shall
consider the surface code, which represents each logical qubit
by a d × d grid of physical qubits.88 Protecting all d2 of these
qubits is not possible. Instead, we seek to define just a single
qubit as a protected subspace. This subspace is known as the
codespace. The state of the logical qubit is forced to reside in
the codespace by measuring operators known as stabilizers.
The measurement of these stabilizers allows one to check and
correct errors, without destroying information encoded in the
logical qubit. A further d2 syndrome qubits are present to allow
efficient measurement of the stabilizers. This leads to a total of
2d2 physical qubits per logical qubit.

The surface code has a number of useful properties for an
error correcting code: first, the physical qubits are arranged on
a 2D grid and only require nearest-neighbor connectivity; and
second, the surface code can tolerate a relatively high
probability of errors occurring on the physical qubits.
Specifically, for a probability p of an error occurring on each
physical qubit per operation, the probability of an error on a
logical qubit is approximately 0.1(100p)(d+1)/2,89 for each given
logical operation. Note that this suggests an error threshold of
1%, below which the error rate of the logical qubit is decreased
with increasing d.

4.2. Magic-State Factories and the QPU Architecture.
One challenge in QEC schemes is the Eastin−Knill theorem,
which says that no QEC code can trivially implement a
universal gate set.90 For example, the surface code can only
encode Clifford gates, a collection of quantum gates which
implement elements of the Clifford group. The Clifford group
can be defined as the set of operations that map Paulis to other
Paulis and can be generated by the H, S, and CNOT gates, as
defined in eqs 4 and 5. In order to achieve universal quantum

Figure 3. (a) Layouts for 15-to-1 (top) and 20-to-4 (bottom) magic-state factories. These consist of 11 and 14 logical qubits, respectively (green).
The magic states produced are stored in the blue spaces. (b) Factory which distills 225 imperfect magic states to one higher quality magic state.
Eleven first-level 15-to-1 factories (green) are used to produce 15 refined magic states, which are in turn used by the second-level 15-to-1 factory
(orange) to produce one magic state of even higher quality (red). Blue lines are used to store and transport lower-quality magic states. White spaces
are unused logical qubits.
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computation, we need an extra non-Clifford operation. In the
surface code this is often taken to be the T gate, also defined in
eq 4. A T gate can be performed outside of the surface code by
generating and consuming a specific quantum state, known as a
magic state. Circuits to create high-fidelity magic states are
known as magic-state factories,89,91 and the process of creating
these states is known as magic-state distillation. This process
works by taking some number of noisy magic states as input
and producing a smaller number of magic states, which are of
higher quality, as output. The number of input and output
states, the probability of success, and the time taken for
distillation all vary depending on the choice of factory. For
example, the 15-to-1 factory from ref 89 uses 11 logical qubits,
takes 15 magic states as input, and after 11 time steps produces
a single magic state. Here, a time step corresponds to a single
error-corrected logical operation. If the input magic states have
probability p of error, then the probability of the distilled magic
state failing is 35p3. In comparison, the 20-to-4 factory from ref
89 uses 14 logical qubits, runs in 17 time steps, and has
probability 22p2 of any one of the four output magic states not
being a magic state. Figure 3a shows these two factories for
comparison. There are also larger factories, such as the 116-to-
12 factory in refs 89 and 92, which uses 81 tiles and produces
12 magic states after 50 time steps, such that the probability of
a failed state is 41.25p4.

These factories can be concatenated to create even higher-
quality magic states, such that the magic states produced from
a lower-level factory are used as input for a higher-level factory.
In Figure 3b we show how the magic states produced by 11 15-
to-1 factories can be used as input for another 15-to-1 factory.
This produces a 225-to-1 factory, which uses significantly more
magic states and logical qubits, but in 15 time steps produces a
magic state with failure probability 35(35p3)3 = 1500625p9. It
is through these techniques that we can design factories which
produce magic states with an arbitrarily small probability of
failure.

Once a magic state is created, we need to ensure that it can
be routed to the logical qubits which are involved in the logical
quantum circuit, which we shall refer to as data qubits. Litinski
describes a layout called the fast block, where data qubits are
arranged in a 2D grid with additional auxiliary qubits between
each row of data qubits.89 This arrangement allows for one
magic state to be consumed by any data qubits within one time
step. A time step is d code cycles, where a code cycle is the
time required to measure all stabilizers. Magic-state factories
can then be arranged around this data block to form an
architecture for our quantum computer. Note that we want to
design this architecture in such a way that magic states
produced from each factory can reach the data block and, at
the same time, try to minimize the number of additional
unused logical qubits�that is, logical qubits which are not
being used for data, generating magic states or routing, yet
exist on the 2D grid.

4.3. Error-Corrected Resource Estimation. We are now
ready to explain how to calculate the overhead of QEC, using
techniques described by Litinski.89 As explained in that
reference, the execution of quantum circuits can be reduced
to just the application of T-like gates and measurements, by
commuting the Clifford gates past all T gates and the
measurements at the end of the circuit. Thus, we focus first
on magic-state distillation. The number of magic states to be
distilled is equal to the number of T gates to be performed,
denoted NT. This number depends on the details of the

algorithm used and will be discussed in detail in Section 5. If
we wish to achieve a total failure probability of Pdf for
distillation, then the failure rate for each individual distillation
should be no greater than Pdf/NT. We therefore choose a
magic-state factory whose failure rate satisfies this requirement.
Several possible factories have been described, such as by
Litinski89,91 and by Haah and Hastings.93 The failure rate of a
particular factory is denoted by q. Then we choose the factory
with the largest q that satisfies q ≤ Pdf/NT.

We next decide the size of the fast block needed. As
described above, this is the region of the quantum computer
where algorithmic operations are performed on the data qubits.
The data qubits are interspersed with auxiliary qubits. For n
data qubits, the fast block uses approximately n n2 8 1+ +
logical qubits in total. If n8 is an integer, then this number of
qubits is exact and the fast block is exactly square. If n8 is not
an integer, then additional qubits are added or removed to the
final column, as needed.

We now consider how many magic-state factories are
needed. The fast block can consume one magic state per time
step. We therefore choose the number of magic-state factories
such that one magic state can be produced per time step on
average. For example, the 15-to-1 factory produces a single
magic state every 11 time steps, so we would include 11 such
factories in our setup; the 116-to-12 factory produces 12
factories every 50 timesteps and would require five factories;
and the 225-to-1 factory produces a single magic state every 15
time steps, so we would require 15 factories.

Next we discuss how to arrange the magic-state factories
around the data block. Our aim is to arrange all factories
around the data block such that each factory is connected to
the data block and that the number of unused logical qubits is
minimized. Problems of this nature are commonly referred to
as 2D packing problems, many variants of which are NP-Hard
to solve,94 and therefore it is unlikely that an optimal solution
can be found efficiently. Instead, we use a greedy algorithm,
which uses a heuristic to place each individual factory in a
reasonable spot based on the arrangement of the ones before it.
Thus, for each factory we look at every position we could place
the factory and check which ones have a path connecting the
factory to the data block. We then choose the best placement
for this factory on the basis of which position minimizes our
heuristic. Once all factories have been placed, the algorithm is
complete. A pseudocode description of the algorithm is shown
in Algorithm 1.
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A key question is the choice of heuristic we optimize each
placement over. One option is to minimize the number of
additional logical qubits. However, there are many placements
which might lead to the same number of additional logical
qubits, by placing the factory around the edge of the current
arrangement. Furthermore, this can lead to awkward arrange-
ments around a data block, with a lot of wasted qubits which
would be hard to use with other computations happening in
parallel. Instead, we aim to minimize the perimeter of the
arrangement. This heuristic ensures the arrangement remains
relatively well packed by minimizing gaps between factories.
We also use a second heuristic to ensure that the arrangements
form a roughly rectangular shape so that other computations
can be more easily arranged around it. Example layouts created
by this scheme are presented in Section 7, in Figure 8.

Finally, we choose the surface code distance, d. As noted
above, in the surface code the error rate per logical qubit per
code cycle is approximately 0.1(100p)(d+1)/2. There are d code
cycles per time step, and the fast block consumes an average of
one magic state per time step. The total number of magic
states to consume is NT, and the total number of logical qubits
is NL. Thus, for an overall target failure rate of Ptarget, we
require that

N N d p P0.1(100 ) d
T L

( 1)/2
target× × × +

(34)

Solving this equation for d gives us the required surface code
distance. This allows the total number of physical qubits to be
calculated, as each logical qubit consists of 2d2 physical qubits.

Since, following Litinski,89 we have reduced the quantum
circuit to just the application of T gates, the total runtime can
be estimated as NT × d × t, where t is the time to perform one
code cycle, and d code cycles are performed per time step.

For resource estimates in this work, we set the distillation
failure probability as Pdf = 1 × 10−3 and the surface code failure
probability as Ptarget = 9 × 10−3.

5. TROTTERIZATION VS QUBITIZATION
5.1. Trotterization. As explained in Section 2.4.2, the QPE

algorithm estimates an eigenvalue of a unitary operator U. A
natural choice is to take U to be the evolution operator for
some time t

U U t( ) e iHt= = (35)

Given a Hamiltonian Ĥ, producing its corresponding
evolution operator U is generally a difficult task. One can, at
best, aim for a good approximation to U. When using U to
estimate an energy to a desired level of accuracy�say,
chemical accuracy�it is paramount to control the error due to
this approximation. This is usually referred as the problem of
“Hamiltonian simulation”.95

The “Trotter approximation” is a widespread strategy for
approximating U, given a Hamiltonian written as a sum of
terms

H H
j

L

j
1

=
= (36)

each of which is easy to exponentiate�that is, we can
construct e−iĤjt for all j. Examples of such Hamiltonians include
those found in chemistry.

The Trotter approximation divides the time t into intervals
of duration τ and considers a simple approximation to the
evolution operator for each of these intervals:
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with t an integer multiple of τ. [The expression presented here
is the so-called second order Trotter approximation, in which
each operator Ĥj appears twice per time step. Other Trotter
orders exist�they differ in the number of times Ĥj appear per
time step.] The error in this approximation goes to zero for τ
→ 0. However, the cost of implementing this approximation
increases as τ decreases. To do well in the trade-off of
resources vs accuracy, one would choose the largest τ that gives
the desired accuracy.

Given a Hamiltonian, rigorous error bounds for the
Trotterization of its evolution operator are available for finite
τ,96 but in practice these bounds tend to be very generous. For
tighter error estimates, one can use an empirical law for the
error inferred from small systems�small systems are a
numerical necessity when the error is estimated via exact
diagonalization of the Trotter and Hamiltonian operators (see,

Figure 4. Fit of empirical law for our set of molecules. The fit is done in two steps. In the first step (left), for each of the molecules, we generate δE0

for τ/τmax = [1.0, 0.5, 0.1, 0.05, 0.01, 0.005, 0.001] and do a one-parameter fit of ( )E a0 max 1

2

max
= . Note that, for larger molecules, ϵ0 for small

values of τ appear to deviate from the quadratic behavior. We attribute this to numerical error and exclude these values from the fits. In the second
step (right), we plot a1 for each molecule and fit a1 = a(nq)b, obtaining the parameters of the empirical law in eq 38: a = 1.51 ± 0.84; b = −4.66 ±
0.27.
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e.g., refs 95 and 97 for other empirical approaches to the
Trotter error). There are a number of choices to make. For
starters, there are a variety of notions of error to quantify. We
choose ϵ0, the difference between the ground-state energies of
the original Hamiltonian Ĥ and its Trotterized evolution
operator UTrot(τ) (it is apparent from eq 37 that the energy
spectrum of UTrot(t), defined via its eigenvalues {e−iEit}, is a
function of τ).

We inferred an empirical law from the difference between
ground-state energies of Ĥ (E0) and UTrot(τ) (ETrot) for a data
set composed of small molecules (H2, H3

+, H4, LiH, OH−, HF,
BeH2, and H2O) in the STO-3G basis, in the symmetry-
conserving Bravyi−Kitaev encoding�Ĥj in eq 37 being the
Pauli strings of the Hamiltonian in that encoding. For each
molecule, this difference ϵ0 = ETrot − E0 is well modeled by a
quadratic monomial of τ. The coefficient of this monomial
depends on the size of the molecule, which we characterize by
the number of logical qubits needed to represent it, nq. In
symmetry-conserving Bravyi−Kitaev, this is two less than the
number of spin−orbitals, nq = no − 2. The following law results
in a good fit:

E a n( )b
0 max q

max

2i
k
jjjjj

y
{
zzzzz=

(38)

where Emax is a certain bound on the maximum eigenenergy of
the Hamiltonian that has been defined in eq 12; τmax ≡ π/Emax;
and nq is the number of qubits used to represent the active
space of Ĥ. Figure 4 describes the fit, resulting in a = 1.51 ±
0.84 and b = −4.66 ± 0.27.

One finds that, even with empirical laws for the error
committed, the Trotter approximation is an expensive method
for the Hamiltonian simulation step of QPE. For example, as
quoted in Section 7 below, for simulations of active spaces of
(32e, 32o), the compilation of the Trotter operator into
Clifford and T gates98 gives T-gate counts of around 4 × 1014,
for chemically accurate Trotterization. These T-gate counts
result in impractically long runtimes on current and projected
quantum computers. We note that while improvements to the
Trotterization circuits can be made,99 these will not reduce the
runtimes by the required orders of magnitude. More modern
methods, encompassed under the names of “qubitization” and
“linear combination of unitaries” result in more moderate T-
gate counts, of around 1010, with projected runtimes on the
order of a few days.

5.2. Qubitization. In the quest to find the eigenenergies of
a Hamiltonian, it is actually not necessary to solve the problem
of Hamiltonian simulation and implement the time evolution
operator U = e−iĤt with eigenvalues e−iEjt. Instead, qubitization
methods100,101 facilitate the implementation of a so-called walk
operator W with eigenvalues

Wspectrum( ) e i E Earccos( / )j max= { }± (39)

The Hamiltonian’s energies Ej can then readily be retrieved by
performing QPE on the walk operator W. The upside is that W
can be implemented with many fewer T gates than the
Trotterized time evolution UTrot, for a given Hamiltonian Ĥ
and target accuracy.

The walk operator W is simply related to the Hamiltonian
Ĥ. The starting point for the implementation of the walk
operator is a decomposition of the Hamiltonian into a linear
combination of unitaries (LCU):

H wU
i

L

i i
1

=
= (40)

The individual Ui should be unitary and simple enough to be
readily implementable on a quantum computer. Then the LCU
decomposition can be implemented in a block-encoded fashion
by using the PREPARE/SELECT framework.100,101 In its most
basic and simplified form, the LCU implementation is based
on a state
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and an operator

i i USELECT
i

L

i
1

= | |
= (42)

which selects one of the Ui on the basis of the value of the
auxiliary qubit register |i⟩. Put together, these give

H PREPARE SELECT PREPARE| | (43)

Any signs of wi have been absorbed into the Ui. Qubitization
then shows how to construct the walk operator W with the
eigenvalues in eq 39 from these PREPARE and SELECT
operators.

There are several flavors of qubitization.77,101−103 On the
one hand, by transforming or factorizing the chemical
Hamiltonian in different ways, they arrive at different LCU
decompositions in eq 40 that promise better efficiency. On the
other hand, the flavors introduce new ways to implement the
PREPARE and SELECT operators, which improve upon
previous approaches but can also be very tailored to their
specific factorization of the Hamiltonian.

Throughout, we consider the sparse method first presented
in102 and further improved in Appendix A of ref 77. The
method is tailored to the Jordan−Wigner Fermion-to-qubit
encoding. We select this qubitization flavor on the basis of its
simplicity and flexible applicability to a wide range of systems.
We consider a total error ϵ = 1.6 mHa of chemical accuracy.77

The total error is made up of three parts ϵ = ϵTRUNC + ϵPREP +
ϵQPE,

77 which we chose as ϵTRUNC = ϵPREP = 0.3 mHa and ϵQPE
= 1 mHa. In the following we explain how they arise, and
which parameters of the algorithm can be adjusted to reach our
total error budget of 1.6 mHa.

First of all, the chemical Hamiltonian Ĥ is not decomposed
exactly into an LCU in eq 40. The sparse method exploits
(approximate) sparsity in the Hamiltonian Ĥ by truncating
small terms. We denote the truncated Hamiltonian ĤTRUNC
and perform the LCU on ĤTRUNC instead of Ĥ. This reduces
the number of terms in the LCU decomposition, yielding a
faster quantum computation. We consider two criteria to
truncate the Hamiltonian according to a given error budget.
First, a truncation based on the L2-norm of Ĥ. In this, the
truncation threshold for the two-body coefficients is chosen
such that ∥Ĥ − ĤTRUNC∥Ld2

≤ ϵTRUNC.
103 Note that the L2-

norm must be taken with respect to the LCU coefficients.
Then, we consider a truncation based on CCSD(T).77

Specifically, we calculate the CCSD(T) energy with the
original Hamiltonian (ECCSD(T)) and a truncated Hamiltonian
(ECCSD(T) trunc) and find the largest truncation for which |
ECCSD(T) − ECCSD(T) trunc| ≤ ϵTRUNC. This reduces the number
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of terms in the Hamiltonian by up to ∼90%, which lowers the
cost of implementation significantly.

Second, an error ϵPREP occurs when implementing the LCU
decomposition with the PREPARE/SELECT machinery. The
quantum circuit for PREPARE cannot implement the
coefficients w E/i max| | in eq 41 to infinite precision, resulting
in the rounding error ϵPREP. It can be controlled by the bit
length Elog( /(2 ))max PREP= (eq A12 of ref 77) for the
coherent alias sampling procedure.101 [Apart from the bit
length in coherent alias sampling, the bit length br used in
amplitude amplification of an equal superposition state in
PREPARE also contributes to ϵPREP. However, the contribu-
tion of br to the total cost is subleading and we take br as
constant.77] The LCU can be implemented much more
precisely than the evolution operator in Trotterization; the
dependence of gate count on allowable error ϵPREP is much
smaller in qubitization. The LCU is a more efficient
approximation than Trotterization. The main reason for this
is that while Trotterization targets the approximate imple-
mentation of UTrot ≈ e−iĤt, the LCU directly targets the
approximate implementation of Ĥ, avoiding any approximation
in the expansion of the exponential.

Finally, as in Trotterization, an error ϵQPE occurs due to the
final QPE, which has a finite accuracy as discussed in Section
2.4.2. Qubitization methods typically use alternative phase
estimation methods101,104 to slightly improve on standard
textbook QPE. An error ϵQPE implies that the walk operator W,
and hence the qubitization procedure, needs to be repeated

E /(2 )max QPE (eq 44 of ref 77) times in a phase estimation.
Subsequently, we will assess the time and logical qubit

number needed for a quantum computer to be of aid in
chemical applications. The article77 has taken great effort in
deriving the number of logical T gates and logical qubits
needed for a given Hamiltonian and parameters determining
the errors. The number of logical T gates in the sparse
qubitization algorithm can be found by multiplying the cost
(eq A17 of ref 77) of a single iteration with the number of
iterations (eq 44 of ref 77) in the phase estimation. The
number of logical qubits is given by eq A18 of ref 77. We
combine these results with error correction (see Section 4.3)
for an estimate of the physical resources required. These results
for the sparse qubitization algorithm can be directly compared
to the runtime requirements of the Trotterization algorithm.
Figure 7 highlights the tremendous runtime advantage of
qubitization algorithms compared to Trotterization.

6. DRUG DESIGN METHODS AND THE MODEL
SYSTEM

6.1. Computational Chemistry in Pharma. The
interaction between drug molecules and various proteins is
vital for the understanding of pharmaceutically relevant
mechanisms. Unfortunately, a protein−drug system within its
physiological environment may easily consist of hundreds of
thousands of atoms, which makes the full quantum mechanical
treatment of such systems out of reach for quantum and
classical computers alike. As a consequence, the most widely
used computational techniques in pharma rely on a classical
(Newtonian) parametrization of the various interactions via
empirical force fields. Current methods of rational drug design
broadly belong to either ligand-based or structure-based design
approaches. While the former focuses on structural features of
ligands, the latter considers drug molecules within a protein

environment. Especially for the latter, an accurate description
of the forces involved in protein−ligand binding is vital and the
necessary force-field parameters may be obtained from
quantum mechanical calculations.105−108 However, while
classical force fields capture most prominently the bond
lengths, bond angles, and dihedrals, as well as nonbonded
electrostatic and van der Waals interactions, their traditional
formulation does not account for finer electronic effects such
as polarization, charge-transfer phenomena, aromatic stacking
interactions, or interactions with metal ions, although
extensions do exist that attempt to treat the latter phenomena
with varying degrees of success.109−111 The fact that only atom
types and not electrons and nuclei are considered in force-field
parametrization also renders force-field approaches incapable
of describing covalent interactions and reaction mechanisms
that involve bond breaking, finding transition-state structures,
and making spectroscopic predictions. Yet despite the
continued improvements in computer power and speed, the
routine application of steeply scaling quantum mechanical
methods in the drug design process is still very limited and
mainly reserved for the study of small-molecule properties and
small-molecule conformations. While using semiempirical
methods such as DFTB (tight-binding density functional
theory)112 and HF-3c113 reduces the cost significantly, these
methods are often considerably less accurate than fully
quantum mechanical methods. Thus, when more accurate
treatment is required, embedding techniques are typically used.
These methods either partition the molecule into small
fragments and assemble the whole from fragment calculations,
or build layers with one of them treated at a high level and the
others more approximately. The great variety of these methods
is reviewed elsewhere;114,115 we only remark here that some of
them have been applied to protein systems containing more
than 20000 atoms.116 Here we are concerned with two typical
choices: hybrid QM/MM and QM cluster.117,118

Since the ground-breaking work by Warshel and Levitt in
1976,119 the idea of partitioning a chemical system into layers
treated with methods of different sophistication has been a
field of intense research.120,121 In drug design the approach is
traditionally used to describe selected residues of the binding
pocket and the drug with a quantum mechanical (QM)
method while the remainder of the system is simulated using
molecular mechanics (MM). These hybrid QM/MM methods
are generally divided into subtractive methods where the MM
energy of the active site is subtracted from a sum of the QM
energy of the active site and the MM energy of the entire
system, and additive methods that only consider the MM
energy of the environment and account for the interaction
between the two systems by adding an electrostatic coupling
term.122 The latter describes interactions either (a) solely on
the MM force-field level and without any polarization of the
QM region (mechanical embedding), (b) by incorporating
point charges from the MM region in the QM Hamiltonian
(electrostatic embedding), or (c) by mutual polarization of the
regions requiring a polarizable MM force field (polarizable
embedding).117

In a QM-cluster approach the active site is physically cut out
of its environment, only considering the drug and the nearest
interacting amino acids. Cross-sections are saturated by usually
hydrogen atoms or methyl groups and constraints are added to
ensure the rigidity imposed by the protein surroundings.
Electrostatic effects are compensated for by using continuum
solvation and a dielectric constant.123,124 Both the hybrid QM/
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MM and the QM-cluster method are used to gain insight into
the drug−protein binding and electronic processes in the
binding-pocket-like electronic excitations125 or mechanisms of
binding or action.126 However, both methods are restricted to
a few hundred atoms at most, depending on the level of
description, which is not enough to describe, e.g., effects of
ligand binding at other sites than the binding pocket
(allosteric) or other large-scale mechanisms.

Finally, it should be mentioned that a number of embedding
methods have already been proposed for use with quantum
computers in an attempt to reduce the heavy resource
requirements. Local approaches to active space construction
have been recently proposed127 and applied to quantum
computing.128 The quantum variants of dynamical mean field
theory129 and density matrix embedding theory (DMET)130

were published some years ago, and costing studies are also
available for DMET.131 Energy-weighted DMET132 and
Gutzwiller variational embedding133 approaches have been
tested on current quantum processors. Pharmaceutical model
systems have also been studied, including a study of protein−
ligand interactions using DMET134 and our own work on a
multilayer embedding approach.135

6.2. Active Space Selection. In both the QM/MM and
QM-cluster approaches, a central QM region is selected to be
treated at the highest level of theory. Unfortunately, this region
is typically still too large to be treated directly on a quantum
device. To construct the molecular Hamiltonian within this
region, an active space of orbitals must be selected in a manner
reminiscent of frozen core136,137 and complete active space40

approaches. In our previous work, we suggested a way for how
the active orbitals may be selected using local fragment
occupied orbitals and a corresponding set of natural orbitals
obtained from perturbation theory.135 We also outlined a
secondary subtractive embedding process to take care of
correlation effects outside the active space. For the purposes of
resource estimation, this second step is not necessary.

6.3. Model System. As a model system for the subsequent
resource estimation within a QM-cluster approach, we have
chosen the drug Ibrutinib which was approved for treatment of
non-Hodgkin lymphoma by the U.S. Food and Drug
Administration (FDA) in 2015.138 It inhibits Bruton’s tyrosine
kinase (BTK)�a vital element of the B-cell receptor signaling
pathway�and thus induces apoptosis in B-cell tumors.139 It
covalently binds to cysteine 481 in BTK via a Michael addition
reaction.140 Successful binding of a drug to a target depends on
many factors in both the binding pocket and its environment.
In order to design drugs efficiently, we need to gain a thorough
understanding of the binding process. In the first step a
covalent drug binds in the same manner as a noncovalent drug,
namely, via weak interactions. If a reactive electrophilic group
on the drug is then positioned in proximity and favorable
arrangement to a nucleophilic group on the protein, the
covalent bond can be formed via an electronic rearrangement.
The latter cannot be described by most commonly used
computational drug design methods.141

The size of the cluster has do be decided depending on the
residues, ligand groups, and water molecules or ions
contributing to the binding or mechanism. To ensure the
correct atomic arrangements and to represent the rigidity of
the binding pocket, it is crucial that the underlying crystal
structure is well resolved and that the bonds cut and the atoms
fixed are carefully chosen.142 A cluster containing the ligand, all
neighboring residues (within 5 Å of ligand), and water

molecules would account for over 400 atoms and thus be too
big for our purposes. Instead, a medium sized cluster was
selected in which the ligand was cut beyond the pyrazolo
pyrimidine moiety and which also included residues Leu408,
Gly409, Thr410, Gly480, Cys481, and Asn484 and four water
molecules. The cluster contained 129 atoms and was fixed at
position 3 of the piperidine ring (Figure 5). There have been

numerous studies in the past that have used sizes similar to the
cluster size considered here, although the treatment of a larger
system would have been computationally feasible.143−145 The
cluster represents the product structure of the binding
mechanism of the formation of the covalent bond between
the ligand and Cys481 of the protein.140 In our approach, the
selection of occupied orbitals corresponds to selecting
fragments. We selected active fragments in five different sizes
as shown in Figure 5. The smallest chosen area comprises the
ligand warhead up to the carbonyl group, sulfur of cysteine and
an OH− unit from the interacting water molecule (purple) and
represents the minimum of the reacting and primarily
interacting atoms for the boond formation step. With
incremental addition of more interacting atoms from the
binding pocket and larger parts of the ligand and the respective
amino acid, the largest chosen area captures all relevant
interactions and includes the ligand’s warhead moiety up to the
two closest CH2 and the coordinating pyrazolo pyridine
nitrogen atom, four water molecules, Gly480 and Cys481
excluding the saturation groups, and the functional tail and
carbonyl oxygen of Asn484 (green).

6.4. Computational Methods. Input structures for all
calculations were based on the crystal structure of a covalently
bound Ibrutinib/BTK complex by Bender et al. (PDB ID:
5P9J, 1.08 Å resolution).146 With use of Maestro’s147 Protein
Preparation Wizard,148 missing residues were filled in using
Prime149,150 and hydrogen atoms were added and refined with
PROPKA.151,152 The Cα atoms were constrained for every
terminal amino acid included in the cluster and one atom in
the ligand to account for their positions in the X-ray structure.
Geometry optimizations were carried out with Jaguar 11.2153

using the DFT functional B3LYP,154,155 Grimme’s dispersion
correction D3,156,157 and the 6-31G+** basis set. The CPCM
(conductor-like polarizable continuum) solvation model158

Figure 5. Cluster containing part of the binding pocket and the
Ibrutinib inhibitor. The various fragments in which the active space
orbitals were selected are indicated using various colors.
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with the dielectric constant ε = 4 was used to describe the
effect of the global protein environment.159,160 A frequency
calculation was carried out to confirm that the only imaginary
modes present are small and result from the atomic constraints,
confirming the structure to be a minimum. The active space
integrals were calculated using the ORCA program package.161

The def2-TZVP basis set was used.162 The occupied orbitals
were localized using the Pipek−Mezey approach163 and were
mapped to fragments using intrinsic atomic orbitals164 and the
criterion that the orbital charge on the fragment be larger than
0.95.135 The same number of active virtuals were selected using
perturbation theory as the number of active occupied orbitals
obtained in the previous step.135

7. RESULTS
We now present results of our resource estimations. We
consider the molecule and active spaces discussed in Section 6,
which have sizes from (14e,14o) to (100e,100o).

We perform resource estimation for the two QPE
approaches described in Section 5. In the first approach we
consider the textbook QPE algorithm using Trotterization to a
precision of 1.6 mHa. We estimate the error from
Trotterization using the empirical law described in eq 38. In
the second approach we consider the Heisenberg-limited QPE
algorithm described by Lee et al.77,101 using qubitization,
specifically the sparse qubitization method as described in
Section 5. The overall precision is again taken to be 1.6 mHa.
We refer to these two approaches as “QPE with Trotterization”
and “QPE with sparse qubitization” in the following, although
it is important to emphasize that improvements in the latter are
not solely due to the use of qubitization.

Physical error rates of 0.01 and 0.1% (p = 10−4 and p =
10−3) are considered. The code cycle duration is taken to be 1
μs, which is believed to be realistic for future superconducting
quantum processors.

Figure 6 presents the runtime for QPE with sparse
qubitization as a function of active space size, considering
both error rates (p = 10−4 and p = 10−3) and both Hamiltonian

truncation approaches defined in Section 5. On this log−log
plot a reasonable power law fit is evident. The runtime is found
to scale as roughly T n( )o

4.6 , where no is the number of
spatial orbitals. The power law plotted is fit using data with p =
10−4 and CCSD(T) truncation only, but the same scaling is
observed for each set of data. A power law with respect to the
number of orbitals was already anticipated in Appendix D of
ref 102, and the exponent found is in approximate agreement
with our observations. For the trivial (14e,14o) we estimate a
runtime of 1.3 or 3.0 h with p = 10−4 and p = 10−3, respectively
(and using CCSD(T) to assess the truncation criterion). For
(32e,32o) the corresponding runtimes are 1.9 or 4.0 days. For
(100e,100o), we estimate respective runtimes of 1.3 and 2.6
years. These runtimes are high, but are likely to reduce with
further algorithmic developments.

We also considered using both CCSD(T) and L2-norm to
assess the truncation criterion. In both cases, we aimed for a
Hamiltonian truncation error of 0.3 mHa or less. As can be
seen in Figure 6, the CCSD(T) metric allows more
Hamiltonian terms to be truncated, resulting in fewer T
gates overall. The number of T gates is typically within a factor
of 1.2 to 2.0 between these two approaches, for the active
spaces studied here. The estimated numbers of T gates in each
approach are presented in Table 1. Note that the runtime to
perform CCSD(T) is negligible compared to the estimated
QPE runtime for the active spaces considered. This CCSD(T)
cost is not included in the presented runtimes. If QPE
algorithms become efficient enough that thousands of orbitals
can be treated, then this situation may eventually change, in
which case using L2-norm may be preferable.

In Figure 7 we compare the runtime and total number of
physical qubits between the two QPE approaches, defined
above, with a physical error rate of p = 10−4. It is seen that the
Trotterized approach is dramatically more expensive than the
sparse qubitization method and has significantly steeper scaling
in runtime with active space size. For example, the (32e,32o)
example, which takes 1.9 days in the latter method, is estimated
to take roughly 250 years in the Trotterized algorithm.

Figure 6. Runtime to perform QPE using sparse qubitization. Active spaces from (14e,14o) to (100e,100o) are considered. It is assumed that one
time step takes 1 μs to perform. Physical error rates, p, of 0.01 and 0.1% are considered. The Hamiltonian is either truncated using an L2-norm
criterion or a CCSD(T) criterion. In each case, the runtime scales as approximately no

4.6 with the number of active orbitals.
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To calculate the number of physical qubits on the QPU, we
consider the full layout of the fast block, magic-state factories,
and routing qubits. Making an assumption that the overall
QPU will be rectangular, we then find the smallest rectangle
that encloses the fast block and all magic-state factories. The
number of qubits within this rectangle defines the total qubit
count in our results. It is seen that the total number of physical
qubits is increased in the Trotterized algorithm. This is
interesting as there is a significant data qubit overhead
associated with performing the qubitization algorithm.
However, the increased number of T gates in the Trotterized
algorithm necessitates a higher surface code distance, such that
the number of physical qubits is increased overall. Moreover,
while the number of data qubits in the fast block is much lower
when performing Trotterization, the QPU architecture may be

dominated by several large magic-state factories. Note that the
number of physical qubits is the same for both (42e,42o) and
(52e,52o) active spaces in Figure 7, when using Trotterization.
This is because the same factory arrangements were used for
both and the required surface code distance is also found to be
the same.

To present a specific example in more detail, we again
consider the (32e,32o) active space using the Trotterization
QPE approach. Here the number of required data qubits is 82.
The required number of T gates is NT = 3.96 × 1014. In order
to perform magic-state distillation for all such T gates with the
desired success probability (see Section 4.3), we use 225-to-1
magic-state factories, whose layout is presented in Figure 3b.
This factory produces one magic state every 15 time steps.
Thus, we include 15 magic-state factories in order to produce
one magic state per time step. Note that there may be smaller
magic-state factories that suffice and which we have not
considered here. However, the 225-to-1 factory is optimal from
those considered in this work. Using the approach presented in
Algorithm 1, we generate a layout for the device, presented in
Figure 8. The total number of logical qubits for the fast block,
for magic-state factories, and for routing is 3226. We then solve
eq 34 with p = 10−4, NL = 3226, and NT as above, giving a
required code distance of d = 20. The smallest rectangular
region which contains the above layout consists of 4536 tiles in
total. Lastly we note that there are 2d2 = 800 physical qubits
per logical qubit. Thus, the total number of physical qubits is
estimated as 4536 × 800 = 3.6 × 106, as plotted in Figure 7.
The total runtime is estimated as NT × d × 10−6 s = 7.9 × 109

s.
In the QPE approach with sparse qubitization, the same

(32e,32o) problem requires 2207 logical qubits, but only NT =
1.1 × 1010 T gates. In this case the 116-to-12 factory suffices.
The device layout is again presented in Figure 8. A calculation

Table 1. Required Number of T Gates to Perform QPE for
Various Active Spacesa

qubitization Trotterization

no. of spatial
orbitals

L2-norm
truncation

CCSD(T)
truncation no truncation

14 5.6 × 108 3.7 × 108 1.6 × 1012

20 3.2 × 109 2.3 × 109 2.7 × 1013

32 2.0 × 1010 1.1 × 1010 4.0 × 1014

42 6.9 × 1010 4.1 × 1010 2.4 × 1015

52 1.7 × 1011 1.1 × 1011 5.2 × 1015

66 4.7 × 1011 3.4 × 1011 -
100 2.7 × 1012 2.1 × 1012 -

aNo truncation of the Hamiltonian is performed for QPE with
Trotterization. For QPE using qubitization the Hamiltonian is
truncated using both CCSD(T) and the L2-norm to assess the error
incurred, with a target truncation error of 0.3 mHa or less. The
CCSD(T) criterion truncates more terms, resulting in a lower
estimate for the required number of T gates.

Figure 7. Comparison of resources (runtime and total number of physical qubits) using two QPE algorithms. The first (orange) used qubitization,
and the Hamiltonian was truncated to remove small terms up to an error budget. The second (green) used textbook QPE with Trotterization and
no truncation of the Hamiltonian. The latter algorithm has a much steeper scaling in runtime. Even for a (14e,14o) active space the runtime is
multiple orders of magnitude more expensive.
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similar to that above leads to the lower runtime and number of
physical qubits as in Figure 7. This dramatic reduction in
runtime emphasizes the importance of recent developments
and the potential value of similar developments in the future.

Lastly we investigate the required surface code distance in
each case, as presented in Table 2. The qubitization results

here used CCSD(T) as the Hamiltonian truncation criterion
(using the L2-norm criterion makes no significant difference to
the required distance). The main factor affecting the required
code distance is the physical error rate. For example, for the
(32e,32o) active space the code distance increases from d = 15
to d = 32 as p is increased from 10−4 to 10−3, in QPE with
qubitization. For a fixed p the code distance is less sensitive to
the T-gate count. For (32e,32o) the code distance increases
from d = 15 to d = 20 between the two QPE approaches,
although the number of T gates increases significantly from 1.1
× 1010 to 4.0 × 1014. This emphasizes that improvements in
device fidelities can significantly reduce the challenge of
performing an error-corrected algorithm in practice.

8. CONCLUSIONS
In this work we have presented an overview of resource
estimation for quantum computing calculations in pharma-

ceutical applications. This has focused on quantum phase
estimation (QPE), which was first introduced in the 1990s, but
has recently undergone a number of significant developments
to reduce its practical cost. We have also performed a detailed
costing of quantum error correction (QEC) in QPE
applications, particularly the surface code, which will be crucial
to performing quantum computation in practical problems.

We performed QPE resource estimation for several active
spaces of the drug Ibrutinib. QPE was costed using two
techniques: Trotterization with the full Hamiltonian, and
qubitization using a truncated Hamiltonian. We find a dramatic
improvement with the latter technique; calculating the ground-
state energy in a (42e,42o) active space is estimated to take
over 1000 years using Trotterization, which is reduced to
around 7.6 days using the sparse qubitization approach
(assuming a physical error rate of 0.01%, and code cycle
duration of 1 μs). This emphasizes that algorithmic improve-
ments can reduce the cost of quantum computing by several
orders of magnitude and are transformative to the potential
power of quantum computers. Some of the runtimes remain
high; for example, obtaining the ground-state energy for a
(100e,100o) active space is estimated to take over a year. This
emphasizes that further algorithmic improvements are
important. Given the dramatic reduction in runtime seen
above, we expect such improvements to occur. For example,
our costing assumed that all T gates are performed in serial,
whereas the runtime can be reduced in theory through parallel
execution.89 Further truncation of the Hamiltonian may be
possible through techniques such as tensor hypercontraction.77

QEC is also an extremely active area of research, and
improvements here may further reduce the resources required
for large-scale applications. It should be noted that current
quantum computers have a low qubit count compared to those
presented in our resource estimates. For example, IBM’s Eagle
processor has 127 qubits.165 An experiment by Google
Quantum AI has recently been performed which demonstrates
decreasing logical error rate with increasing qubit number.166

However, the authors caution that their error rates are still
close to the code threshold and must be reduced further to
facilitate “practical scaling”. Thus, the state-of-the-art is still
some way from performing nontrivial QPE calculations.

Figure 8. QPU layouts used to perform QPE experiments on the (32e,32o) active space example. Left: layout used for QPE with Trotterization.
Right: Layout used for QPE with qubitization. Data block qubits are orange, magic-state factory qubits are green, and routing and storage qubits are
blue. Qubitization uses many more data qubits such that the data block is much larger. However, the higher T-gate count in QPE with
Trotterization necessitates larger magic-state factories (225-to-1) compared to those in qubitization (116-to-12). Axes are included to indicate the
total number of logical qubits in both layouts, with each logical qubit having size 1-by-1. However, note that the code distance is higher in QPE
with Trotterization (see Table 2) so that these are not to physical scale.

Table 2. Required Surface Code Distances for Various
Active Spacesa

qubitization Trotterization

no. of spatial orbitals p = 10−4 p = 10−3 p = 10−4 p = 10−3

14 13 29 17 36
20 14 31 19 39
32 15 32 20 41
42 16 34 21 43
52 17 35 21 43
66 18 37
100 19 39

aWe consider QPE performed using Trotterization and the full
Hamiltonian, and QPE using qubitization and truncating small
Hamiltonian elements. Physical error rates (p) of 10−4 and 10−3 are
considered.
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In assessing the usefulness of quantum computers for
pharma, several factors must be considered. In this work, we
focused on demonstrating that QPE running on fault-tolerant
quantum computers will be able to handle large active spaces.
It remains important to ensure that the accurate treatment of
this quantum region is coupled with a balanced treatment of
the environment lest the errors coming from the latter
overwhelm the potential improvements delivered by the
quantum computer. Thus, using an appropriate embedding
technique will be inevitable in future applications. Further-
more, because weakly correlated systems are more common in
pharma, methods on a quantum computer must be compared
to DFT in terms of accuracy and efficiency. If the method of
choice is QPE, there is obvious advantage in obtaining the
exact solution, while for ansatz-based approaches, a compar-
ison to classical wave function based approaches might be
appropriate. In terms of efficiency, quantum computers must
not introduce a significant overhead compared to DFT so that
the improvements in the accuracy of results will come at a
reasonable cost. Despite the overall success of DFT, the
constant call for better methods indicates that fault-tolerant
quantum computers have a significant contribution to make in
many areas of chemistry.

It remains to note that even DFT is not widely applied
throughout industrial computer-aided drug design workflows.
We demonstrated the applicability of quantum computing
algorithms for a realistic QM-cluster approach, which similarly
as the above-described QM/MM method does indeed utilize
quantum mechanics to gain insight into drug−protein binding
mechanisms. However, both methods are usually used either
for bespoke bits at the end of the computational drug design
funnel or in academic pharmaceutical research. Current high-
throughput workflows are devised to allow the processing of
hundreds of thousands of structures with the limited classical
computing resources available, which renders even the usage of
DFT with relatively cheap functionals unfeasible throughout
most of the computational drug design pipeline. Rather than
attempting to simply substitute existing steps in the workflows
it will be a challenge for computational chemists and
algorithmic researchers to rethink the computer-aided drug
design processes while the hardware matures in the next years.

Yet, the thrilling perspectives for chemistry offered by
quantum computing cannot be realized today. Even as different
actors are racing to build and integrate larger and larger
numbers of qubits,9−11,167,168 significant practical challenges in
scaling-up the size of quantum computers remain. We have
based our resource estimates on tomorrow’s hardware that will
have overcome these challenges and today’s algorithms. The
high resource estimates thus show that tremendous effort must
go also into improving algorithms and quantum error
correction, improvements which have already allowed
reduction in resources by orders of magnitude. As hardware
developments and algorithmic requirements continue to draw
closer to each other, it is also important to not only improve
resource estimates but look at implementing these aspects of
the quantum computing stack in practice. One example of this
is the recent demonstrations of quantum error correction on
physical hardware,17−22 but other levels must be developed as
well. To unlock the potential of quantum computing, along
with the physical engineering challenge one must address
challenges across the entire stack.

■ APPENDIX A

A.1. Number of Repetitions of QPE
As discussed in the main text, we will typically have to repeat
the QPE procedure several times in order to obtain an estimate
of the ground-state energy to the desired level of precision. In
this Appendix, we outline one possible method for deciding
how many repetitions to perform and how to obtain an energy
estimate from the results.

In order that our final energy estimate is to the desired
accuracy with the desired probability, we repeat the phase
estimation procedure l times and take the median of the lowest
k measurement outcomes. These values are determined on the
basis of the details of the chemical system and calculation.
Taking such a median reduces the effect of outliers.

In order to calculate l and k, we make use of P0, the
probability that an eigenvalue estimate is within 2−t of the true
desired eigenvalue, assuming we are measuring the desired
eigenstate to t bits of precision. The derivation of this
probability is given in Section A.2. We also make use of η, an
estimate of the overlap probability of the initial state with the
desired eigenstate. Finally, we require Pf, the probability of the
error correction procedure failing on a single run of phase
estimation, that is, the probability of an undetected error in
magic-state distillation or a logical error (see Section 4.3 for
further details).

We then assume that all measurements of an excited state
where a logical error does not occur will result in an estimate
above the desired range, measurements of the ground state
where a logical error does not occur will result in an estimate
within the desired range with probability P0, and all other
measurements result in an estimate below the desired range.
The last choice in particular is likely to be worse than the true
situation; this is deliberate so as to avoid underestimating the
number of repetitions required. We then calculate the smallest
value of l and a corresponding value of k such that the
probability of the median estimate being within the desired
range is at least the specified desired success probability, Ps. We
find k 2 1m

2

Å
Ç
ÅÅÅÅÅ

Ñ
Ö
ÑÑÑÑÑ= + to perform well, though there can be

improved values of k. We note that choosing k in this way
means the overall success probability is not necessarily larger if
the true value of η is greater than the value used to calculate k;
as a result, it may be preferable to increase l and/or k to ensure
the overall success probability is above the desired value for a
full range of desired η values.
A.2. QPE Probabilities
We want to find the probability of a single eigenvalue estimate
being within ϵ = 2−t of the true desired eigenvalue. We assume
that each eigenvalue, Ej, satisfies 0 ≤ Ej < 1 and so can write
the jth eigenvalue as

E 2 2j
p

m

jp
p

j
m

1

=
= (44)

where each ϕjp has a value of 0 or 1 and 0 ≤ δj < 1. We will find
it useful to define bj × 2−m = ∑p=1

m ϕjp × 2−p. We let pl, where
−2m−1 < l ≤ 2m−1, be the probability of obtaining measure-
ments (θl,m, θl,m−1, ..., θl,1) such that ∑p=1

m θlp × 2m−p = (bn + l)
mod 2m, where n is the index of the desired eigenvalue,
assuming the desired eigenvalue is measured. Following
standard manipulations,61,169 we see that
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This is a decreasing function of m. Taking the limit as m → ∞,
we see that
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We sum over these probabilities to find the probability, Pm−t,
that the estimated eigenvalue is within a certain distance, 2−t,
of the true eigenvalue, given that we measure m bits of
precision. This is given by
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This is minimized when δn = 1/2. Therefore,
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This has a number of terms that is exponential in the value of
m − t; however, it will not be prohibitive to evaluate the sum
for small values. For larger values, we can derive a bound which
does not involve a sum. From the Basel problem, we have
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homöopolare Bindung nach der Quantenmechanik. Z. Phys. 1927, 44,
455−472.
(28) Pauling, L. The Nature of the Chemical Bond. Application of

Results Obtained from the Quantum Mechanics and from a Theory of
Paramagnetic Susceptibility to the Structure of Molecules. J. Am.
Chem. Soc. 1931, 53, 1367−1400.
(29) Hund, F. Zur Deutung der Molekelspektren. I. Z. Phys. 1927,

40, 742−764.
(30) Mulliken, R. S. The Assignment of Quantum Numbers for

Electrons in Molecules. I. Phys. Rev. 1928, 32, 186−222.
(31) Lennard-Jones, J. E. The electronic structure of some diatomic

molecules. Trans. Faraday Soc. 1929, 25, 668−686.
(32) Dirac, P. A. M.; Fowler, R. H. Quantum mechanics of many-

electron systems. Proc. R. Soc. London. Ser. A 1929, 123, 714−733.
(33) Born, M.; Oppenheimer, R. Zur Quantentheorie der Molekeln.

Ann. Phys. 1927, 389, 457−484.
(34) Slater, J. C. The Theory of Complex Spectra. Phys. Rev. 1929,

34, 1293−1322.
(35) Hartree, D. R. The Wave Mechanics of an Atom with a Non-

Coulomb Central Field. Part I. Theory and Methods. Math. Proc.
Cambridge Philos. Soc. 1928, 24, 89−110.
(36) Slater, J. C. Note on Hartree’s Method. Phys. Rev. 1930, 35,

210−211.
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